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This document contains the supplementary material to the research article Com-
paring statistical and process-based flow duration curve models in ungauged basins and
changing rain regimes by M.F. Müller and S.E. Thompson (2016), published in Hydrol-
ogy and Earth System Science. Section S1 describes the performance of the Medium
Irrigation Project method currently implemented in Nepal to predict Flow Duration
Curves (FDC) in ungauged basins for infrastructure design purposes. Section S2 de-
scribes supplementary cross-validation analyses conducted to attribute the uncertainty
sources of the assessed methods. Section S3 describes the theoretical arguments re-
lating catchment characteristics to the resilience of stream regimes (and therefore the
reliability of the statistical method for predictions under change) in seasonally dry cli-
mates. Lastly, Section S4 describes the Monte Carlo analysis conducted to test these
hypothesized relations.

S1 Performance of the Medium Irrigation Project

method in ungauged Nepalese basins

To benchmark the methods evaluated in this study, we assess the predictive perfor-
mance of the Medium Irrigation Project, an empirical method currently used to predict
streamflow distribution in small mountainous catchments in Nepal for infrastructure
design purposes. The method is prescribed by official micro hydropower design guide-
lines in Nepal Alternative Energy Promotion Center [1]. The approach, described in [3],
divides Nepal into seven hydrologic regions characterized by different sets of monthly
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flow indices. Streamflow distribution in ungauged catchments is determined by per-
forming a site visit in mid-April to evaluate discharge under low-flow conditions. In our
validation analysis, we emulated this step by selecting the daily flow measured on April
15th of a randomly drawn observation year at each gauge. The measured flow is then
used to scale the regional monthly indices corresponding to the location of the catch-
ment. All regions have an index of 1 for the month of April (when low-flow conditions
are observed), and larger indices for the other months. FDCs can finally be computed
by reordering daily flow values interpolated from the obtained monthly flows.

A fundamental flaw of the method is that it assumes that discharge measured in
mid-April on a given year is representative of lowest flow conditions that can be observed
in the catchment. This assumption does not hold if effective rain events have occurred
shortly before discharge was measured or, more to the point, if the current year is not a
particularly dry year. As a result, predicted FDCs substantially overestimate observed
flows, as shown in Figure S1 (a), and provide a clear motivation to seek improved, yet
tractable prediction options.

S2 Determination of Uncertainty Sources: Supple-

mentary Analyses

S2.1 Statistical Method

Figure S1 (b) shows that parameter interpolation errors are the main source of un-
certainty of the statistical method. Using observed (instead of predicted) flow indices
substantially reduces the width of the error-duration curve of the statistical method.
The relative sensitivity of the statistical method to interpolation errors in each flow
index was evaluated through a numerical simulation (Figure S2 (a)). The prediction
performance was more sensitive to errors in Qm than q95. This is consistent with the
fact that, while Qm has a direct effect on all the quantiles of the FDC, q95 only de-
termines the type of FDC shape that is selected, and two different values of q95 may
generate identical FDC shapes. The statistical approach assumes that catchments with
similar low-flow indices (q95) have identical hydrological responses, and therefore iden-
tical FDC shapes. Errors caused by the violation of this assumption also appear in
the error duration curve on Figure S1 (b). The statistical method assigns gauges to a
finite number of bins, according to their low flow index, and determines a FDC shape
for each bin. The error duration curve shown on Figure S1 (b) represents differences in
the FDC shapes of catchments within the bins (i.e. with similar low flow indices). A
tradeoff arises in determining the number of bins: a small number of large bins leads to
large averaging errors within the bins, while a large number of thin bins increases the
model’s sensitivity to interpolation errors in q95.
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S2.2 Process-based Method

In contrast, interpolation uncertainties on the model parameters (k and b) only marginally
affect the prediction performance of the process-based approach (Figure S3 (a)). Two
other sources of error appear to drive prediction performance. Firstly, uncertainties
are caused by the aggregation of point-rainfall statistics to the catchment level. These
errors are caused by spatial heterogeneities in wet season rainfall and principally affect
high flows, as seen when comparing Figures S3 (b) and (c). Secondly, the numerical
analysis presented in Figure S2 illustrates the crucial importance of dry-season recession
constants. While the model is remarkably robust to deviations from key assumptions
on rainfall distribution and recession relations [see 4], prediction errors at low flows
appear to be caused by errors in the determination of a, the scale parameter of the
non-linear seasonal recession (Figure S3 (b)). In Müller et al. [4], a is expressed as an
explicit function of k and b for sufficiently short recession times, where power-law reces-
sions can be approximated by exponential functions. Although this approach provides
more accurate estimates of a than would be obtained through spatial interpolation (Fig-
ure S3 (b)), estimation uncertainties remain, propagate through the model and drive
prediction errors during the dry season.

The numerical analysis presented in Figure S2 illustrates the crucial importance of
dry-season recession constants. Unlike the statistical model, the process-based model is
affected by errors in both of its parameters (k and b). However, the model’s sensitivity
to k is at least partly due to its effect on the estimation of a. The sensitivity of k drops
if the wet-season recession constant is not used to determine a, as seen in Figure S2 (c),
where the error introduced on k does not propagate to a. This effect is also visible in
the resampling analysis on short time series (Figure 3(c) of the main article), where the
uncertainty on k only marginally affects prediction performance, which declines when b
estimates become inaccurate. This shows that the performance of the model is strongly
driven by the estimation of dry-season recession constants in ungauged catchments.

S3 Catchment Characteristics and Streamflow Re-

silience in Seasonally Dry Climates

We examine the linkages between the resilience of flow regimes and the physical char-
acteristics of the catchments. This allows us to identify regions where the statistical
method may not provide reliable predictions under change because the flow distribution
is is vulnerable to changing rainfall. By explicitly representing runoff generation pro-
cesses, the stochastic dynamic framework used in the process-based model is an ideal
tool to explore the resilience of flow regimes in catchments that follow its basic un-
derlying assumptions on recession behavior. A similar model was used in non-seasonal
climates by Botter et al. [2] to relate the resilience of the probability density func-
tion of streamflow to observable catchment characteristics. Here we discuss the case
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of seasonally-dry climates, where the characteristics of the seasonal recessions can sub-
stantially affect streamflow resilience, here measured as the change in the flow duration
curve (in terms of differences in Nash Sutcliffe Coefficient) resulting from a change in
rainfall 1.We use the relations derived in the stochastic dynamic framework [4] to infer
the effect of rainfall and recession characteristics on the resilience of flow regimes. This
will allow the reliability of the statistical models to be assessed for predictions under
change.

During the wet season, flow regimes are determined by the ratio between λ, the
frequency of effective (i.e. runoff-generating) rain events, and k the (linear) recession
constant that represents the time scale of the hydrological response of the catchment
[2]. If λ/k > 1, frequent effective rainfall and a slow catchment response guarantee
a persistent supply of runoff to the stream. If λ/k < 1, effective rain is not frequent
enough to compensate for rapid decreases in streamflow after runoff events, and the
stream may become intermittent. Streamflow in persistent regimes (λ/k > 1) is driven
by rainfall, whereas streamflow in intermittent regimes (λ/k < 1) is constrained by
the ability of the catchment to modulate the release of water stored in the subsurface.
Accordingly, rainfall changes affect most flow quantiles in the persistent regime and shift
the entire flow distribution, but they preferentially affect high flows in the intermittent
regime, which occur immediately after effective rain events. As a result, intermittent
regimes are more resilient to climate change in terms of the mean effect on the entire
streamflow distribution, as observed by Botter et al. [2] and illustrated in Figure S4
(a). However, when specifically considering climate effects on the shape of the flow
distribution (i.e. by normalizing all flow quantiles by their mean), intermittent regimes
are more vulnerable to rainfall changes, which ‘tilt’ normalized FDCs by preferentially
affecting high flows (Figure S4 (b)). Consequently, we expect the statistical method to
perform better in persistent flow regimes because the shape of streamflow distribution
is less sensitive to changing rainfall. This is confirmed in the Monte Carlo analysis
presented in below, where the ratio λ/k is positively correlated to the performance of
the statistical model.

If no significant rainfall occurs outside of the wet season, climate change only affects
dry-season flow through its effect on the initial condition of the seasonal recession. It
follows the flow regime will be more sensitive to rainfall changes if the duration of the
wet season (when rainfall has a ‘direct’ effect on streamflow) is long and thus affects a
greater proportion of the annual flow duration curve. This effect is also visible in the
Monte Carlo analysis, where the duration of the wet season (Tw) is negatively associated
with the performance of the statistical model.

The extent to which changes in the initial condition affect the shape of the sea-
sonal recession during the dry season is determined by the non-linear character of the
catchment’s response. This can be seen by using the characteristic time-scale of the

1This contrasts with Botter et al. [2], who considers the effect of rainfall regime changes on the
probability distribution function of streamflow. While the general idea is the same, the numerical
results can be different.
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recession (here we consider the time necessary to reduce peak flow by 1/e) to char-
acterize its shape. In linear catchments, the recession takes an exponential form, so
the characteristic timescale corresponds to the inverse of the recession constant and is
not affected by initial conditions. For non-linear catchments, characteristic time can be
derived from Equation 1 in the main article:

t1/e =
(1 − e−r)Qr

0

ar
(1)

with r = 1−b. In these nonlinear regimes, the initial conditions Q0 clearly have an effect
on the shape of the recession of non-linear catchment. Taking the derivative of Equation
1 with respect to Q0 shows that a change in initial flow has a stronger influence on the
shape of the recession for low values of Q0, as illustrated in Figure S4 (c). Consequently,
the sensitivity of the dry season flow regimes to climate change scenarios is expected to
be highest in strongly non-linear catchments with limited wet season runoff. Predictions
of the FDC using the statistical model for non-stationary rainfall regimes are likely to
be poor. In the Monte Carlo analysis below, the performance of the statistical method is
significantly worse in strongly non-linear catchments. However, the negative correlation
between the linearity of the runoff behavior and the prediction performance is weaker
for catchments with high wet-season runoff.

The streamflow resilience in seasonally dry catchments depends on two distinct sea-
sonal effects: a ’direct’ effect driven by the ratio between λP and k during the wet
season, and an ’indirect’ effect during the dry season, when resilience is determined by
the interplay between Q0 (i.e. wet-season rainfall) and b. Streamflow resilience influ-
ences the ability of the statistical method to predict FDCs under change. In seasonally
dry climates, we expect the statistical method to be most reliable in regions where wet
seasons are short with limited total rainfall but persistent flow regimes, and where the
recession behavior during the dry-season is close to linear.

S4 Monte Carlo Analysis of Flow Regime Resilience

We used a Monte Carlo analysis on numerically generated streamflow to estimate the
effect of catchment characteristics on streamflow resilience. In the context of this paper,
the resilience of flow regimes to climate change is defined as the robustness of the shape
of FDCs to shifts in the frequency and intensity of rainfall. The analysis proceeds as
follows:

1. Topographic and hydroclimatic characteristics are drawn from uniform distribu-
tions as described in Table S1.

2. 1000 years of ’current’ synthetic daily streamflows are generated from the drawn
parameters using the stochastic rainfall generator and rainfall-runoff model de-
scribed in Section 2.3.2. of the main article.
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3. Randomly drawn multiplicative biases are inserted to the parameters representing
frequency and intensity of rainfall (λP and αP ) to emulate climate change, and
1000 years of ’future’ synthetic daily streamflow are generated.

4. Current and future FDCs are constructed empirically from the simulated time
series, and normalized by their respective means.

5. Differences in the shape of the flow distributions are quantified by computing the
Nash Sutcliffe coefficient on the (log) flow quantiles of the two normalized FDCs.

We repeated the procedure 5000 times and used linear regressions to estimate the effect
of catchment characteristics on the resilience of flow regimes, as represented by the
Nash Sutcliffe coefficient.

Ordinary least squares estimates of the considered regression models are presented
in Table S2. The first column presents direct correlations between catchment charac-
teristics and flow regime resilience and indicate significant positive effects for rainfall
frequency and intensity and a negative effect of both recession constants. Regression
models shown in columns 2 and 3 test the relations hypothesized in the discussions.
As expected, column 2 shows that the λ/k ratio has a positive significant effect on the
resilience of flow regimes. In order to avoid colinearity issues, all variables used to con-
struct λ (i.e. λP and αP in Equation A1 of the main article) where removed from the
regression model. The significant negative effect of Tw on streamflow resilience is consis-
tant with the fact that dry season precipitations are neglected. Consequently, changes
in rainfall have a direct effect on wet season flows, while only affecting dry season flows
through their effect on the initial conditions of the seasonal recession. Lastly, we use
mean wet-season rainfall (λPαP ) as a proxy for the initial conditions of the seasonal
recession and assess the effect of its interaction with b on flow resilience in column 3. As
expected, b is strongly negatively associated to flow resilience but its interaction with
λPαP is significantly positive. This is consistent with our hypothesis that the shape of
non-linear recessions is more sensitive to climate, especially if the initial flow conditions
are low.
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Table S1: Parameters of the Monte Carlo analysis. At each run, all parameters are drawn
independently from a uniform distribution of the specified range.

Characteristic Description Distribution range
k−1 [d] Mean response catchment [1, 10]

response time during the wet season
b [−] Exponent parameter of the [1, 3]

seasonal recession
Tw [d] Wet season duration [50, 300]
λ−1
P [d] Mean inter-arrival time of [1, 10]

wet season rainfall
αP [mm/d] Mean intensity of wet seasonal rainfall [1, 50]
Log10(A) [log(km2)] (Log) catchment area [1, 5]
rλP [−] Relative change in rainfall frequency [−0.9, 0]
rαP

[−] Relative change in rainfall intensity [0, 1]
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Table S2: Linear regression results of the Monte Carlo analysis showing the effect of catch-
ment characteristics on flow resilience. Dependent variables are the Nash Sutcliffe
coefficients estimated between the normalized current and future FDCs obtained
from the Monte Carlo analysis. Independent variables are constructed from the
randomly drawn catchment characteristics listed in Table S1. The first column
presents the raw effects of the catchment characteristics on flow resilience. Column
2-3 test the direction and significance of the effects described in Section S3. Su-
perscripted stars describe the significance of the estimated regression coefficients,
as described by the p-value of Student’s t test: ∗∗∗ indicates a trend different from
zero at the 99% confidence level; ∗∗ and ∗ indicate confidence levels of 95% and
90% respectively.

Dependent variable:

Nash Sutcliffe Coefficient

(Baseline) (Wet. seas) (Dry seas.)

λP 3.17 · 10−1∗∗∗

(2.07 · 10−2)
αP 1.49 · 10−3∗∗∗

(3.27 · 10−4)
k −4.54 · 10−1∗∗∗

(3.32 · 10−2)
Tw −3.23 · 10−4∗∗∗ −3.36 · 10−4∗∗∗ −3.68 · 10−4∗∗∗

(5.72 · 10−5) (5.70 · 10−5) (5.81 · 10−5)
b −5.75 · 10−2∗∗∗ −6.14 · 10−2∗∗∗ −1.02 · 10−1∗∗∗

(7.46 · 10−3) (7.42 · 10−3) (1.21 · 10−2)
λ/k 6.28 · 10−2∗∗∗

(3.19 · 10−3)
λPαP −1.31 · 10−3

(2.19 · 10−3)
λPαP :b 4.06 · 10−3∗∗∗

(1.03 · 10−3)

Observations 5,000 5,000 5,000
F Statistic 559∗∗∗ 753∗∗∗ 589∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure S1: (a) Performance in ungauged basins of the MIP method currently used in Nepal
for infrastructure design. The method produces significant upward biases on
the predicted FDCs. (b) Error duration curve showing the prediction errors
of the statistical methods when the parameters are estimated using observed
streamflow, instead of linear regression. Comparison with Figure 2(b) of the
main article shows that interpolation uncertainties on the model parameters are
the main source of error of the statistical method.
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Figure S2: Effect of parameter estimation errors in the predictive performance of the mod-
els. Results were obtained using the Monte Carlo analysis described in Section
S4, with errors in the parameters inserted instead of rainfall changes. (a) The
performance of the statistical model is driven by errors in Qm, with little effect of
q95. (b) The process-based model is sensitive to errors in both of its parameters,
but k mostly affects prediction performance through its effect on a (Equation 2
of the main article). (c) Errors in k have little effect on modeling performance if
the true values of a are used instead of Equation of the main article.
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Figure S3: (a - c) Error duration curve of leave-one-out cross-validations for the process-
based model using (a) observed values (i.e. estimated from local streamflow
observations) for k and b, (b) observed values of k, b and a, and (c) observed
value of k, b, a, λ and α. Comparing panels (a) to (c) shows that errors in
low flow decrease substantially when using observed values for a, instead of its
approximation from k and b (Equation 2 in main article), whereas errors in
high flow decrease substantially when using streamflow, instead of rainfall (see
Appendix A of the main article), to estimate λ and α. (d) Scatterplot of observed
vs predicted values for a. Predictions errors are small when using Equation 2
of the main article with observed values of k and b (black), and significantly
larger when interpolating a from observed values in neighboring catchments using
ordinary kriging (grey).
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Figure S4: Streamflow resilience to rain changes. (a) Effect of a 50% increase of rainfall
frequency on wet-season FDCs for different flow regimes. The solid FDCs as-
sume a persistant regime (λ/k = 2.0), with lower and upper curves representing
the ’current’ and ’future’ flow distribution respectively. The dashed curves as-
sume an intermittent regime (λ/k = 0.2). The persistent regime (solid) is more
sensitive to changes than the intermittent regime (dashed), as seen in its lower
Nash Sutcliffe Coeffieicnt (NSC) of 0.24. (b) The FDCs presented in panel (a)
are normalized by their mean flow. The intermittent regime (dashed) is now
more sensitive to change than the resilient regime (solid) because high flows are
disproportionately affected by changes in rainfall. (c) Seasonal recession curves
for linear (dashed) and non-linear (solid) catchments with different initial flow
conditions. The figure illustrate that the shape of the recession is affected by
initial conditions only if the catchment recessions are non-linear. For identical
relative changes in initial conditions (here 1000%), the effect on recession shape
is most important for low initial flow conditions.
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