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Abstract. Soil water content (SWC) is crucial to rainfall-

runoff response at the watershed scale. A model was used

to decompose the spatiotemporal SWC into a time-stable

pattern (i.e., temporal mean), a space-invariant temporal

anomaly, and a space-variant temporal anomaly. The space-

variant temporal anomaly was further decomposed using the

empirical orthogonal function (EOF) for estimating spatially

distributed SWC. This model was compared to a previous

model that decomposes the spatiotemporal SWC into a spa-

tial mean and a spatial anomaly, with the latter being further

decomposed using the EOF. These two models are termed

the temporal anomaly (TA) model and spatial anomaly (SA)

model, respectively. We aimed to test the hypothesis that

underlying (i.e., time-invariant) spatial patterns exist in the

space-variant temporal anomaly at the small watershed scale,

and to examine the advantages of the TA model over the

SA model in terms of the estimation of spatially distributed

SWC. For this purpose, a data set of near surface (0–0.2 m)

and root zone (0–1.0 m) SWC, at a small watershed scale in

the Canadian Prairies, was analyzed. Results showed that un-

derlying spatial patterns exist in the space-variant temporal

anomaly because of the permanent controls of static factors

such as depth to the CaCO3 layer and organic carbon con-

tent. Combined with time stability analysis, the TA model

improved the estimation of spatially distributed SWC over

the SA model, especially for dry conditions. Further applica-

tion of these two models demonstrated that the TA model

outperformed the SA model at a hillslope in the Chinese

Loess Plateau, but the performance of these two models in

the GENCAI network (∼ 250 km2) in Italy was equivalent.

The TA model can be used to construct a high-resolution

distribution of SWC at small watershed scales from coarse-

resolution remotely sensed SWC products.

1 Introduction

Soil water content (SWC) of surface soils exerts a major in-

fluence on a series of hydrological processes such as runoff

and infiltration (Famiglietti et al., 1998; Vereecken et al.,

2007; She et al., 2013a). Soil water content in the root zone

is, in many cases, linked to vegetative growth (Wang et al.,

2012; Ward et al., 2012; Jia and Shao, 2013). Obtaining ac-

curate information on the spatiotemporal SWC is crucial for

improving hydrological prediction and soil water manage-

ment (Venkatesh et al., 2011; Champagne et al., 2012; She et

al., 2013b; Zhao et al., 2010). While remote sensing has ad-

vanced SWC measurements of surface soils (<5 cm in depth)

at basin (2500–25 000 km2) and continental scales (Robinson

et al., 2008), characterization of spatially distributed SWC at

small watershed (0.1–80 km2) scales still poses a challenge.

A method is needed for estimating spatially distributed SWC

in the near surface and root zone at watershed scales.

Time stability of SWC, which refers to similar spatial pat-

terns of SWC across different measurement times (Vachaud

et al., 1985; Brocca et al., 2009), has been used for estimating

spatially distributed SWC (Starr, 2005; Perry and Niemann,

2007; Blöschl et al., 2009). This method is conceptually ap-
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Figure 1. Decomposition of spatiotemporal soil water content (SWC) in different models.

pealing, but assumes completely time-stable spatial patterns

of SWC.

The time-stable pattern does not explain all of the spatial

variances in SWC, indicating the existence of time-variant

components (Starr, 2005). In order to identify underlying pat-

terns of SWC that have time-variant components, the spa-

tiotemporal SWC was decomposed into a spatial mean and a

spatial anomaly. The spatial anomaly of the SWC was further

decomposed into the sum of the product of time-invariant

spatial patterns (EOFs) and temporally varying, but spatially

constant coefficients (ECs) using the empirical orthogonal

function (EOF) (Fig. 1) (Jawson and Niemann, 2007; Perry

and Niemann, 2007, 2008; Joshi and Mohanty, 2010; Korres

et al., 2010; Busch et al., 2012). Spatially distributed SWC

estimates based on the decomposition of spatial anomaly

outperformed those based on time-stable patterns (Perry and

Niemann, 2007).

Recently, the spatiotemporal SWC was also decomposed

into a temporal mean and a temporal anomaly (Mittelbach

and Seneviratne, 2012) (Fig. 1). Previous studies indicated

that the contribution of the temporal anomaly to the total

spatial variance was notable (Mittelbach and Seneviratne,

2012; Brocca et al., 2014; Rötzer et al., 2015). These studies,

however, only focused on surface soils at large scales (>250

km2). Vanderlinden et al. (2012) suggested that the temporal

mean may be further decomposed into its spatial mean and

residuals, and the temporal anomaly may be further decom-

posed into space-invariant term (i.e., spatial mean of tem-

poral anomaly) and space-variant term (i.e., spatial residuals

of temporal anomaly) (Fig. 1). Note that the spatial variance

in the temporal anomaly (Mittelbach and Seneviratne, 2012)

equals that of the space-variant term of the temporal anomaly

(Vanderlinden et al., 2012). The further decomposition of the

temporal anomaly may be physically meaningful, because

the space-invariant and space-variant terms in the tempo-

ral anomaly may be forced differently. However, the mod-

els of Mittelbach and Seneviratne (2012) and Vanderlinden

et al. (2012) have not been used for estimating spatially dis-

tributed SWC. If the space-variant terms are ignored during

the estimation of spatially distributed SWC, their models are

equivalent to that based on time-stable patterns. Therefore,

estimation of spatially distributed SWC may be improved by

incorporating the space-variant term of the temporal anomaly

if underlying (i.e., time-invariant) spatial patterns exist in the

temporal anomaly.

To our knowledge, the importance of the space-variant

term of the temporal anomaly and its physical meaning at

small watershed scales is not well-known. Based on previous

studies (Perry and Niemann, 2007; Mittelbach and Senevi-

ratne, 2012; Vanderlinden et al., 2012), we assume soil wa-

ter dynamics at watershed scales can be decomposed into

three components (Fig. 1): (1) time-stable pattern (i.e., tem-

poral mean, spatial forcing): the static factors such as soil

and topography control the pattern; (2) space-invariant tem-

poral anomaly (temporal forcing): the dynamic factors such

as meteorological variables and vegetation change with time,

and therefore modify SWC in time, regardless of spatial lo-

cations; and (3) space-variant temporal anomaly (interactions

between spatial forcing and temporal forcing): this term rep-

resents interactions between static and dynamic factors. For
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example, SWC recharge introduced by a rainfall may be

modified by topography through runoff processes; SWC loss

triggered by evapotranspiration may be regulated by topog-

raphy through solar radiation exposure.

The static factors may be persistent in the space-variant

temporal anomaly, and their impacts on the space-variant

temporal anomaly likely change with time. Thus, we hy-

pothesize that some underlying (i.e., time-invariant) spatial

patterns exist in the space-variant temporal anomaly, and

their impacts can be modulated by a time coefficient, both

of which can be obtained by the EOF method (Fig. 1). If

the hypothesis is true, the estimation of spatially distributed

SWC utilizing the EOF decomposition may outperform the

one suggested by Perry and Niemann (2007). This is because:

(1) the spatial anomaly, which was decomposed using the

EOF in Perry and Niemann (2007), lumped the time-stable

pattern and space-variant temporal anomaly together (Fig. 1);

(2) the underlying spatial patterns in the spatial anomaly may

not fully capture both time-stable patterns and patterns in the

space-variant temporal anomaly due to the possible nonlinear

relations between these two terms.

Therefore, the objectives were (1) to test the hypothesis

that underlying spatial patterns exist in the space-variant tem-

poral anomaly at small watershed scales and (2) to exam-

ine whether the decomposition of the space-variant temporal

anomaly using the EOF has any advantages over the decom-

position of the spatial anomaly (Perry and Niemann, 2007)

for estimating spatially distributed SWC. Two steps were in-

cluded in the estimation of spatially distributed SWC. First,

the spatial mean SWC was upscaled from the SWC mea-

surement at the most time-stable location using time stability

analysis. Following this, the spatially distributed SWC was

downscaled from the estimated spatial mean SWC. For the

purpose of this study, spatiotemporal SWC data sets at depths

of near surface (0–0.2 m) and root zone (0–1.0 m) from a

Canadian Prairie landscape were used. Spatiotemporal SWC

of samples taken 0–0.06 m from a hillslope (100 m) in the

Chinese Loess Plateau and 0–0.15 m from the GENCAI net-

work (∼ 250 km2) in Italy were also used to further demon-

strate conditions under which the decomposition of the spa-

tial anomaly was beneficial to the estimation of spatially dis-

tributed SWC.

2 Materials and methods

2.1 Study area and data collection

This study was mainly conducted in the Canadian Prairie

pothole region (hereafter abbreviated as Canadian site) at

St. Denis National Wildlife Area (52◦12′ N, 106◦50′W) with

an area of 3.6 km2. This area has a humid continental cli-

mate (Peel et al., 2007), and had a mean annual air temper-

ature of 1.9 ◦C and a mean annual precipitation of 402 mm

during the study period (Fig. 2). A variety of depressions,

Figure 2. Daily mean air temperature and precipitation during the

study period.

knolls, and knobs result in a sequence of undulating slopes

(Biswas and Si, 2011). The elevation varies from 554.8 to

557.5 m. The soils are dominated by clay loam textured

Mollisols (Soil Survey Staff, 2010) and covered by mixed

grass, i.e., smooth brome grass (Bromus inermis) and alfalfa

(Medicago sativa L.). The near-surface soil porosity ranges

from 38 % (knolls) to 70 % (depressions). Calcium carbon-

ates (CaCO3) derived mostly from fragments of limestone

rocks are common in the Canadian Prairies. The CaCO3 is

dissolved by the slightly acidic rainwater moving through

the upper horizons and deposited to lower horizons. The het-

erogeneous amount of infiltrated water resulted in a vary-

ing depth of CaCO3 layer ranging from almost 0 m in the

knolls to 2.1 m in the depressions. A 576 m long sampling

transect with 128 sampling locations spaced at 4.5 m inter-

vals was established over several rounded knolls and depres-

sions. At each location, a time domain reflectometry probe

was used to measure SWC of the near-surface soil (0–0.2 m),

and a neutron probe was used to collect SWC measurements

at 0.2 m intervals between a depth of 0.2 and 1.0 m. The

SWC was measured on a volumetric basis and expressed as

a percentage (%) volume of water per unit soil volume. The

SWC of the root zone was calculated by averaging the SWC

of 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0 m. Soil wa-

ter content was measured on 23 dates from 17 July 2007

to 29 September 2011. The SWC data set was collected in

all seasons except winter, and accurately portrays the varia-

tions in soil water conditions in the study area. In addition

to the SWC data set, the soil, vegetative, and topographical

properties were obtained at each sampling location. These

properties included soil particle components (clay, silt, and

sand contents), bulk density, soil organic carbon (SOC) con-

tent for the surface layer, A horizon depth, C horizon depth,

depth to the CaCO3 layer, leaf area index, elevation, cos

(aspect), slope, curvature, gradient, upslope length, solar ra-

diation, specific contributing area, convergence index, wet-

ness index, and flow connectivity. Detailed information on

the measurements can be found in Biswas et al. (2012). The
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data sets from the Canadian site were used to demonstrate

the following two aspects in detail: (1) different components

of spatiotemporal SWC and their contributing factors, and

(2) the advantages of the new decomposition method over

the method suggested by Perry and Niemann (2007) in terms

of the estimation of spatially distributed SWC.

To further test the applicability of the new method, we

compared its performance at two other sites, covering both

the hillslope and the large watershed scale. Along a hills-

lope of 100 m in length in the Chinese Loess Plateau, SWC

of 0–0.06 m was measured 136 times from 25 June 2007 to

30 August 2008 by a Delta-T Devices Theta probe (ML2x) at

51 locations (Hu et al., 2011). The hillslope was covered by

Stipa bungeana Trin. and Medicago sativa L. in sandy loam

and silt loam soils. In the GENCAI network (∼ 250 km2) in

Italy, SWC of 0–0.15 m was measured by a TDR probe at

46 locations, 34 times from February to December in 2009

(Brocca et al., 2012, 2013). The GENCAI area was domi-

nated by grassland with a flat topography, in silty clay soils.

2.2 Statistical models for decomposing soil water

content

Spatiotemporal SWC at small watershed scales was decom-

posed into three components: time-stable pattern, space-

invariant temporal anomaly, and space-variant temporal

anomaly. This model was compared to the one that de-

composed SWC into spatial mean and spatial anomaly

(Perry and Niemann, 2007). Both the space-variant tempo-

ral anomaly and spatial anomaly were decomposed using

the EOF method. The two models are termed the temporal

anomaly (TA) model and the spatial anomaly (SA) model.

Figure 1 displays the differences between the two models.

Each component will be explained in detail later. The expla-

nation of nomenclatures is listed in Table A1. Because we

focus on estimating spatial distribution of SWC at any given

time, only spatial variances of SWC were taken into account.

Therefore, the variance or covariance denotes the quantity in

space without specifications.

2.2.1 The SA model

Perry and Niemann (2007) expressed SWC at location n and

time t (Stn) as (Fig. 1):

Stn = St n̂+Ztn, (1)

where St n̂ is the spatial mean SWC at time t (temporal forc-

ing) and Ztn is the spatial anomaly of SWC (lumped spa-

tial forcing and interactions). The subscript n̂ (t̂) indicates a

space (time) averaged quantity.

According to Perry and Niemann (2007), St n̂ can be esti-

mated by remote sensing, water balance models, and in situ

soil water measurement at a representative (or time-stable)

location. The in situ soil water measurement method was se-

lected because the representative location can be easily de-

termined with prior SWC data sets. By measuring SWC only

at the most time-stable location (s) and future time t (Sts),

St n̂ can be estimated using (Grayson and Western, 1998)

St n̂ =
Sts

1+ δt̂ s
, (2)

where the s was identified using the time stability index of

mean absolute bias error (Hu et al., 2010, 2012). The δt̂ s is

the temporal mean relative difference of SWC at the s, which

was calculated with prior measurements.

Spatial anomaly (Ztn) can be reconstructed by the sum of

the product of time-invariant spatial structures (EOFs) and

temporally varying coefficients (ECs) using the EOF method

(Perry and Niemann, 2007; Joshi and Mohanty, 2010; Van-

derlinden et al., 2012). The ECs correspond to the eigen-

vectors of the matrix of spatial covariance of the Ztn, and

the EOFs are obtained by projecting the Ztn onto the matrix

ECs as EOFs=Ztn ECs. The number of EOF (or EC) series

equals the number of sampling dates. Each EOF series corre-

sponds to one value at each location, and each EC series has

one value at each measurement time. Each EOF is chosen

to be orthogonal to other EOFs, and the lower-order EOFs

account for as much variance as possible. The sum of vari-

ances of all EOFs equals the sum of variances of Ztn from

all measurement times.

Usually, a substantial amount of variance can be explained

by a small number of EOFs. Johnson and Wichern (2002)

suggested the eigenvalue confidence limits method for se-

lecting the number of EOFs. Once the number of significant

EOFs at a confidence level of 95 % is selected, Ztn can be

estimated as the sum of the product of significant EOFs and

associated ECs as

Ztn =
∑

EOFsig
×

(
ECsig

)T
, (3)

where EOFsig represents the significant EOFs of the Ztn
obtained during model development, ECsig is the associ-

ated temporally varying coefficient, and the superscript T

represents matrix transpose. Following Perry and Nie-

mann (2007), the associated significant EC at time t (ECt ),

is estimated by the cosine relationship between EC and St n̂
developed using prior measurements:

ECt = a+ bcos

(
2π

c
St n̂− d

)
, (4)

where a, b, c, and d are the fitted parameters using prior mea-

surements and St n̂ is estimated from Eq. (2). By using the

continuous function, ECt can be estimated at any St n̂ values,

which allows for the estimation of spatially distributed SWC

at any soil water conditions.
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2.2.2 The TA model

Mittelbach and Seneviratne (2012) decomposed the Stn into

a time-stable pattern (i.e., temporal mean) and a temporal

anomaly component (Fig. 1):

Stn =Mt̂n+Atn, (5)

where Mt̂n is the time-stable pattern (spatial forcing) con-

trolled by static factors such as soil properties and topogra-

phy; Atn refers to the temporal anomaly (lumped temporal

forcing and interactions). The variance of SWC (σ 2
n̂

(Stn)) is

the sum of variance of the Mt̂n (σ 2
n̂

(Mt̂n)), variance of the

Atn (σ 2
n̂

(Atn)), and two times of covariance between Mt̂n

and Atn (2 cov (Mt̂n, Atn)), which can be expressed as:

σ 2
n̂ (Stn)= σ

2
n̂

(
Mt̂n

)
+ 2cov

(
Mt̂n,Atn

)
+ σ 2

n̂ (Atn) . (6)

Because the Atn in Mittelbach and Seneviratne (2012) is

a lumped term, it can be further decomposed into space-

invariant temporal anomaly (At n̂, i.e., temporal forcing) and

space-variant temporal anomaly (Rtn, i.e., interactions) (Van-

derlinden et al., 2012). At a watershed scale, the At n̂ is con-

trolled by temporally varying factors such as meteorologi-

cal variables and vegetation. Positive and negative At n̂ cor-

respond to relatively wet and dry periods, respectively. The

Rtn refers to the redistribution of At n̂ among different loca-

tions due to the interactions between spatial forcing and tem-

poral forcing. For example, soil and topography regulate how

much rainfall enters soil and how much water runs off or runs

on at a location. This, in turn, dictates vegetation growth in

a water-limited environment. Therefore, Stn can also be ex-

pressed as (Fig. 1)

Stn =Mt̂n+At n̂+Rtn. (7)

The temporal trends of At n̂ in Eq. (7) and St n̂ in Eq. (1) are

the same as both represent temporal forcing. Because theAt n̂
is space-invariant and orthogonal to the Mt̂n and Rtn in a

space, σ 2
n̂

(Stn) in Eq. (6) can also be written as

σ 2
n̂ (Stn)= σ

2
n̂

(
Mt̂n

)
+ 2cov

(
Mt̂n,Rtn

)
+ σ 2

n̂ (Rtn) , (8)

where cov (Mt̂n, Rtn) is the covariance between the Mt̂n and

Rtn, and σ 2
n̂

(Rtn) is the variance of the Rtn. Apparently,

2 cov (Mt̂n,Rtn) equals 2 cov (Mt̂n,Atn), and σ 2
n̂

(Rtn) equals

σ 2
n̂

(Atn). The percent (%) of σ 2
n̂

(Mt̂n), 2 cov (Mt̂n, Rtn), and

σ 2
n̂

(Rtn) out of the σ 2
n̂

(Stn) are calculated. The cov (Mt̂n,

Rtn) can be negative at some conditions, for example, when

the depressions correspond to greater Mt̂n and more nega-

tive Rtn values in the discharge periods. This resulted in per-

centage of σ 2
n̂

(Mt̂n) and σ 2
n̂

(Rtn)> 100 % and percentage of

2 cov (Mt̂n, Rtn)< 0 % (Mittelbach and Seneviratne, 2012;

Brocca et al., 2014; Rötzer et al., 2015). If Rtn is zero at

any time or location, there are no interactions between spatial

forcing and temporal forcing, σ 2
n̂

(Stn) and the spatial trends

of SWC are consistent over time. Therefore, Rtn is directly

responsible for temporal change in the spatial variability of

SWC.

If some underlying spatial patterns exist in Rtn, Rtn
can be reconstructed by the sum of the product of time-

invariant spatial structures (EOFs) and time-dependent coef-

ficients (ECs) using the EOF method. Note that the number

of EOF (or EC) series also equals the number of sampling

dates.

For estimation of spatially distributed SWC, Rtn is esti-

mated by the same method as Ztn using Eq. (3). The Mt̂n is

estimated with prior measurements by

Mt̂n =
1

m

m∑
j=1

Stn, (9)

where m is the number of previous measurement times, and

At n̂ is estimated by:

At n̂ = St n̂−Mt̂ n̂, (10)

where Mt̂ n̂ is the spatial mean of Mt̂n, and St n̂ is estimated

from SWC measurements at the most time-stable location

using Eq. (2).

The Pearson correlation coefficient (R) is used to explore

the linear relationships between various spatial components

in the two models (i.e., EOF1 of the Ztn in the SA model,

Mt̂n, and EOF1 of the Rtn in the TA model) and environ-

mental factors (i.e., soil, vegetative, and topographical prop-

erties). The multiple stepwise regressions are conducted to

determine the percentage of variations in the spatial compo-

nents which the controlling factors explain.

2.3 Validation and performance parameter

The TA model is more complicated than the SA model. In

order to evaluate the two models for parsimony, AICc values

are calculated (Burnham and Anderson, 2002) as

AICc= 2k+ n ln(RSS/n)+ 2k(k+ 1)/(n− k− 1), (11)

where k is the number of parameters, n is the sample size,

and RSS is the residual sum of squares.

Both cross-validation and split sample validation are used

to estimate SWC distribution with both models. For the

cross-validation, an iterative removal of 1 of the 23 dates is

made for model development, and the SWC along the tran-

sect corresponding to the removed date is estimated itera-

tively. For the split sample validation, SWC from 14 dates of

the first 2 years (from 17 July 2007 to 27 May 2009) is used

for model development, and the SWC distribution of 9 dates

in the second 2 years (from 21 July 2009 to 29 Septem-

ber 2011) is estimated.

The Nash–Sutcliffe coefficient of efficiency (NSCE) is

used to evaluate the quality of estimation of spatially dis-

tributed SWC, which is expressed as
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576 W. Hu and B. Si: Estimating spatially distributed soil water content at small watershed scales

Figure 3. Components of soil water content in (a) the SA model (spatial mean soil water content St n̂ and spatial anomaly Ztn) and in (b) the

TA model (time-stable patternMt̂n, space-invariant temporal anomaly At n̂, and space-variant temporal anomaly Rtn) for 0–0.2 and 0–1.0 m.

Also shown is the elevation.

NSCE= 1−
σ 2
ε

σ 2
measure

, (12)

where σ 2
measure is the variance of measured SWC, and σ 2

ε is

the mean squared estimation error. A larger NSCE value im-

plies a better quality of estimation. A paired samples T test is

used to test whether the NSCE values between the TA model

and the SA model are statistically significant at P < 0.05.

Many factors may affect the relative performance of spa-

tially distributed SWC estimation between the TA model and

the SA model. First, the degree of outperformance of the TA

model over the SA model may depend on the amount of Rtn
variance considered in the TA model. On one hand, the two

models are identical if variance of Rtn is close to zero or

there are negligible interactions between the spatial and tem-

poral components (Fig. 1). On the other hand, if no underly-

ing spatial patterns exist in the Rtn or the underlying spatial

patterns accounted for little variance of the Rtn, the outper-

formance will also be very limited. Therefore, the greater the

variance of Rtn considered in the TA model, the more likely

the TA model can outperform the SA model. Second, the way

of EOF decomposition may also affect the relative perfor-

mance. In the SA model, EOF decomposition is performed

on lumped time-stable patterns (Mt̂n) and space-variant tem-

poral anomaly (Rtn). In the TA model, however, EOF decom-

position is made only on the Rtn. In theory, the two models

will be identical if the Mt̂n and the first underlying spatial

pattern (i.e., EOF1) of the Rtn were perfectly correlated. If

a nonlinear relationship exists between them, lumping the

Mt̂n and Rtn together, as in the SA model, would weaken

the model performance as compared to the TA model. From

this aspect, the greater deviation from a linear relationship

between the Mt̂n and EOF1 of the Rtn, may lead to a greater

outperformance of the TA model over the SA model. Finally,

the performances of both models rely on the estimation accu-

racy of the ECt which depends on both goodness of fit of the

cosine function (i.e., Eq. 4) and estimation accuracy of the

St n̂. Because the same St n̂ values are used for the two mod-

els, the relative performance of the two models is related to

the goodness of fit of Eq. (4).

3 Results

3.1 Components of SWC and their controls

3.1.1 Spatial mean (Stn̂) and spatial anomaly (Ztn)

The values of spatial mean (St n̂) in the SA model varied with

the seasons (Fig. 3a). In the spring, such as 2 May 2008

and 20 April 2009, snowmelt infiltration resulted in rela-
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Table 1. Pearson correlation coefficients between time-stable pattern Mt̂n, EOF1 of space-variant temporal anomaly Rtn and various prop-

erties.

0–0.2 m 0–1.0 m

Mt̂n EOF1 Mt̂n EOF1

Sand content −0.52∗∗ −0.36∗∗ −0.66∗∗ −0.26∗∗

Silt content 0.29∗∗ 0.14 0.40∗∗ 0.06

Clay content 0.43∗∗ 0.38∗∗ 0.51∗∗ 0.33∗∗

Organic carbon 0.78∗∗ 0.83∗∗ 0.73∗∗ 0.76∗∗

Wetness index 0.64∗∗ 0.59∗∗ 0.68∗∗ 0.56∗∗

Depth to CaCO3 layer 0.77∗∗ 0.84∗∗ 0.65∗∗ 0.88∗∗

A horizon depth 0.51∗∗ 0.62∗∗ 0.44∗∗ 0.65∗∗

C horizon depth 0.66∗∗ 0.69∗∗ 0.58∗∗ 0.76∗∗

Bulk density −0.58∗∗ −0.67∗∗ −0.46∗∗ −0.62∗∗

Elevation −0.24∗∗ −0.28∗∗ −0.24∗∗ −0.32∗∗

Specific contributing area 0.20∗ 0.24∗∗ 0.24∗∗ 0.23∗∗

Convergence index −0.58∗∗ −0.56∗∗ −0.55∗∗ −0.58∗∗

Curvature −0.10 −0.08 −0.19∗ −0.16

Cos (aspect) 0.05 0.04 0.08 0.05

Gradient −0.12 −0.09 −0.21∗ −0.02

Slope −0.51∗∗ −0.48∗∗ −0.56∗∗ −0.44∗∗

Upslope length 0.19∗ 0.21∗ 0.21∗ 0.25∗∗

Solar radiation −0.07 0.03 −0.11 0.08

Flow connectivity 0.45∗∗ 0.43∗∗ 0.49∗∗ 0.49∗∗

Leaf area index −0.07 0.06 −0.10 −0.14

Variance explained1 74.5 % 81.6 % 75.6 % 81.0 %

1 Percent of variance explained by the controlling factors obtained by the multiple stepwise

regressions. ∗ Significant at P < 0.05; ∗∗ significant at P < 0.01.

tively great St n̂ values. In the summer, however, even 1 month

after large rainfall events (such as on 19 July 2008 and

21 June 2009), the high evapotranspiration by fast-growing

vegetation resulted in small St n̂ values. The values of St n̂
also varied between inter-annual meteorological conditions.

In 2008, there was less precipitation and higher air temper-

ature than in 2010 (Fig. 2). As a result, St n̂ was relatively

smaller in 2008 than in 2010.

The spatial patterns of spatial anomaly (Ztn) were simi-

lar to those of the original SWC patterns (Fig. 3a). The val-

ues of Ztn in wet periods (e.g., 13 May 2011) were much

greater than in dry periods (e.g., 23 August 2008) in depres-

sions (e.g., at a distance of 123 and 250 m); at other locations,

however, the spatial anomaly was slightly less in wet periods

than in dry periods for both soil layers. Moreover, the spa-

tial anomaly in depressions during the wet periods was much

greater in the near surface than in the root zone.

When SWCs of all 23 dates were used for model develop-

ment, only EOF1 was statistically significant (Fig. 4a), which

accounted for 84.3 % (0–0.2 m) and 86.5 % (0–1.0 m) of the

variances in the Ztn. Correlation analysis indicated that the

spatial pattern of EOF1 in the Ztn was identical to the time-

stable patterns (Mt̂n) in the TA model (R= 1.0). The controls

of EOF1 was therefore the same as those of Mt̂n, and will

be discussed later. The relationship between associated EC1

and St n̂ can be fitted well by the cosine function (R2
= 0.73

at both the near surface and root zone) (Fig. 4b).

3.1.2 Time-stable pattern (Mt̂n), space-invariant

temporal anomaly (Atn̂), and space-variant

temporal anomaly (Rtn)

Figure 3b displays the three components in the TA model.

The first component Mt̂n fluctuated along the transect, with

high values in depressions and low values on knolls; the Mt̂n

also had greater spatial variability in the near surface (vari-

ance= 36.7 %2) than in the root zone (variance= 19.5 %2).

For both soil layers, SOC, depth to the CaCO3 layer, sand

content, and wetness index are the dominant factors of Mt̂n;

they together explained 74.5 % (near surface) and 75.6 %

(root zone) of the variances in the Mt̂n (Table 1). In addi-

tion, the temporal trend of At n̂ was the same as that of St n̂ in

the SA model (Fig. 3a) as both represent temporal forcing.

The Rtn varied among landscape positions (Fig. 3b). At a

sampling distance of 123 m (in a depression), Rtn was neg-

ative in dry periods such as 23 August 2008 and positive in

wet periods such as 13 May 2011. This was true for all de-

pressions for both the near surface and the root zone. There-

fore, topographically lower positions usually corresponded

to more positive Rtn during the wet periods and more neg-
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Figure 4. (a) The EOF1 of the spatial anomaly Ztn and (b) relation-

ships of associated EC1 versus spatial mean soil water content Ztn
fitted by the cosine function (Eq. 4).

ative Rtn during the dry periods. Furthermore, the absolute

values of Rtn were generally greater in the near surface than

the root zone, indicating a greater space-variant temporal

anomaly for shallower depths.

The SWC variances and associated components (Eq. 8)

also varied with time (Fig. 5). Often, wetter conditions corre-

sponded to greater σ 2
n̂

(Stn), as further indicated by moderate

correlation between σ 2
n̂

(Stn) and St n̂ (R2 of 0.51 and 0.38 for

the near surface and the root zone, respectively). This was in

agreement with others (Gómez-Plaza et al., 2001; Martínez-

Fernández and Ceballos, 2003; Hu et al., 2011). Furthermore,

there were greater σ 2
n̂

(Stn) values at the near surface than in

the root zone, indicating greater variability of SWC in the

near surface.

The time-invariant σ 2
n̂

(Mt̂n) accounted for the σ 2
n̂

(Stn)

with percentages ranging from 25 to 795 % for the near sur-

face and from 40 to 174 % for the root zone (Fig. 5). The σ 2
n̂

(Mt̂n) exceeded the σ 2
n̂

(Stn) mainly under dry conditions,

such as July–October in 2008 and 2009. This excess was

offset by the σ 2
n̂

(Rtn) and 2 cov (Mt̂n, Rtn), with the latter

accounting for the σ 2
n̂

(Stn) negatively with mean absolute

percentages of 210 % for the near surface and 17 % for the

root zone. In the dry period, the absolute percentage of 2 cov

(Mt̂n, Rtn) was up to 1327 % for the near surface and 122 %

for the root zone. These values are comparable to those in

Mittelbach and Seneviratne (2012) and Brocca et al. (2014).

The σ 2
n̂

(Rtn) accounted for less percentage of the σ 2
n̂

(Stn)

than other components did (Fig. 5). The percentages of σ 2
n̂

(Rtn) ranged from 11 to 632 % (arithmetic average of 118 %)

for the near surface and from 6 to 48 % (arithmetic aver-

age of 19 %) for the root zone; the percentage of σ 2
n̂

(Rtn)

tended to be greater in drier periods. This indicates that the

space-variant temporal anomaly cannot be ignored, particu-

larly in dry conditions. Furthermore, the percentage of σ 2
n̂

(Rtn) was greater in the near surface than in the root zone,

confirming stronger temporal dynamics of soil water at the

near surface. Compared with larger-scale studies (Mittelbach

and Seneviratne, 2012; Brocca et al., 2014), the percentage of

σ 2
n̂

(Rtn) out of the σ 2
n̂

(Stn) at the near surface was greater,

with a mean percentage of 118 %, versus 9–68 % in the other,

larger-scale studies. This indicates that interactions between

spatial and temporal forcing were stronger, resulting in rela-

tively more intensive temporal dynamics of soil water in our

study area than at larger scales.

Three significant EOFs of Rtn for both soil layers were

identified when SWC of all 23 dates were used for model

development. The first three EOFs explained 61.1, 13.4, and

8.1 %, respectively, of the total Rtn variance for the near sur-

face, and 44.3, 20.2, and 12.4 %, respectively, of the total Rtn
variance in the root zone. Therefore, our hypothesis that un-

derlying spatial patterns exist in the Rtn was supported. Due

to the negligible contribution of EOF2 and EOF3 to the es-

timation of spatially distributed SWC, only EOF1 is shown

in Fig. 6a. The associated EC1 changed with soil water con-

ditions (St n̂) (Fig. 6b). When SWC was close to average lev-

els, the EC1 was close to 0, resulting in negligible Rtn. This

was in accordance with Mittelbach and Seneviratne (2012)

and Brocca et al. (2014), who showed that the spatial vari-

ance of the temporal anomaly was the smallest when water

contents were close to average levels. The cosine function

(Eq. 4) explained a large amount of the variances in EC1 for

both soil layers (R2
= 0.76 at the near surface and 0.88 in the

root zone).

The contribution of EOF1 to the space-variant temporal

anomaly can be examined through the product of the EOF1

and the associated EC1. The EC1 values tended to be positive

during wet periods and negative during dry periods (Fig. 6b);

more positive EOF1 values were usually observed at loca-

tions with greater Mt̂n values (Figs. 3b and 6a). Therefore,

the product of EOF1 and EC1 led to greater temporal SWC

dynamics at wetter locations of both layers in both the wet

and dry periods.

Depth to the CaCO3 layer and SOC had significant, pos-

itive correlations with EOF1 for both soil layers (R rang-

ing from 0.76 to 0.88; Table 1). They jointly accounted for

81.6 % (near surface) and 81.0 % (root zone) of the variances

in EOF1. This implies that locations with a greater depth to

the CaCO3 layer and SOC, which correspond to wetter lo-

cations such as depressions, usually have greater temporal

SWC dynamics during both wet and dry periods.
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Figure 5. Spatial variances of different components in Eq. (8) expressed in %2 (upper panel) and as percentage (lower panel) for (a) 0–0.2

and (b) 0–1.0 m. Spatial mean soil water content St n̂ on each measurement day is also shown.

Figure 6. (a) The EOF1 of the space-variant temporal anomaly Rtn
and (b) relationships of associated EC1 versus spatial mean soil wa-

ter content St n̂ fitted by the cosine function (Eq. 4).

3.2 Estimation of spatially distributed SWC

When all 23 data sets were used and only EOF1 was con-

sidered, the TA model had an AICc value of 4093 for the

near surface and 562 for the root zone, while the correspond-

ing values for the SA model were 6370 and 3460. This indi-

cated that even when penalty for complexity was given, the

TA model was better than the SA model. The two models in

terms of spatially distributed SWC estimation are compared

below.

3.2.1 The TA model

The Rtn terms and associated EOFs differed slightly with

each validation. The number of significant EOFs varied be-

tween one (accounting for 60 % of the total cases) and three

for both soil layers. A paired samples T test indicated that

more EOFs did not result in a significant increase of NSCE in

the estimation of spatially distributed SWC for both valida-

tion methods. This is also supported by the increasing AICc

values with the increasing number of parameters resulting

from more EOFs (data not shown). This indicates that higher-

order EOFs, even if they are statistically significant, are neg-

ligible for SWC prediction. Therefore, SWC distribution was

estimated with EOF1 only.

Estimated SWCs generally approximated those measured

at different soil water conditions during the cross-validation

(Fig. 7). However, on 27 October 2009, there were unsatis-

factory overestimates at the 100–140 and 220–225 m loca-

tions near the surface (Fig. 7a). Unsatisfactory NSCE values
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Figure 7. Estimated soil water content (SWC) versus measured SWC for three dates at different soil water conditions (23 August 2008,

27 October 2009, and 13 May 2011 are associated with relatively dry, medium, and wet days, respectively) using the TA model for (a) 0–0.2

and (b) 0–1.0 m.

Figure 8. The Nash–Sutcliffe coefficient of efficiency (NSCE) of soil water content estimation using the TA and SA models for (a) 0–0.2

and (b) 0–1.0 m for both cross-validation (CV) and split sample validation (SV). At 0–0.2 m, three dates (22 October 2008, 27 August 2009,

and 27 October 2009) as indicated by green lines present negative NSCE values (−4.05, −1.83, and −3.81, respectively, for the CV on the

three dates;−2.63 and−5.12, respectively, for the SV on the latter two dates). Spatial mean soil water content St n̂ on each measurement day

is also shown.

of −4.05, −1.83, and −3.81 were obtained in the near sur-

face in only three of the 23 dates, which were all in the fall

(22 October 2008, 27 August 2009, and 27 October 2009).

The poor performance obtained with the TA model on those

dates (Fig. 8a) was a result of overestimation in depres-

sions, which is shown for example on 27 October 2009

(Fig. 7a). These dates also corresponded to a high percentage

of σ 2
n̂

(Rtn) to the σ 2
n̂

(Stn) (203–439 %). For 23 August and

17 September in 2008, which were in dry periods, the per-

centage of σ 2
n̂

(Rtn) at the near surface was also high (580 and

630 %). Because a fair amount of σ 2
n̂

(Rtn) was accounted for

with the TA model, the TA model performed satisfactorily

(NSCE of 0.43 and 0.60). For the remaining 20 dates, the

resulting NSCE value ranged from 0.38 to 0.90 in the near

surface and from 0.65 to 0.96 in the root zone (Fig. 8). This
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suggests that the TA model was generally satisfactory, with

better performance in the root zone than in the near surface.

During the split sample validation, the TA model resulted

in SWC estimations with NSCE values ranging from 0.61

to 0.85 near the surface and from 0.32 to 0.92 in the root

zone, with exception of 2 days (27 August 2009 and 27 Oc-

tober 2009 with NSCE values of −2.63 and −5.12, respec-

tively) at 0–0.2 m (Fig. 8). This suggested that the TA model

performed well in estimating spatially distributed SWC pat-

terns except on 27 August 2009 and 27 October 2009 at 0–

0.2 m. The estimation in the root zone was also generally bet-

ter than in the near surface.

3.2.2 Comparison with the SA model

One significant EOF of Ztn was identified for both soil lay-

ers, irrespective of the validation method. The SA model with

only EOF1 produced reasonable SWC estimations for both

validations in all dates in the root zone and in every date ex-

cept five dates (23 August 2008, 17 September 2008, 22 Oc-

tober 2008, 27 August 2009, and 27 October 2009) in the

near surface (Fig. 8). Similarly, when more EOFs were in-

cluded, NSCE values did not increase significantly (data not

shown) and consequently, estimation of spatially distributed

SWC was not improved. This was because EOF2 and EOF3

together explained a very limited (< 10 %) amount of vari-

ability of Ztn and thus had low predictive power in terms of

variance.

The difference in NSCE values between the TA and SA

models for both validations are presented in Fig. 9. Gen-

erally, the difference decreased as At n̂ increased, and then

slightly increased with a further increase in At n̂. A paired

samples T test indicated that the NSCE values of the TA

model were significantly (P < 0.05) greater than those of

the SA model for both soil layers, irrespective of validation

methods. This indicates that the TA model outperformed the

SA model, particularly in dry conditions. This was because

when the soil was dry, there was a high percentage of σ 2
n̂

(Rtn), and thus strong variability in the space-variant tempo-

ral anomaly.

3.3 Further application at other two sites with different

scales

3.3.1 A hillslope in the Chinese Loess Plateau

On average, the σ 2
n̂

(Mt̂n), σ 2
n̂

(Rtn), and 2 cov (Mt̂n, Rtn)

accounted for 53, 74, and −27 % out of the σ 2
n̂

(Stn), indi-

cating that both time-stable pattern and temporal anomalies

were the main contributors to the σ 2
n̂

(Stn). The EOF anal-

ysis showed that only the EOF1 was statistically significant

for both the Rtn and Ztn, and the EOF1 explained 23 and

47 % of the total variances of Rtn and Ztn, respectively. This

illustrated that underlying spatial patterns exist in the Rtn
on the hillslope. Cross-validation was used to estimate the

Figure 9. Nash–Sutcliffe coefficient of efficiency (NSCE) differ-

ence between the TA and SA models in terms of soil water content

estimation using both cross-validation (CV) and split sample vali-

dation (SV) as a function of space-invariant temporal anomaly At n̂
for (a) 0–0.2 and (b) 0–1.0 m.

spatially distributed SWC along the hillslope. The results

showed that the NSCE varied from−4.25 to 0.83 (TA model)

and from −4.30 to 0.81 (SA model), with a mean value

of 0.25 and 0.19, respectively (Fig. 10a). A paired samples

T test showed that the NSCE values for the TA model were

significantly (P < 0.05) greater than those for the SA model,

indicating that the TA model outperformed the SA model.

As Fig. 10a shows, the outperformance was greater when

SWC deviated from intermediate conditions, especially for

dry conditions, which was similar to the Canadian site.

3.3.2 The GENCAI network in Italy

The σ 2
n̂

(Mt̂n), σ 2
n̂

(Rtn), and 2 cov (Mt̂n, Rtn) accounted

for 38, 68, and−7 % out of the σ 2
n̂

(Stn) (Brocca et al., 2014),

indicating the dominant role of temporal anomalies in SWC

variability. The first three EOFs of the Rtn explained 19, 16,

and 8 % of the total σ 2
n̂

(Rtn), and no EOFs were statistically

significant, indicating that no underlying spatial patterns ex-

ist in the Rtn. The EOF1 of the Ztn was significant and ac-

counted for 37 % of the variances in the Ztn. Although the

EOF1 of the Rtn was not significant, it was considered in

the TA model for estimating spatially distributed SWC. The

cross-validation indicates that the NSCE varied from −0.79

to 0.50 (TA model) and from −0.87 to 0.56 (SA model),

with mean values of 0.09 and 0.08, respectively (Fig. 10b).

The SWC estimation based on these two models was not

satisfactory except for a few days. As Fig. 10b shows, the

differences in NSCE values between the two models were

scattered around 0. A paired samples T test showed that the

NSCE values between the TA model and the SA model were

not significant (P < 0.05), indicating no differences in esti-

mating spatially distributed SWC between these two models.
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Figure 10. Nash–Sutcliffe coefficient of efficiency (NSCE) difference between the TA and SA models in terms of soil water content estima-

tion using cross-validation as a function of space-invariant temporal anomaly At n̂ for (a) 0–0.06 m of the Chinese Loess Plateau hillslope

and (b) 0–0.15 m of the GENCAI network in Italy. The NSCE values for both models are also shown.

4 Discussion

4.1 Controls of the Mt̂n and Rtn

The Rtn played an important role in the temporal change

in spatial patterns of the SWC. The underlying spatial pat-

terns and physical meaning in the Rtn were examined in our

study for the first time. Although three significant EOFs of

the Rtn existed in some cases, only EOF1 rather than higher-

order EOFs of the Rtn should be considered for the spa-

tially distributed SWC estimation. Among many factors in-

fluencing the EOF1 of the Rtn, depth to the CaCO3 layer

followed by the SOC, were the most important factors. De-

pressions have deeper CaCO3 layers than knolls, and the

shallow CaCO3 layer on knolls limited water infiltration dur-

ing rainfall or snowmelt, resulting in less water recharge on

knolls than in depressions. The depth to CaCO3 layer and

SOC were negatively correlated with elevation (R=−0.54,

P < 0.01). Therefore, the influence of depth to CaCO3 layer

and SOC partially reflected the role of topography in driv-

ing snowmelt runoff along slopes in the spring, which con-

tributes to increasing water recharge in depressions. As al-

ready demonstrated, topographically lower positions corre-

sponded to more negative Rtn during the dry periods. This

implies that depressions lost more water during discharge.

This is because depressions usually corresponded to vege-

tation with a larger leaf area index, which would result in

higher evapotranspiration and more water loss during dis-

charge periods.

As Table 1 shows, both the depth to the CaCO3 layer and

SOC controlled the Mt̂n. This was because deeper CaCO3

layers and higher SOC were observed in depressions where

soils were usually wetter in most of the year because of the

snowmelt runoff in the spring and rainfall runoff in the sum-

mer and autumn (van der Kamp et al., 2003). Therefore, the

roles of soil and topography were two-fold: On one hand,

they were highly correlated with the time-stable patterns and

thus the time stability of SWC (Gómez-Plaza et al., 2000;

Mohanty and Skaggs, 2001; Grant et al., 2004); on the other

hand, soil and topography, interplaying with temporal forc-

ing, triggered local-specific soil water change and destroyed

time stability of SWC. Their roles in protecting time stability

persisted, but their roles in destroying time stability varied

with time. Greater σ 2
n̂

(Rtn) implies greater contribution of

these factors in soil water dynamics, resulting in less time

stability of SWC.

4.2 Model performance for spatially distributed SWC

estimation

The outperformance of the TA model for estimating spatial

SWC at the Canadian site and Chinese site can be partly ex-

plained by the high percentages (average of 19–118%) of the

σ 2
n̂

(Rtn) out of the total variance. When SWC is close to av-

erage levels, Rtn is also close to zero, resulting in negligible

percentage of σ 2
n̂

(Rtn). In this case, the soil water patterns

are stable in time, the SA model performs well, and there

will be little difference between these two models. As is well

known, the spatial patterns in soil water content are inher-

ently time unstable. For example, when evapotranspiration

becomes the dominant process at the small watershed scale,

more water will be lost in depressions due to the denser veg-
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etation than on knolls (Millar, 1971; Biswas et al., 2012), ef-

fectively diminishing the spatial patterns and increasing tem-

poral instability. In this case, the σ 2
n̂

(Rtn) accounts for more

percentage of the total variance (e.g., high up to 632 %) and

the TA model may outperform the SA model. This explained

why the outperformance of the TA model was more obvi-

ous in the dry conditions. For the GENCAI network in Italy,

although the σ 2
n̂

(Rtn) accounted for 68 % of the total vari-

ance, the performance of the TA model was identical to the

SA model. This was because there were no underlying spa-

tial patterns in theRtn. Similarly, because the first underlying

spatial pattern (i.e., EOF1) explained greater percentages of

the σ 2
n̂

(Rtn) at the Canadian site (44–61 %) than the Chinese

site (23 %), the outperformance of the TA model over the SA

model was more obvious at the former site (Figs. 9 and 10a).

Therefore, the TA model is advantageous only if the percent-

age of σ 2
n̂

(Rtn) out of the total variance is substantial and

underlying spatial patterns exist in the Rtn.

The existence of underlying spatial patterns in the Rtn is

related to the controlling factors, which may be scale spe-

cific. At small scales, static factors such as the depth to the

CaCO3 layer and SOC at the Canadian site may affect not

only the time-stable patterns but also the Rtn. The persis-

tent influence of static factors on the Rtn resulted in signif-

icant underlying spatial patterns in the Rtn. Thus, the TA

model outperformed the SA model at the small scales. At

large scales such as the basin scale or greater, time-stable

patterns may be controlled by, in addition to soil and topogra-

phy (Mittelbach and Seneviratne, 2012), the climate gradient

(Sherratt and Wheater, 1984); at those scales, Rtn is more

likely to be controlled by the meteorological anomaly (i.e.,

spatially random variation) (Walsh and Mostek, 1980), and

the effects of soil and topography may be reduced. Conse-

quently, spatial patterns in the Rtn may be weakened and the

TA model may have no advantages over the SA model such

as for the Italian site.

The Mt̂n and the underlying spatial patterns (EOF1) in the

Rtn were controlled by the same spatial forcing (e.g., depth

to CaCO3 layer and SOC) at the Canadian site (Table 1), and

they were correlated with an R2 of 0.83 for the near surface

and 0.42 for the root zone. Although the relationships be-

tween Mt̂n and Rtn were strong, they were not strictly lin-

ear, suggesting thatMt̂n and Rtn were affected differently by

these factors. Therefore, the nonlinear relationship between

Mt̂n and Rtn partially contributed to the outperformance of

the TA model over the SA model.

The relationship between the St n̂ and EC1 was better fitted

by the cosine function in the TA model than the SA model

(Figs. 4b and 6b), with R2 of 0.76 versus 0.73 in the near

surface and 0.88 versus 0.73 in the root zone. The reduced

scatter in the St n̂ and EC1 relationship for the TA model may

also partly explain the outperformance of the TA model over

the SA model.

Therefore, the outperformance of the TA model over the

SA model depends on counterbalance among the variance

of Rtn explained in the TA model, the linear correlation be-

tween the Mt̂n and EOF1 of the Rtn, and the goodness of fit

for the St n̂ and EC1 relationship. For example, the variance

of EOF1 in the Rtn for the near surface (i.e., 264 %2) was

much greater than that for the root zone (i.e., 43 %2). How-

ever, Mt̂n and underlying spatial patterns (EOF1) in the Rtn
in the root zone deviated more from a linear relationship, and

the reduced scatter in the St n̂ and EC1 relationship in the TA

model was more obviously in the root zone than in the near

surface. As a result, the outperformance of the TA model was

comparable between the near surface and root zone at the

Canadian site (Fig. 9).

In the real world, the relations between the Mt̂n and un-

derlying spatial patterns in the Rtn may rarely be perfectly

linear. Therefore, when underlying spatial patterns exist in

the Rtn and the Rtn has substantial variances, the TA model

is preferable to the SA model for the estimation of spatially

distributed SWC. On the other hand, when underlying spa-

tial patterns do not exist in the Rtn or the Rtn has negligi-

ble variances, the SA model may be selected although these

two models yield the same quality of SWC estimation. This

is because the TA model needs one more spatial parameter

(i.e., Mt̂n) than the SA model.

Previous studies on SWC decomposition mainly focus on

near-surface layers (Jawson and Niemann, 2007; Perry and

Niemann, 2007, 2008; Joshi and Mohanty, 2010; Korres et

al., 2010; Busch et al., 2012). This study decomposed spa-

tiotemporal SWC using the TA model for both the near sur-

face and the root zone. The results showed that the estimation

of spatially distributed SWC at small watershed scales was

improved by the TA method that considers the Rtn. The σ 2
n̂

(Mt̂n) was greater than the σ 2
n̂

(Rtn) (Fig. 5), indicating that

time stability was more important than time instability for

SWC estimation. For the three dates in the fall (i.e., 22 Oc-

tober 2008, 27 August 2009, and 27 October 2009), strong

evapotranspiration and deep drainage in depressions resulted

in a much lower SWC at the near surface than in the spring.

This resulted in reduced time stability of SWC patterns and

poor performance of both models in terms of SWC evalua-

tion (Fig. 8a). Because of the stronger time stability of SWC

in deeper soil layers (Biswas and Si, 2011), SWC evaluation

was more accurate for soil layers extending from the surface

to greater depth. This is particularly important because SWC

data for deeper soil layers in a watershed is more difficult to

collect than that of surface soil.

5 Conclusions

The TA model was used to decompose spatiotemporal

SWC into time-stable patterns Mt̂n, space-invariant tempo-

ral anomaly At n̂, and space-variant temporal anomaly Rtn.

This study indicated that underlying spatial patterns may ex-

ist in the Rtn at small scales (e.g., small watersheds and hill-

slope) but may not exist at large scales such as the GENCAI
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network (∼ 250 km2) in Italy. This was because the Rtn at

small scales was driven by static factors such as depth to the

CaCO3 layer and SOC at the Canadian site, while the Rtn
at large scales may be dominated by dynamic factors such

as meteorological anomaly. Compared to the SA model, es-

timation of spatially distributed SWC was improved with the

TA model at small watershed scales. This was because the

TA model considered a fair amount of spatial variance in the

Rtn, which was ignored in the SA model. Furthermore, the

improved performance was observed mainly when there was

less or more soil water than the average level, especially in

drier conditions due to the high σ 2
n̂

(Rtn) value.

This study showed that outperformance of the TA model

over the SA model is possible when σ 2
n̂

(Rtn) accounts for

substantial variance of SWC, and significant spatial patterns

(or EOFs) exist in the Rtn. Further application of the TA

model for the estimation of spatially distributed SWC at dif-

ferent scales and hydrological backgrounds is recommended.

If the TA model parameters (i.e., Mt̂n, EOF1 of the Rtn, and

relationship between EC and St n̂) are obtained from histor-

ical in situ SWC data sets, a detailed spatially distributed

SWC of near-surface soil at watershed scales can be con-

structed from remotely sensed SWC. Note that both mod-

els rely on in situ SWC measurements for model parameters.

Therefore, future research should be conducted to estimate

spatially distributed SWC in un-gauged watersheds based on

the estimation of the model parameters using pedotransfer

functions. The codes for decomposing SWC with the SA and

TA models and related EOF analysis were written in Matlab

and are freely available from the authors upon request.
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Appendix A

Table A1. Notations.

Mt̂ n̂ spatial mean of Mt̂n
Rtn space-variant temporal anomaly of SWC at location n and time t

At n̂ space-invariant temporal anomaly of SWC at time t

Ztn spatial anomaly of SWC at location n and time t

St n̂ spatial mean SWC at time t

σ 2
n̂

spatial variance

Atn temporal anomaly of SWC at location n and time t

δt̂n temporal mean relative difference of SWC at location n

cov spatial covariance

Stn SWC at location n and time t

Mt̂n time-stable pattern of SWC

ECs temporally varying coefficients of Rtn (or Ztn)

EOFs time-invariant spatial structures of Rtn (or Ztn)

NSCE Nash–Sutcliffe coefficient of efficiency

R Pearson correlation coefficient

SWC soil water content
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