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Supplement: Methods

Three new approaches to seasonal hydrologicaldetieg are presented and compared to the
current climatological ensemble procedure curreapplied at SMHI: analogue ensemble,
dynamical modelling and statistical downscaling.l Ahethods are described in this

Supplement.
S1 Climatological ensemble (CE; baseline forecasts)

The current spring flood forecasting practice att8Né a climatological ensemble approach
based on the HBV hydrological model (e.g. Arheiraerl., 2011). The forecast procedure

follows three steps:

1) A set-up of the HBV model, well-calibrated fiwetspecific river basin and location, is run
using observed meteorological data (T, P) as ifgoua period of not less than 12-24 months
up to the forecast issue date, typically sometimEdbruary. The state of the HBV model at
the forecast issue date will thus reflect the aurkeydrological conditions in the basin with

respect to e.g. streamflow, snow pack and soil ta@s

2) The resulting HBV state from step 1) is thendugse the initial state for forecast runs. The
input data for the forecast runs are catchment tsemges of T and P from all available
historical years prior to the current one, whiclars the period from the forecast issue date
until the end of the spring flood period (Figure Zhe time series of each historical year
represents one possible weather evolution andtseBulone possible spring-flood volume
(SFV) estimate.

3) The results from all historical years make uplimatological forecast ensemble, which
may be expressed in terms of percentiles with diffe probabilities. In current practice, as
well as in this study, the median value of SFVaasidered as the spring flood forecast.

In this experiment, the CE is thus made up of islidnical years from 1961 to “present”. This
means that the CE has 40 members in 2000 and ses@asize by one member for each year
thereafter (Table S1). The spin-up period usedoif01-01-1961 to “present”. As each new
forecast is made, the initial conditions (i.e. mostate) are saved and these are used when

spin-up for the next forecast date is performed.
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S2 Analogue ensemble (AE)

The analogue method has been widely used as a dalwitgs methodology since Zorita and
von Storch (1999). This approach is based on tmsnagtion that similar large-scale
atmospheric patterns can result in similar metegjiobl conditions. The objective is to
identify historical years with similar large-scaleculation conditions as the current year, up
to the forecast issue date, and then assume #iasstibsequent weather evolutions are likely
realisations over the coming forecast period. ia gtudy we use a period of 1 to 6 months
prior to the forecast issue date to identify thalague years. This choice is motivated by the
fact that it will cover the period when snow is aewlated in the catchments and that similar
climate behaviour during this period could indugrisr snow accumulation. Each identified
individual year is an analogue year and a group@i will compose an analogue ensemble.

As compared with the CE method, this approach aimdentifying a reduced ensemble that
will provide input to the hydrological model andithgenerate the SFV forecast ensemble. To
restrict the large number of degrees of freedonthefatmospheric circulation, that would
require an unreasonable number of years in therldat data set, two methods are used for
the selection of the analogue ensemble. The fingt is based on teleconnection climate
indices (TCI; Sect. S2.1) and the second on citiculapatterns (CP; Sect. S2.2). After
selection, the procedure described in Sect. SdllmAfed but with the analogue instead of the
full historical ensemble in step 2.

The performance of the analogue method is heaffigcted by whether the climatic features

in the forecasting data were encountered in theitigaperiod dataset. This prospect is related
to both the archive length available and the preser non-stationarities. In this study, the
archive consists of gridded daily T and P timeesem the catchment from 1961 to 1999. This
40-year period is limited in this context, butstwhat we have available. Concerning non-
stationarities, we here assume climatic statiopari. that all years in the historical period

(1961-1999) are equally representative of the dima the study period (2000-2010). Any

historical trends would imply that years in thetdatpart of the historical period are more

representative than years in the former part. Aseslyof P, T and Q data in Vindelalven,

however, fail to reveal any significant trendshe tistorical period. Further, it has previously
been shown that using a more recent period in then€thod does not improve performance
as compared with using the full historical peri@flsson and Sjogren, 2003).



~N o o b~ W0DN P

10
11
12
13

14

15
16
17
18

19
20
21
22

23
24
25
26
27

28
29
30

Concerning the size of the analogue ensemblelaifge fraction of the total number of years
in the archive is selected the AE method will cageetoward the CE baseline method and no
additional skill will be attained. If only a few ges are selected, on the other hand, the
uncertainty of the reduced ensemble will be vergda In this study we have not put any
restrictions on the ensemble size but used whamgiods found. On average ~15% of the
archived years were identified as analogues, affhouvaried between 0% and almost 50%
(Table S1).

S2.1 Selection based on teleconnection climate indices (TCI)

The northern hemisphere teleconnection patterngeamérring air pressure and circulation
anomalies identified by Barnston and Livezey (1983ing a Rotated Principle Component
Analysis (RPCA) of standardised geopotential heighbmalies. The prospect of using
climate indices for identifying analogue years ihyalrological forecasting context has been

previously explored by e.g. Hamlet and Lettenm§i®©9).
The three selected teleconnection indices can decterized as follows.

- North Atlantic Oscillation (NAO): the positive pee of the NAO is associated with above
average temperature (T) and precipitation (P) d»eandinavia during winter (mild, wet
winters), while the negative phases tend to beceestsal with below average T and P (cold,

dry winters) (Kushnir, 1999; Hurrell and Dreserl20among many others)

— East Atlantic pattern (EA): the positive phasette EA pattern is associated with above
average winter T, below average winter P (mild, digters) in southern Scandinavia, and
above average winter P (high snow accumulationhcplihe Scandinavian mountains and

northern Scandinavia (Comas-Bru and McDermott, 2014

— Scandinavia pattern (SCAND): the positive phasin@® SCAND pattern is associated with
below average winter P over Scandinavia (dry ws)teexcept over the Scandinavian
mountains, where little signal is present. For eint, this phase is associated with below
average in the southern (cold winters) and abowrage (mild winters) in the northern

Scandinavia (Comas-Bru and McDermott, 2014).

The choice of climate indices is motivated by taetfthat each of them represents a specific
atmospheric circulation that is known to impact theand P in Scandinavia, and so, its

hydrology. As described before, different circudatipatterns have different impacts on the
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Scandinavian T and P. Patterns occurring concotiytanay increase or decrease their
impact on T and P so that it is important to tak iconsideration the state of different
circulation patterns, and thus different climatéices, at the same time.

The years are classified based on the indicesbriisi mean value Tl and standard
deviation TC§. The current year, with its certain TCl-valueglassified as above normal if
TCI>TCIly+TCls, below normal if TCI<KTG)-TCls and normal if TG§-
TCI<TCI<TCIuy+TCls. The same classification is done for the corredpanperiods in each
of the years in the historical archive. If the sifisation of the three different indices is in
agreement with the index classification for thery@aquestion for the forecast, the specific
historical year is selected as an analogue yeae. tDuhe restricted amount of years in the
historical data, it is possible that no analoguargean be identified by this methodology. In
this case, analogue years are sought using annmagneavith two indices. The number of

identified analogue years range between 1 and t®aninean value of 7 (Table S1).

S2.2 Selection based on circulation patterns (CP)

Circulation-pattern (CP) analysis is a commonly duswol in climatological and
meteorological studies (Hay et al., 1991; Wilby aNdyley 1994). It was initially applied to
explain climate variability at a large scale (Baagd Perry, 1973) and later on widely
developed to downscale GCM output to local climatee.g. climate change studies
(Wetterhall et al., 2006; Yang et al., 2010).

The method is generally applied to reliable uppedata at multi-grid, e.g. sea level pressure
and geopotential height, to explain recorded olzems of e.g. P and T. By differentiating
historical observations into several representa@rs, each CP is supposed to represent
specific climate conditions in the study area. Tis are defined based on either professional
knowledge of atmospheric motions (subjective cfasgion) or statistical characteristics
derived from the observations (objective classiitmg. As the subjective classification is
only available in a limited number of regions, thigective classification has been widely
developed and used. The objective classificatica semi-automated or automated technique
that pertains to mathematical approaches, e.garet@cal methods (Johnson, 1967), k-means
methods (Mac-Queen, 1967), cluster analysis (Kyseid Huth, 2005) and correlation
methods (Yarnal, 1984). The method that is propesetinvestigated here is based on fuzzy-
rule logic.
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Fuzzy-rule-based classification is built on the capt of fuzzy sets (Zadeh, 1965), using
imprecise statements to describe a certain systenthis case the climate system. The
classification scheme for CPs follows four stepstransformation of large-scale data; 2)
definition of the fuzzy rules; 3) optimisation difet fuzzy rules; and 4) classification of CPs. A
detailed description of the methodology used harele found in Bardossy et al. (2002) and

it is only summarised in the following.

In this work, the anomalies of daily mean sea lgureksure (MSLP)(i,t), from reanalysis
data (ERA40 or ERAINTERIM; Sect. 2.2), serves gseaictors according to

_h(i,t) —u(,t)
gt

9(,t) (1)

whereh(i,t) is daily MSLP at grid cell and timet. Variables i(t') and o(i,t’) denote its
climatological mean and standard deviation at gellli on Julian dat&. The anomalyy(i,t)

indicates the deviation of daily MSLP from the letegm climatology.

Everyg(i,t) is categorized into one of five groups using fukmic: large positive deviation,
small positive deviation, no deviation, small négateviation and large negative deviation.
To determine the fuzzy rule sets best describiegGRs, every rule is optimised with a local
variable using a well-designed objective functibattexplains its statistics in a given region.
In this study, P observations in Vindelalven durir@$1-1990 are used as local observations.
Finally, each CP can be described with a fuzzy rafgesented by a vect®i(k) = (vi(K),
Vo(K), . . . ,Vi(K); i = 1, n), wheren is the number of grid cells in the domain &nstands for
the CP.

Two measures are considered as representativatisigtidescribing the difference from

average conditions in terms of P probabili®f)and P amouni®,) according to

0= 2 [P (crt)-Pwef @

n=1

_1dzerm) 7
OZ—NZ—Z 1\ 3)

n=1

whereN is the total number of days used for the CP op@ton. For a day with a given
circulation patterrCP(n), PWy denotes the probability of P exceeding depilgenerally 0.1

mm, which is used here, but also higher thresholdg be used) and denotes the mean P

5
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amount. Overbar represents the long-term climatodbgneans ofPWy and Z, in practice
calculated as the averages over Nildays without regard to classification. The objeti
functions given by Egs. (2) and (3) are combined weighted sum

O, =w,0, +w,0, 4)

where the two weighting factorg, andw, are determined subjectively to adjust for relative
differences in magnitude as well as importanceighér value ofO; indicates a better, more

distinct classification.

Figure S1 illustrates how the best possible seff$ is obtained. At each iteration, a set of
fuzzy rules is randomly generated. They describeryeCP by defining randomly selected
membership functions (i.e. degree of daily MSLP raaly deviated from long-term mean
values) at randomly selected locations. Thereater CP time series is generated in order to
carry out the performance evaluation in which plolgtg of precipitation and its amount,
conditioned on classified CPs, are taken into actolihe optimization procedure uses a
simulated annealing algorithm. Steps (3) and (&) rapeated until the portion of accepted

changes caused by introducing a new set of rulesrbes smaller than a predefined criterion.

A successful CP classification should thus ful&lveral requirements: 1) the classified CPs
should be able to meaningfully explain large-sa@dilmate conditions and their induced local
weather phenomena; 2) each CP should be uniquasadifferent from other CPs as possible.
When the fuzzy rules that describe every CP haee betimized (see Fig. S1), daily CP time
series are generated. The frequency of occurrendeparsistence of individual CPs are
calculated per month for all historical years adl &g the current year to be forecasted. The
two most frequently occurring CPs within a periddlaup to 6 months prior to the forecast
issue date are used as a criterion to select tegue historical years to make forecasts (see

Fig. S2). Using more than two CPs did not produneaditional skill.

In a very few cases the CP method, as implemenéed, lwas not able to identify any
analogue year (Table S1) and then it was replagatdebCE forecast to have a complete time
series of forecasts for the multi-method. This hasegligible impact on the results. On

average, 6 analogue years were identified by then€fhod.
S3 Dynamical modelling (DM)

In this approach, the daily T and P ensemble of@®a forecasts from ECMWEF (Sect. 2.2)

were converted into HBV input. This was done by piag the daily forecasts from the IFS

6
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grid onto the HBV sub-catchments. The mapping wasedy areal weighting, based on the
catchment fractions covered by different IFS gmtlsc The resulting sub-catchment average
P and T values were then adjusted to represenereift altitude fractions within the
catchment. After conversion, the ECMWF forecastsenused to feed the HBV model from
the same initial state as used in the current Giegalure, thus following the procedure in
Sect. S1 but with forecasts instead of historierg in step 2. As in the CE procedure, the
final forecast used in the evaluation is definedh®/ensemble median.

S4 Statistical downscaling (SD)

Statistical downscaling is a widely accepted metthogly used to connect coarse-scale
climate data from GCM to local-scale climate. Iistbase, large-scale circulation variables
are statistically connected to the SFV (e.g. Landeiaal., 2001; Foster and Uvo, 2010). The
method employed to establish the statistical mtethip among the variables is the
multivariate procedure known as Singular Value Degosition (SVD) analysis (Bretherton

et al. 1992). SVD analysis is a technique thataiesl sets of mutually orthogonal pairs of
spatial patterns that maximize the squared tempooairiance between two physical

variables (e.g. Cheng and Dunkerton, 1995; Uvd.el898; among many others). The SVD
of the cross-covariance matrix of two fields yietds matrices of singular vectors and one
set of singular values. A pair of singular vectdescribes spatial patterns for each field that
have overall covariance given by the correspondimgular value. This praxis has been

recently re-named as Maximum Covariance Analysi€ )l

MCA can be used to derive specific prediction agcsfication models for a particular point in
one variable’s field (the predictand; SFV in thase) based on the spatial pattern and/or on
the evolution patterns of the anomalous valueshendther field (the predictor). From the
singular vector pairs, the temporal expansion seoé each field can be obtained by
projecting the data onto the appropriate singulectar (Bretherton et al. 1992). The
relationship between the variables is generatedcdigulating the matrix of regression
coefficients which relates the values of the priedisingular mode temporal amplitudes to

the individual points in the predictand field.

In this work, hindcasts for the predictors anddristl observations for the predictands were
used to define the statistical relationship betwdeem i.e. to calibrate the model. To
maximise the robustness of the forecast, multiptedasts are made with different predictors

resulting in an ensemble forecast. The predicteesl were forecasted fields (ensemble mean)

7
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of large-scale circulation variables with a 2°x2%alution from two different GCMs (Sect.

2.2) for the 3 months following the forecast issieste (Figure 3). The period used for
developing the statistical model (that expressdtatistical relationship between predictors
and predictand) was from 1982 until the year ptorithe year being forecasted; thus the

training period increased in length with each $tepard through the study period.

The initial set of predictors to be evaluated wsetected by an initial screening based on
previous literature (Nilsson et al., 2008; Fosted &vo, 2010) followed by an analysis of
predictive skill in the historical period. The teréest performing predictors for each station

and forecast date were selected to comprise thenSBmble (Table S2).

Figure S3 illustrates how the predictors are seteend the statistical model developed. Each
SVD analysis calculates the heterogeneous comwakthow the spatial pattern of one field is
correlated with the time series of the other (Bg), and a matrix of regression coefficients
relating both fields. The heterogeneous correlatiare used as a selection metric and the
three highest ranked predictors are chosen to bd usthe SD model chain. Thereatter,
seasonal forecasts of the selected predictors amastaled (Fig. S5) using the applicable
regression coefficients, obtained during the SVRIlgsis, where after they are combined to

give the forecast of the SFV.

It should be noted that whereas the other methedsrgte daily discharge time series over
the spring flood period, from which SFV is estinthtéhe SD method directly forecasts the
SFV. Therefore forecasts from the SD method amaadt interest in the early forecast issue
dates and of less interest closer to the springdflperiod, as they are not able to provide

information about the flood profile.
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Table S1. Ensemble sizes generated by the diffesiagle methods. For the TCI and CP

approaches, the numbers represent min / mean / max.

CE TCI6 CP3 DM SD

2000:40 | 1/1:1/6/16 | 1/1:0/5/14 | 2000-2006:11 |3

2001-41 | 1/3:2/7/19 |1/3:0/5/13 | 2007-2010: 41
1/5:2/7/19 | 1/5:0/7/16

2010: 50

11
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Table S2. Final predictors used in the SD methath(@mospheric model in parentheses).

Sorsele | 1/1 850hPa temperature | 850hPa zonal wind 850hPa temperature
(ARPEGE) velocity (ARPEGE) | (IFS)
1/3 850hPa geopotential | 850hPa specific Zonal wind stress
height (ARPEGE) humidity (ARPEGE) | (IFS)
1/5 850hPa temperature | 850hPa specific 2m temperature
(IFS) humidity (IFS) (IFS)
Vindeln | 1/1 Surface latent heat Surface latent heat Surface sensible
flux (ARPEGE) flux (IFS) heat flux (ARPEGE)
1/3 Surface sensible Total precipitation 850hPa temperature
heat flux (ARPEGE) | (ARPEGE) (IFS)
1/5 Surface latent heat Surface latent heat 850hPa geopotential

flux (ARPEGE)

flux (IFS)

height (ARPEGE)

12



Fuzzy rule based CP classification

_________________________________________________

(1) Data Transformation
i.e., g (it)
at location iand day t

\

(2) Membership function
i.e., v (it)
at location iand day t

¥

: (3) Random selection of rules i

for every CP, k

v

(4) Performace calculation
using Obj. function

v

(5) Rules optimization using
simulated annealing with
repetition from (3) to (4)

Fuzzy rules for
CP generation

2 Figure S1. Schematic of the fuzzy-based CP classifin process.
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Figure S4. The heterogeneous correlation maps Her three highest ranked predictors
(initialised in January) for the station SorselbeTheterogeneous correlation is a measure of
how the spatial pattern of one field is correlatath the time series of the other and is used

as a metric for selecting the predictors to udbénstatistical downscaling approach.
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2  Figure S5. Schematic of the SD-based ensembledstiag approach.



