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Abstract. Hydrological model parameters play an important
role in the ability of model prediction. In a stationary con-
text, parameters of hydrological models are treated as con-
stants; however, model parameters may vary with time un-
der climate change and anthropogenic activities. The tech-
nique of ensemble Kalman filter (EnKF) is proposed to iden-
tify the temporal variation of parameters for a two-parameter
monthly water balance model (TWBM) by assimilating the
runoff observations. Through a synthetic experiment, the
proposed method is evaluated with time-invariant (i.e., con-
stant) parameters and different types of parameter variations,
including trend, abrupt change and periodicity. Various levels
of observation uncertainty are designed to examine the per-
formance of the EnKF. The results show that the EnKF can
successfully capture the temporal variations of the model pa-
rameters. The application to the Wudinghe basin shows that
the water storage capacity (SC) of the TWBM model has
an apparent increasing trend during the period from 1958 to
2000. The identified temporal variation of SC is explained
by land use and land cover changes due to soil and wa-
ter conservation measures. In contrast, the application to the
Tongtianhe basin shows that the estimated SC has no signif-
icant variation during the simulation period of 1982–2013,
corresponding to the relatively stationary catchment proper-
ties. The evapotranspiration parameter (C) has temporal vari-
ations while no obvious change patterns exist. The proposed
method provides an effective tool for quantifying the tempo-
ral variations of the model parameters, thereby improving the
accuracy and reliability of model simulations and forecasts.

1 Introduction

Hydrological model parameters are critically important for
accurate simulation of runoff. Parameters of conceptual hy-
drological models can be considered as a simplified represen-
tation of the physical characteristics in hydrologic processes.
Therefore, parameter values are closely related to the catch-
ment conditions, such as climate change, afforestation and
urbanization (Peel and Blöschl, 2011). In hydrological mod-
eling, parameters are usually assumed to be stationary; i.e.,
the calibrated parameters are constants during the calibra-
tion period, and have extrapolative ability outside the range
of the observations used for parameter estimation (Merz et
al., 2011). The estimated parameters usually depend on the
calibration period since the calibration period may contain
different climatic conditions and hydrological regimes com-
pared to the simulation period (Merz et al., 2011; Zhang et
al., 2011; Coron et al., 2012; Seiller et al., 2012; Westra et al.,
2014; Patil and Stieglitz, 2015). The model parameters may
change as a response to the variations in climatic conditions
and catchment properties. For example, land use and land
cover changes contribute to temporal changes of model pa-
rameters (Andréassian et al., 2003; Brown et al., 2005; Merz
et al., 2011). Therefore, it is no longer appropriate to treat
parameters as time invariant.

Time-variant hydrological model parameters have been
reported in a few recent publications (Merz et al., 2011;
Brigode et al., 2013; Jeremiah et al., 2013; Thirel et al., 2015;
Westra et al., 2014; Patil and Stieglitz, 2015). For example,
Ye et al. (1997) and Paik et al. (2005) mentioned the sea-
sonal variations of hydrological model parameters. Merz et
al. (2011) analyzed the temporal changes of model parame-
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ters, which were calibrated by using six consecutive 5-year
periods between 1976 and 2006 for 273 catchments in Aus-
tria. Recently, Westra et al. (2014) proposed a strategy to
cope with nonstationarity of hydrological model parameters,
which were represented as a function of a time-varying co-
variate set before using an optimization algorithm for cali-
bration. Previous studies provided two main methods to esti-
mate the time-variant model parameters: (1) available histor-
ical records are divided into consecutive subsets, and param-
eters are calibrated separately for each subset using an op-
timization algorithm (Merz et al., 2011; Thirel et al., 2015);
(2) a functional form of selected time-variant model param-
eters is constructed, and the parameters for the function are
estimated using an optimization algorithm based on the entire
historical record (Jeremiah et al., 2013; Westra et al., 2014).

The data assimilation (DA) actually provides another
method to identify the potential temporal variations of model
parameters by updating them in real time when observa-
tions are available (Liu and Gupta, 2007; Xie and Zhang,
2013). The DA method has been widely applied in hydrol-
ogy for soil moisture estimation (Han et al., 2012; Kumar
et al., 2012; Yan et al., 2015) and flood forecasting (Y. Li
et al., 2013; Liu et al., 2012; Abaza et al., 2014). It has
also been successfully used to estimate model parameters
(Moradkhani et al., 2005; Kurtz et al., 2012; Montzka et
al., 2013; Panzeri et al., 2013; Vrugt et al., 2013; Xie and
Zhang, 2013; Shi et al., 2014; Xie et al., 2014). For example,
Vrugt et al. (2013) proposed two Particle-DREAM (DiffeR-
ential Evolution Adaptive Metropolis) methods, i.e., Particle-
DREAM for time-variant and time-invariant parameters, to
track the evolving target distribution of HyMOD parame-
ters, while both results were approximately similar and sta-
tistically coherent since only 3 years of data were used. Xie
and Zhang (2013) used a partitioned forecast-update scheme
based on the ensemble Kalman filter (EnKF) to retrieve op-
timal parameters in a distributed hydrological model. Al-
though the DA method has been used to estimate model pa-
rameters, these studies are focused on the estimation of con-
stant parameters. Little attention has been paid to the iden-
tification of time-variant model parameters by using the DA
method.

The aim of this study is to assess the capability of the
EnKF to identify the temporal variations of the model pa-
rameters for a monthly water balance model. Thus, a syn-
thetic experiment, including four scenarios with different pa-
rameter variations and one scenario with time-invariant pa-
rameters, is designed for parameter estimation at different
uncertainty levels. Furthermore, two case studies are imple-
mented to estimate the model parameter series and to inter-
pret the parameter variations in response to the changes in
catchment characteristics, i.e., land use and land cover. The
remainder of this paper is organized as follows. Section 2
presents a brief review of the monthly water balance model
and the EnKF method. Following the methodology, Sect. 3
describes the synthetic experiment and the application to two

case studies. Results and discussion are presented in Sect. 4,
followed by conclusions in Sect. 5.

2 Methodology

2.1 Monthly water balance model

The two-parameter monthly water balance model (TWBM),
developed by Xiong and Guo (1999), has been widely ap-
plied for monthly runoff simulation and forecast (Guo et al.,
2002, 2005; Xiong and Guo, 2012; S. Li et al., 2013; Zhang
et al., 2013; Xiong et al., 2014). The inputs of the model in-
clude monthly areal precipitation and potential evapotranspi-
ration. The actual monthly evapotranspiration is calculated
as follows:

Ei = C×EPi × tanh
(
Pi

EPi

)
, (1)

where Ei represents the actual monthly evapotranspiration;
EPi and Pi are the monthly potential evapotranspiration and
precipitation, respectively; C is the first model parameter;
and i is the time step.

The monthly runoff is dependent on the soil water content
and is calculated by the following equation:

Qi = Si × tanh
(
Si

SC

)
, (2)

where Qi is the monthly runoff and Si is the soil water
content. As the second model parameter, SC represents the
water storage capacity of the catchment in millimeters. The
available water for runoff at the ith month is computed by
Si−1+Pi −Ei . Then, the monthly runoff is calculated as

Qi = (Si−1+Pi −Ei)× tanh
(
Si−1+Pi −Ei

SC

)
. (3)

Finally, the soil water content at the end of each time step is
updated based on the water conservation law:

Si = Si−1+Pi −Ei −Qi . (4)

2.2 Ensemble Kalman filter

As a sequential data assimilation technique, EnKF is essen-
tially the Monte Carlo implementation of the Kalman fil-
ter, producing an ensemble of state simulations for updating
the state variables and their covariance matrices (Evensen,
1994; Burgers et al., 1998; Moradkhani et al., 2005; Shi et
al., 2014). It is applicable to a variety of nonlinear prob-
lems (Evensen, 2003; Weerts and El Serafy, 2006) and has
been widely applied to hydrological models (Abaza et al.,
2014; DeChant and Moradkhani, 2014; Delijani et al., 2014;
Samuel et al., 2014; Tamura et al., 2014; Xue and Zhang,
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Table 1. States and parameters of the two-parameter monthly water balance model.

Parameters and state variables Description Ranges and unit

Parameter C Evapotranspiration parameter 0.2–2.0 (–)
SC Catchment water storage capacity 100–4000 (mm)

State variable S Soil water content mm

2014; Deng et al., 2015). Furthermore, the EnKF has been
successfully used in time-invariant parameter estimations for
hydrological models (Moradkhani et al., 2005; Wang et al.,
2009; Xie and Zhang, 2010, 2013).

In this paper, the EnKF is applied to simultaneously esti-
mate state variables and parameters (Table 1) in the TWBM
model. The augmented state vector includes both states and
model parameters (Wang et al., 2009), i.e., Z = (θ,x)T ,
where θ includes the evapotranspiration parameter (C) and
the catchment water storage capacity (SC), and x is the soil
water content (S). The model forecast is conducted for each
ensemble member as follows:(
θki+1|i
xki+1|i

)
=

(
θki|i

f
(
xki|i ,θ

k
i+1|i ,ui+1

))
+

(
δki
εki

)
,

where δki ∼N (0,Ui) ,ε
k
i ∼N (0,Gi) , (5)

θki+1|i is the kth ensemble member forecast of model param-
eters at time i+ 1; θki|i is the kth updated ensemble member
of model parameters at time i; xki+1|i is the kth ensemble
member forecast of model state at time i+ 1; xki|i is the kth
updated ensemble member of model state at time i; f is the
forecasting model operator, i.e., the TWBM model; ui+1 is
the forcing data for the hydrological model, including pre-
cipitation and potential evapotranspiration; εki and δki are the
independent white noise for the forecasting model, follow-
ing a Gaussian distribution with zero mean and specified co-
varianceGi and Ui , respectively. Note that the parameters in
Eq. (5) are propagated by adding random disturbances to the
parameter member between time steps (Wang et al., 2009).

The observation ensemble member can be written as

yki+1 = h
(
xki+1|i ,θ

k
i+1|i

)
+ ξ ki+1, ξ

k
i+1 ∼N (0,Wi+1) , (6)

where yki+1 is the kth ensemble member of the model simu-
lated runoff at time i+1; h is the observation operator which
represents the relationship between the observation and the
state variables; ξ ki+1 is the noise term, which follows a Gaus-
sian distribution with zero mean and specified covariance
Wi+1.

Based on the available state and observation equations, the
model parameters and state are updated according to the fol-
lowing equation:

Zki+1|i+1 = Z
k
i+1|i +Ki+1

(
yki+1−h

(
Zki|i

))
, (7)

where Z is the augmented state vector that includes both
states and parameters; yki+1 is the kth observation ensemble
member generated by adding the observation error ξ ki+1 to
the observed runoff:

yki+1 = yi+1+ ξ
k
i+1, (8)

Ki+1 is the Kalman gain matrix that represents the weight
between the forecasts and observations. It can be calculated
as (Evensen, 1994, 2003; Evensen and van Leeuwen, 1996;
Moradkhani et al., 2005)

Ki+1 =

zy∑
i+1|i

(
yy∑
i+1|i
+Wi+1

)−1

, (9)

where
∑zy

i+1|i is the cross-covariance of the forecasted state
and parameters and

∑yy

i+1|i is the error covariance of the
forecasted output. The error covariance matrix is calculated
based on the forecasted ensemble members:∑
i+1|i
=

1
N − 1

Zi+1|i Z
T
i+1|i , (10)

where Zi+1|i =
(
z1
i+1|i − zi+1|i , · · ·,z

N
i+1|i − zi+1|i

)
; zi+1|i

is the ensemble mean of the forecasted members, and N is
the ensemble size.

Since the parameters are limited within a range, the con-
strained EnKF (Wang et al., 2009) is used in this study. The
ensemble size, uncertainties in input and output have signif-
icant impacts on the assimilation performance of the EnKF,
and they are specified following the previous studies (Morad-
khani et al., 2005; Wang et al., 2009; Xie and Zhang, 2010;
Nie et al., 2011; Lü et al., 2013; Samuel et al., 2014). The en-
semble size is set to 1000 for the synthetic experiment and the
two case studies. In the present study, the uncertainties, in-
cluding state variable and parameter errors (ε and δ in Eq. 5,
respectively) and runoff observation error (ξ in Eq. 6), are as-
sumed to follow a Gaussian distribution with zero mean and
specified covariance. Note that the model parameter errors
should vary depending on the hydrological model used and
the study basin (Clark et al., 2008). Larger standard devia-
tion can generate greater perturbations to model parameters,
and it can improve the coverage of updated parameters but
also may cause fluctuations in the estimates. In this study, the
parameter errors are determined empirically; i.e., the stan-
dard deviation of C is set to 0.01 for all the cases, while
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that of SC is set to 5.0, 1.0 and 0.5 in the synthetic exper-
iment, Wudinghe basin and Tongtianhe basin, respectively.
The standard deviations of both model state and observation
errors are assumed to be proportional to the magnitude of true
values (Wang et al., 2009; Lü et al., 2013). The proportional
factors of the model state are set to 0.05 for all the cases.
Different proportional factors of runoff observation and pre-
cipitation (Table 3) are evaluated to examine the capability
of the EnKF in the synthetic experiment, whereas the pro-
portional factors of runoff observation are set to 0.1 and zero
precipitation errors are assumed in the two case studies.

2.3 Evaluation index

Two evaluation criteria, including the Nash–Sutcliffe effi-
ciency (NSE) (Nash and Sutcliffe, 1970) and the volume er-
ror (VE) are used to evaluate the runoff assimilation results
for the synthetic experiment and the application to real catch-
ments (Deng et al., 2015; Li et al., 2015).

NSE= 1−

∑n
i=1
(
Qsim,i −Qobs,i

)2∑n
i=1
(
Qobs,i −Qobs

)2 , (11)

VE=
∑n
i=1Qsim,i −

∑n
i=1Qobs,i∑n

i=1Qobs,i
, (12)

where Qsim,i and Qobs,i are the simulated and observed
runoff for the ith month, Qobs is the mean value of the ob-
served runoff and n is the total number of data points. The
NSE ranges from −∞ to 1 and has been widely used to as-
sess the goodness of fit for hydrological modeling. A NSE
value of 1 stands for a perfect match of simulated runoff
to the observations, whereas a value of 0 indicates that the
model simulations are equivalent to the mean value of the
runoff observations; negative NSE values indicate that the
mean observed runoff is better than the model simulations.
The VE is a measure of bias between the simulated and ob-
served runoff. For example, VE with the value of 0 denotes
no bias, and a negative value means an underestimation of
the total runoff volume.

The assimilated parameter results are evaluated using the
following criteria, including the Pearson correlation coeffi-
cient (R), the root mean square error (RMSE) and mean ab-
solute relative error (MARE):

R =

∑n
i=1

(
θsim,i − θ sim

)(
θobs,i − θobs

)√∑n
i=1
(
θsim,i − θ sim

)2(
θobs,i − θobs

)2 , (13)

RMSE=

√
1
n

∑n

i=1

(
θsim,i − θobs,i

)2
, (14)

MARE=
1
n

∑n

i=1

∣∣θsim,i − θobs,i
∣∣

θobs,i
, (15)

where θsim,i and θobs,i are the assimilated and true model pa-
rameters for the ith month, θ sim and θobs are the mean of the
assimilated and true model parameters for the ith month and
n is the total number of data points.

3 Data and study area

3.1 Synthetic experiment

A synthetic experiment is designed to evaluate the capability
of the assimilation procedure to identify the temporal vari-
ation of model parameters. Five scenarios of different pa-
rameter variations are developed, as shown in Table 2. The
model parameters in the first four scenarios are time variant,
and those in the last scenario are constant. Parameter C, the
evapotranspiration parameter, is considered to be sinusoidal
reflecting potential seasonal variations in hydrological model
parameters (Paik et al., 2005; Ye et al., 1997). An increasing
trend is also considered to account for the potential annual
or long-term variability. The change of parameter SC is con-
sidered to be gradual and abrupt, since the catchment water
storage capacity can be affected by land use and land cover
changes, such as afforestation and dam construction. The pa-
rameters in scenario 5 are treated as constants like in conven-
tional hydrological modeling. Observations for precipitation
and potential evapotranspiration are generated by adding a
Gaussian disturbance to the corresponding data from a real
catchment, and runoff is then produced using the TWBM
model. The data set used in this experiment is 672 months
long. The first 24-month period is set for model warm-up to
reduce the impact of the initial soil moisture conditions. The
steps toward identifying temporal variation of model param-
eters are as follows:

1. Time series of model parameters are synthetically gen-
erated, including the time-variant parameters and the
constant parameters. Model parameter sets are produced
using a sinusoidal function and/or a linear trend function
within the specified ranges shown in Table 1. The runoff
observations for each scenario are computed from the
TWBM model taking monthly potential evapotranspira-
tion, monthly precipitation and the parameters as inputs.

2. The initial ensembles of model parameters and state
variables are generated using uniform distributions
within the specified ranges in Table 1. The ensemble
size and the total number of assimilation time steps are
specified.

3. After the initialization of parameters and state variables,
the hydrological model parameters and states are up-
dated by assimilating the runoff observations obtained
in step (1). The additive errors for generating the en-
semble members of model parameters, state variables
and runoff observations are obtained from Gaussian dis-
tributions with zero mean and specified variance.

To evaluate the effects of errors on identifying parameter
variation, different levels of observation uncertainty are con-
sidered in the synthetic experiment, as detailed in Table 3.
The uncertainties from the observed precipitation and runoff
are characterized by adding Gaussian noises, where standard
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Table 2. Different variations of model parameters in the synthetic experiment.

Scenario Description

Scenario 1 C has a periodic variation, and SC has an increasing trend
Scenario 2 C has a periodic variation, and SC has an abrupt change
Scenario 3 C has a periodic variation with an increasing trend, and SC has an increasing trend
Scenario 4 C has a periodic variation with an increasing trend, and SC has an abrupt change
Scenario 5 Both C and SC are constant

Figure 1. Location and mean monthly precipitation and runoff from 1956 to 2000 of the Wudinghe basin.

Table 3. Proportional factors of the standard deviations for precipi-
tation (γP ) and runoff (γQ) uncertainties.

Type Low level Medium level High level

γP 0 0.05 0.10
γQ 0.05 0.10 0.20

deviations are assumed to be proportional to the magnitude
of the true values, and the corresponding proportional fac-
tors are denoted as γP and γQ. The proportional factors are
set to account for the practical measurement error (Wang et
al., 2009; Xie and Zhang, 2010).

3.2 Study area

3.2.1 Case 1: Wudinghe basin

The method is applied to the Wudinghe basin (Fig. 1), which
is a sub-basin of the Yellow River basin and located in the
southern fringe of the Maowusu Desert and the northern part
of the Loess Plateau in China, where the climate is semiarid

climate. It has a drainage area of approximately 30 261 km2

and a total length of 491 km. The Wudinghe basin has an
average slope of 0.2 %, and its elevation ranges from 600
to 1800 m above the sea level. The Baijiachuan gauge sta-
tion, which is the most downstream station of the Wudinghe
basin, drains 98 % of the total basin area. The mean annual
precipitation over the basin is 401 mm, of which 72.5 % oc-
curs in the rainy season from June to September (Fig. 2). The
mean annual potential evapotranspiration is 1077 mm, and
the mean annual runoff is about 39 mm with a runoff coeffi-
cient of 0.1.

The soil erosion is severe in the Wudinghe basin, ow-
ing to the highly erodible loess and sparse vegetation. Since
the 1960s, the soil and water conservation measures have
been undertaken. Several engineering measures, including
tree and grass plantation, check dam and reservoir construc-
tion, and land terracing, were effectively implemented during
several decades. The land use changes caused by the soil and
water conservation measures had a significant effect on in-
creasing water storage capacity (Xu, 2011).

www.hydrol-earth-syst-sci.net/20/4949/2016/ Hydrol. Earth Syst. Sci., 20, 4949–4961, 2016
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Figure 2. Location and mean monthly precipitation and runoff from 1980 to 2013 of the Tongtianhe basin.

Figure 3. Comparison between estimated C and its true values for various parameter changes under different uncertainty levels. The gray
areas represent the 95 % prediction uncertainty intervals.

3.2.2 Case 2: Tongtianhe basin

The Tongtianhe basin (Fig. 3) is located in the southwestern
Qinghai Province, China, with a continental climate. It be-
longs to the source area of the Yangtze River basin with a
drainage area of about 140 000 km2 and a total main stream

length of 1206 km. The elevation of the Tongtianhe basin ap-
proximately ranges from 3500 to 6500 m a.s.l. Zhimenda is
the basin outlet. The mean annual precipitation over the basin
is 440 mm, of which 76.9 % occurs in the period from June
to September (Fig. 4). The mean annual potential evapotran-
spiration is 796 mm, and the mean annual runoff is about
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Figure 4. Comparison between estimated SC and its true values for various parameter changes under different uncertainty levels. The gray
areas represent the 95 % prediction uncertainty intervals.

99 mm with a runoff coefficient of 0.23. The Tongtianhe
basin is rarely affected by human activities, owing to the
water source protection guidelines conducted by the govern-
ment. The Tongtianhe basin is used for comparison on model
parameter identification.

3.2.3 Data

The data sets used in this study include monthly precipi-
tation, potential evapotranspiration and runoff in the Wud-
inghe basin (from 1956 to 2000) and the Tongtianhe basin
(from 1980 to 2013). The potential evapotranspiration is es-
timated using the Penman–Monteith equation (Allen et al.,
1998) based on the meteorological data from the China Mete-
orological Data Sharing Service System (http://data.cma.cn).
To reduce the impact of the initial conditions, a 2-year data
set, i.e., from 1956 to 1957 for Wudinghe basin and from
1980 to 1981 for Tongtianhe basin, is reserved as the warm-
up period.

4 Results and discussion

4.1 Synthetic experiment

The comparisons of the estimated and true model parameters
under different scenarios are presented in Figs. 3, 4 and 5.
Tables 4 and 5 show the evaluated statistics for the parame-
ters and runoff estimations. The assimilated parameter values
are obtained from the ensemble mean at each time step. The

estimation of parameters C and SC have the similar trends
to the true parameter series. The temporal variations of the
estimated C agree well with the true series, although it has
biases on the peaks of the periodic changes. For SC, the tem-
poral estimates can capture the different changes in Table 2,
especially for the abrupt change where the estimated values
respond immediately. Different uncertainty levels are consid-
ered to examine the capability of the EnKF method. The re-
sults in Fig. 3 show that the estimated C has more accurate
peaks with smaller RMSE and higher R values under the
high-level uncertainty (Table 4); whereas, the SC estimates
in Fig. 4 have some fluctuations when the uncertainty level
increases. This is due to the estimated values vary with in-
creasing uncertainty levels in the assimilation process. In the
synthetic experiment, the true C is assumed to be periodic
with a higher degree of variation, whereas the true SC series
have less variation.

It should be noted that there are time lags between the as-
similated and true C. The observation at the current time step
is used to adjust the state variables and parameters in EnKF,
and the updates of parameters depend on the Kalman gain
for parameters. A runoff observation at the current time is
determined by states at the current and previous time steps
(Pauwels and Lannoy, 2006). The Kalman gain is dependent
on the relative value of observation error to model error. The
updated states are closer to the observation with a higher
Kalman gain (Tamura et al., 2014). The synthetic C series
were assumed to be periodic when many peak values exist,
whereas the variation of SC series is less. The time lag be-
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Figure 5. Estimations of time-invariant C and SC under different uncertainty levels. The gray areas represent the 95 % prediction uncertainty
intervals.

Table 4. Performance statistics for various changes of (a) parameter C and (b) SC estimations under different levels of uncertainty in the
synthetic experiment.

Scenario Low level Medium level High level

RMSE MARE R RMSE MARE R RMSE MARE R

(a) Parameter C

Scenario 1 0.15 0.21 0.55 0.16 0.18 0.68 0.18 0.11 0.89
Scenario 2 0.16 0.19 0.63 0.17 0.16 0.75 0.18 0.09 0.91
Scenario 3 0.12 0.13 0.64 0.13 0.11 0.72 0.14 0.07 0.91
Scenario 4 0.13 0.12 0.70 0.13 0.10 0.77 0.14 0.06 0.93
Scenario 5 0 – – 0 – – 0 – –

(b) Parameter SC

Scenario 1 182.87 0.03 0.99 187.76 0.05 0.94 253.35 0.83 0.83
Scenario 2 158.30 0.04 0.96 167.47 0.07 0.91 189.59 0.80 0.80
Scenario 3 180.20 0.03 0.99 183.06 0.04 0.97 215.04 0.88 0.88
Scenario 4 156.42 0.03 0.97 158.50 0.05 0.93 170.90 0.86 0.86
Scenario 5 1.54 – – 3.67 – – 20.54 – –

tween assimilated and true values exists particularly when
peak values occur (Clark et al., 2008; Samuel et al., 2014).

The results for the scenario of constant parameters are
shown in Fig. 5, demonstrating that the estimated parame-
ters can approach their true values after the initial 24 assim-
ilation steps. The gray areas represent the 95 % prediction
uncertainty intervals, which reduce quickly and approach a
stable spread. The performance of the estimated parame-
ters is correlated with the uncertainty level. Higher precipita-
tion and runoff observation errors correspond to the greater
RMSE values (Table 4) of estimated parameters and un-
certainty ranges. The performance of runoff estimations for
various parameter changes under different levels of uncer-
tainty is shown in Table 5, suggesting that the EnKF per-
fectly matches the observations with NSEs higher than 0.95
and absolute VEs smaller than 0.02. The EnKF can success-
fully capture the temporal variations of the true parameters,
although the uncertainty levels of the observations can affect

its performance to a certain degree. The above results demon-
strate that the EnKF is able to identify the temporal variation
of the model parameters by updating the state variables and
parameters based on the runoff observations.

4.2 Case studies

Figure 6 shows the double mass curve between monthly
runoff and precipitation for the Wudinghe and Tongtianhe
basins, respectively. Figure 6a shows the linear relationship
between cumulative runoff and precipitation pre- and post-
1972 in the Wudinghe basin, which is similar to the result
presented by Xu (2011) and Li et al. (2014). The results show
two straight lines with different slopes for the relationships
between precipitation and runoff, indicating that an abrupt
change occurred in 1972; i.e., the runoff generation had been
changed from this year due to the soil and water conserva-
tion measures. On the other hand, Fig. 6b demonstrates that
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Table 5. Performance of runoff estimations for various parameter changes under different levels of uncertainty in the synthetic experiment.

Scenario Low level Medium level High level

NSE VE NSE VE NSE VE

Scenario 1 0.999 −0.0003 0.988 −0.0046 0.967 −0.0230
Scenario 2 0.999 0.0001 0.990 −0.0028 0.967 −0.0141
Scenario 3 0.999 −0.0011 0.990 −0.0013 0.974 −0.0264
Scenario 4 0.999 −0.0009 0.992 0.0002 0.959 −0.0147
Scenario 5 0.999 −0.0022 0.992 −0.0077 0.961 −0.0187

Figure 6. Double mass curve between monthly runoff and precipi-
tation for Wudinghe basin within the period of 1958–2000 (a) and
Tongtianhe basin within the period of 1982–2013 (b).

a single linear relationship fits all the data for the Tongtianhe
basin, suggesting a stable precipitation–runoff relationship
during the 1982–2013 period.

The estimated parameters and the associated 95 % predic-
tion uncertainty intervals are shown in Fig. 7. The time series
of estimated SC shows an apparent increasing trend, with two
different trends for pre- and post-turning points in Fig. 6a.
The temporal variation of the water storage capacity is cor-
related with the changes of land use and land cover. Both
the trends in Fig. 7c show an increase of SC because the im-
plementation of the large-scale engineering measures signifi-
cantly improved the water holding capacity of the Wudinghe
basin, especially for the reservoir and check dam construc-
tion. The trend slopes of the two periods, one from 1956 to
1971 and the other from 1972 to 2000, are different because
the degree of implementing engineering measures varied dur-
ing the period of 1958–2000. Moreover, the increase of the
water holding capacity slowed down during the 1980s due
to the sedimentation in reservoirs and check dams after peri-
ods of operation (Wang and Fan, 2003). Figure 8a shows the

long-term time series of precipitation and potential evapora-
tion in the Wudinghe basin. The result shows that the runoff
decreases significantly while precipitation changes slightly
and potential evaporation has no trend, indicating that the
actual evaporation increases significantly due to impacts of
human activities, i.e., soil and water conservation measures.
Figure 8b presents the runoff reduction caused by all the soil
and water conservation measures, i.e., land terracing, tree and
grass plantation and check dam and reservoir construction.
The runoff reduction positively relates to the water holding
capacity, namely the SC value. The slope for the period of
1958–1971 is higher than that for the period of 1972–1996,
suggesting that the SC in the former period has a higher in-
creasing trend. On the other hand, results of Tongtianhe basin
show that the estimated SC has no detectable trend with a
small R value. Moreover, the ranges and standard deviation
of the estimated SC values are much smaller than those in
the Wudinghe basin (Fig. 7), suggesting that the estimated
SC has no obvious temporal variations.

For parameter C, the results show that the estimates have
no significant temporal patterns because the trend line slopes
are almost zero and the standard deviations are relatively
small for the two basins (Fig. 7a and b); however, it can be
treated as a time-variant parameter since temporal variations
exist in the estimated C series. The temporal variations of
the estimated C are related to the variation of monthly actual
evaporation, which is affected by multiple climatic factors,
such as air temperature, soil moisture and solar irradiance
(Su et al., 2015). The gray regions represent the 95 % pre-
diction uncertainty intervals obtained from the parameter en-
sembles. The stable and narrow uncertainty bounds shown
in Fig. 7 indicate that the EnKF can provide superior perfor-
mance of parameter estimation. The runoff simulations for
both basins match well with the runoff observations. Specif-
ically, the NSE and VE for the Wudinghe basin are 0.93 and
0.07, respectively. While the corresponding index values for
the Tongtianhe basin are 0.99 and 0.04.

In summary, the above results demonstrate that the EnKF
can identify the temporal variation of model parameters well
by updating both state variables and parameters based on
the runoff observations. The trends of parameter SC can be
explained by the changes of catchment characteristics (i.e.,
land use and land cover) in the Wudinghe basin. However,
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Figure 7. Estimated parameter values of C and SC for (1) Wudinghe basin within the period of 1958–2000, and (2) Tongtianhe basin within
the period of 1982–2013. The gray areas represent the 95 % prediction uncertainty intervals. Note that the MSE denotes the standard deviation
of the estimated parameter values.

Figure 8. (a) Yearly precipitation, potential evaporation and runoff
in Wudinghe basin during the period of 1958–2000; (b) Runoff re-
duction in Wudinghe basin caused by all the soil and water conser-
vation measures, i.e., land terracing, tree and grass plantation and
check dam and reservoir construction for the period of 1958–1996.
Note that the data are from Wang and Fan (2003) and are only avail-
able from 1956 to 1996.

the estimated SC for the Tongtianhe basin is approximately
stable with a small standard deviation because the basin is
located in a water protection zone and has no significant
changes on water storage capacity caused by human activ-
ities. The parameter C has temporal variations and can be
treated as a time-variant parameter for both basins, although
the estimates have no obvious temporal patterns. Therefore,

the EnKF is capable of identifying the temporal variations of
model parameters.

5 Conclusions

This study proposes an ensemble Kalman filter (EnKF) to
identify the temporal variation of model parameters of the
two-parameter monthly water balance model (TWBM) by
assimilating runoff observations. A synthetic experiment,
which contains four scenarios with different changes of
model parameters and one scenario with constant parame-
ters, is designed to examine the capability of the proposed
approach. Furthermore, three different levels of observation
uncertainty are taken to assess the performance of the EnKF.
The main conclusions are as follows. For the time-variant
parameters, the EnKF provides superior performance even
though slight time lags exist for parameters with periodic
variations. The true values of the constant parameters can
be approached quickly after 24 time steps of the assimila-
tion process. The temporal variations of the parameters can
be successfully captured even under a high level of obser-
vation uncertainties, which would have an influence on the
performance of the EnKF.

The EnKF method is applied to the Wudinghe basin in
China, aiming to detect the temporal variations of the model
parameters and to provide an explanation for the parame-
ter variation from the perspective of catchment characteristic
changes. Meanwhile, a comparison is implemented to inves-
tigate the variation of model parameters in the Tongtianhe
basin, which is barely affected by human activities. The pa-
rameter of water storage capacity (SC) for the monthly water
balance model shows a significant increasing trend for the
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period of 1958–2000 in the Wudinghe basin. The soil and
water conservation measures, including land terracing, tree
and grass plantation and check dam and reservoir construc-
tion, were implemented from 1958 to 2000, resulting in the
increase of the water holding capacity of the basin, which ex-
plains the increasing trend of SC. Moreover, the magnitudes
of the engineering measures in different time periods play
an important role in the degree of increasing trend for SC.
In the Tongtianhe basin, the parameter SC has no significant
trend for the period of 1982–2013, which is consistent with
the relatively stationary catchment characteristics. The evap-
otranspiration parameter (C) has temporal variations and can
be treated as a time-variant parameter, but no obvious trends
exist.

The method proposed in this paper provides an effective
tool for the time-variant model parameter identification. Fu-
ture work will be focused on the influence of the correlations
between/among model parameters and performance compar-
ison of multiple data assimilation methods.

6 Data availability

The meteorological data can be requested and obtained from
the China Meteorological Data Sharing Service System (http:
//data.cma.cn). According to the website’s data sharing rules,
data sets from the website cannot be uploaded or shared per-
sonally. However, readers can access the data themselves
through registration. Note that the runoff data from the local
hydrology bureau is also not publicly accessible. The hydro-
logical data, including the precipitation and runoff records,
are managed by local Hydrology and Water Resources Bu-
reau of China.
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