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Abstract. Monitoring and modelling tools may improve ir-

rigation strategies in precision agriculture. We used non-

invasive soil moisture monitoring, a crop growth and a soil

hydrological model to predict soil water content fluctuations

and crop yield in a heterogeneous sandy grassland soil un-

der supplementary irrigation. The sensitivity of the soil hy-

drological model to hydraulic parameters, water stress, crop

yield and lower boundary conditions was assessed after inte-

grating models. Free drainage and incremental constant head

conditions were implemented in a lower boundary sensitiv-

ity analysis. A time-dependent sensitivity analysis of the hy-

draulic parameters showed that changes in soil water content

are mainly affected by the soil saturated hydraulic conductiv-

ityKs and the Mualem–van Genuchten retention curve shape

parameters n and α. Results further showed that different

parameter optimization strategies (two-, three-, four- or six-

parameter optimizations) did not affect the calculated water

stress and water content as significantly as does the bottom

boundary. In this case, a two-parameter scenario, where Ks

was optimized for each layer under the condition of a con-

stant groundwater depth at 135–140 cm, performed best. A

larger yield reduction, and a larger number and longer dura-

tion of stress conditions occurred in the free drainage con-

dition as compared to constant boundary conditions. Numer-

ical results showed that optimal irrigation scheduling using

the aforementioned water stress calculations can save up to

12–22 % irrigation water as compared to the current irriga-

tion regime. This resulted in a yield increase of 4.5–6.5 %,

simulated by the crop growth model.

1 Introduction

Efficient water use and optimal water supply to increase food

and fodder productivity are of great importance when con-

fronted with worldwide water scarcity, climate change, grow-

ing populations and increasing water demands (FAO, 2011).

In this respect, irrigation efficiency which is influenced by

the type of irrigation and irrigation scheduling is essential

for achieving higher water productivity. In particular, preci-

sion irrigation is adopting new methods of accurate irriga-

tion scheduling (Jones, 2004). Various irrigation scheduling

approaches such as soil-based, weather-based, crop-based,

and canopy temperature-based methods have been presented

(Jones, 2004; Mohanty et al., 2013; Pardossi et al., 2009;

Evett et al., 2008; Nosetto et al., 2012; Huo et al., 2012).

Numerical models are increasingly adopted in water re-

source planning and management. They contain numerical

solutions of the Richards’ equation (Richards, 1931) for wa-

ter flow and root water uptake (Fernández-Gálvez et al.,

2006; Vrugt et al., 2001; Skaggs et al., 2006) or contain

reservoir cascade schemes (Gandolfi et al., 2006). Hydro-

logical models require determination of hydraulic properties

(Šimůnek and Hopmans, 2002), upper boundary conditions

related to atmospheric forcing (evapotranspiration and pre-
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cipitation) (Brutsaert, 2005; Nosetto et al., 2012) and ground-

water dynamics at the lower boundary of the soil profile

(Gandolfi et al., 2006). Numerical models such as Hydrus 1D

(Šimůnek et al., 2013) have been used in a wide range of ir-

rigation management applications – for example, by Sadeghi

and Jones (2012), Tafteh and Sepaskhah (2012), Akhtar et

al. (2013) and Satchithanantham et al. (2014). The tool has

been combined with crop-based models for accurate irriga-

tion purposes and for predicting the crop productivity for

cotton (Akhtar et al., 2013), vegetables and winter wheat

(Awan et al., 2012). The degree of soil water stress was

used for irrigation management by coupling a hydrological

model (Hydrus 1D) with a crop growth model (WOFOST)

for maize (Li et al., 2012) and wheat (Zhou et al., 2012).

The importance of correct average representation of the soil–

plant–atmosphere interaction in numerical models has been

stressed by Wollschlager et al. (2009). A combination of crop

growth model and the hydrological model makes it possible

to calculate crop yield reduction based on soil water stress

derived by the hydrological model.

Direct measurement of hydraulic parameters may be inac-

curate for predictions at the field scale (Verbist et al., 2012;

Wöhling et al., 2008). As an alternative, parameters can be

determined by inverse modelling. A single-objective inverse

parameter estimation using the Levenberg–Marquardt opti-

mization procedures has been used in different studies (Ab-

basi et al., 2004; Jacques et al., 2012; Šimůnek et al., 2013).

A typical challenge in parameter optimization is the non-

uniqueness of the parameters, leading to parameter identifia-

bility problems (Hopmans et al., 2002). Non-uniqueness can

be reduced by decreasing the number of parameters to be es-

timated based on a sensitivity analysis. Sensitivity analysis

has been used to optimize parameter estimation, to reduce

parameter uncertainty (Rocha et al., 2006), and to investigate

the effects of various parameters or processes on water flow

and transport (van Genuchten et al., 2012).

In this study, we used a combination of soil moisture mon-

itoring and modelling to estimate hydraulic properties and to

predict soil water content in a two-layered sandy soil for pre-

cision irrigation management purposes. The objective of this

paper is to investigate the impact of parameter estimation and

boundary conditions on the irrigation requirements, calcu-

lated using a soil hydrological model in combination with a

crop growth model. The effect of changing bottom boundary

conditions on model performance was evaluated in a first step

(see the Supplement). A systematic local sensitivity analysis

was then used to identify dominant hydraulic model parame-

ters. This was followed by a model calibration using inverse

modelling with field data to estimate the hydraulic proper-

ties. Finally, the degree of soil water stress was calculated

with different parametrization scenarios to show to what ex-

tent hydrological model parameter choice and boundary con-

ditions affect estimations of irrigation requirement and crop

yield. It is acknowledged that there is no stress in soil water,

whereas the water stress is in the plant, indeed. But similar

to a large bulk of papers and reports, we used the soil water

stress term in the present paper instead of water stress in the

plants.

2 Materials and methods

2.1 Description of the study site

The study site is located in a sandy agricultural area at the

border between Belgium and the Netherlands (with central

coordinates 51◦19′05◦ N, 05◦10′40◦ E), characterized by a

temperate maritime climate with mild winters and cool sum-

mers. During the study period 2011–2013, the farmer culti-

vated grass. The farm is almost flat (less than 1 % sloping

up from NW to SE) and runoff is not considered to be im-

portant. The measured depth of the groundwater table was

between 80 and 155 cm and the Ap horizon thickness was

between 30 and 50 cm below the soil surface at various lo-

cations across the field depending on the topography. The

field is partly drained by parallel drainage pipes which are

placed at 10 to 20 m intervals and at around 90 cm below the

soil surface (as measured in the ditch). Drainage pipes are

connected to a ditch in the northwest border of the field. Fig-

ure 1 shows the location and layout of the field. The apparent

soil electrical conductivity, ECa, was measured at 5 m inter-

vals between the measurement lines with a DUALEM-21S

sensor (DUALEM, Milton, ON, Canada) corresponding to

0–100 cm depth of exploration. Then, ECa data were inter-

polated using ordinary point kriging (OK) to a 0.5 by 0.5 m

grid to produce the field ECa map. More details about this

methodology and its procedure can be found in Rezaei et

al. (2016). Reel Sprinkler Gun irrigation (type Bauer rainstar

E55, Röhren- und Pumpenwerk BAUER Ges.m.b.H., Aus-

tria) was used on a 290 m by 400 m field to improve crop

growth in the sandy soil during dry periods in summer. The

field was irrigated three times throughout each growing sea-

son (2012: 64.5 mm and 2013: 85.4 mm).

Figure 2 shows the soil profile at a sensors location, indi-

cated by the star on the map in Fig. 1 (see also next section),

a typical Podzol (Zcg-Zbg type according to the Belgian soil

classification or cambisol according to WRB; FAO, 1998)

consisting of a uniform dark brown layer of sandy soil (Ap

horizon, 0 to 33 cm) with elevated organic matter content,

followed by a yellowish to white sandy soil, including stones

and gravels, (C1 horizon, 33 to 70 cm). A deeper horizon is

light grey sandy soil (C2 horizon, 70 to 135 cm), including

more stones and gravels (max 20 %), but having similar hy-

draulic properties as the C1 horizon. Maximum grass root

density was found at about 6 cm and decreased from 6 to

33 cm (based on field observation during profile excavation).

The properties of the two layers are summarized in Table 1.
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Figure 1. Geographical location of the experimental field and the map of the apparent soil electrical conductivity (ECa) of the study site

corresponding to three different zones of groundwater levels (GWL). The black star on the ECa map indicates the sensor location.

Table 1. Average of soil properties of soil profile: θr, θs are residual and saturated water content, respectively; α and n are shape parameters

for the van Genuchten–Mualem equation. Ks denotes the saturated hydraulic conductivity.

Ks θr θs α n OC Sand Silt Clay ρb

(cm h−1) (cm3 cm−3) (cm−1) (%) (g cm−3)

Topsoil 9.59 0.09 0.39 0.017 2.72 2.08 91.65 7.0 1.35 1.57

Subsoil 4.74 0.03 0.31 0.021 2.34 0.18 95.7 3.1 1.2 1.76

Figure 2. Two-layered typical soil profile of the field close to the

location of the sensor.

2.2 Field monitoring system

The site was equipped with two weather stations (type

CM10, Campbell Scientific Inc., UT, USA), one in the study

field and another 100 m away from the field. Soil water con-

tent was recorded (from 1 March until 25 November in both

2012 and 2013) using a water content profile probe (type

EasyAG50, Sentek Technologies Ltd., Stepney, Australia),

placed vertically, that measures soil water content at 10, 20,

30, 40 and 50 cm depths. The weather stations were con-

nected to a CR800 data logger (Campbell Scientific Inc., UT,

USA) and the water content profile probe provided the soil

water content wirelessly. All measurements were taken on an

hourly basis and an hourly reference evapotranspiration was

calculated based on the Penman–Monteith equation (Allen et

al., 1998) using weather station data. The amount of irriga-

tion was derived by subtracting measurements of rain gauges

of the field’s weather station (i.e. rainfall and irrigation) and

the local meteorological station (i.e. only rainfall) outside the

study field. Grass yield was measured at each harvesting time

(four times in each growing season) across the field (Fig. 3).

At the sensor location (indicated by the star on the map

in Fig. 1), duplicate undisturbed (100 cm3 Kopecky rings,

Eijkelkamp Agrisearch Equipment, Giesbeek, The Nether-

lands) soil samples were taken to determine the soil saturated
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Figure 3. Predicted leaf area index, LAI and grass yield using the LINGRA-N model for 2012 and 2013.

hydraulic conductivity and water retention curve, and one

disturbed sample to measure soil properties such as texture,

dry bulk density and organic matter, from the Ap (topsoil)

and C (subsoil) horizons in June 2013. Groundwater depth at

the sensor location was measured four times on 4 June and

5 October 2012 (140 and 136 cm, respectively), and 24 June

and 25 October 2013 (135 and 133 cm, respectively) using

augering.

The saturated hydraulic conductivity (Ks) was determined

using a constant head laboratory permeameter (M1-0902e,

Eijkelkamp Agrisearch Equipment, Giesbeek, The Nether-

lands). The soil water retention curve (SWRC, θ(h)), was de-

termined using the sandbox method (Eijkelkamp Agrisearch

Equipment, Giesbeek, the Netherlands) up to a matric head

of −100 cm and the standard pressure plate apparatus (Soil-

moisture Equipment, Santa Barbara, CA, USA) for matric

heads equal to or below −200 cm, following the procedure

outlined in Cornelis et al. (2005). Bulk density was obtained

by drying volumetric soil samples (100 cm3) at 105 ◦C. Par-

ticle size distribution of the mineral component was obtained

using the pipette method for clay and silt fractions and the

sieving method for sand particles (Gee and Bauder, 1986).

The organic matter content was determined by the method of

Walkley and Black (1934).

Soil hydraulic properties were determined according to

the van Genuchten (1980) and Mualem (1976) conductivity

model (MVG model). The parameters of the water retention

equation were fitted to the observed data set using the RETC,

version 6.02 (van Genuchten et al., 1991). The MVG model

(Mualem, 1976; van Genuchten, 1980) is given by

Se =
θ − θr

θs− θr

(1)

Se (h)= 1 h ≥ 0 (2)

Se (h)=
(
1+ |αh|n

)−m
h < 0; where m= 1−

1

n
(3)

K (Se)=KsSe
l

[
1− (1− S

1
m
e )

m

]2

, (4)

where θs, θr and θ are the saturated, residual and actual vol-

umetric water content respectively (cm3 cm−3), α is the in-

verse of air entry value (cm−1), n is a pore size distribution

index > 1, m= 1− 1 / n (dimensionless) Se is the effective

saturation (dimensionless), and l is a pore connectivity and

tortuosity parameter in the hydraulic conductivity function,

which is assumed to be 0.5 as an average for many soils

(Mualem, 1976).

2.3 Modelling at monitoring locations

2.3.1 Simulation of leaf area index and grass yield

The simple generic crop growth model, LINGRA-N (Wolf,

2012), which can calculate grass growth and yields un-

der potential (i.e. optimal), water-limited (i.e. rain fed) and

nitrogen-limited growing conditions, was used to calculate

the leaf area index (LAI) and grass yield. This tool was cal-

ibrated and tested for perennial rye grass and natural annual

grass over Europe (Barrett et al., 2004; Schapendonk et al.,

1998). LINGRA-N simulates the growth of a grass crop as a

function of intercepted radiation, temperature, light use effi-
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ciency and available water (Wolf, 2012). The LAI and crop

growth simulations were carried out from 1 January 2012 to

31 December 2013. The model calculated LAI and yield on

a daily time intervals using daily weather data, solar radi-

ation (kJ m−2 d−1), minimum temperature (◦C), maximum

temperature (◦C), vapour pressure (kPa), wind speed (m s−1)

and precipitation (mm d−1). A grass crop data file is avail-

able mainly derived from WOFOST. Soil data for our soil

were produced using measured values of soil moisture con-

tent at air dry (pF= 6), wilting point (pF= 4.2), field ca-

pacity (pF= 2.3) and at saturation and also percolation to

deeper soil layers (cm day−1) in the laboratory. The maxi-

mum rooting depth was adjusted to 40 cm. Irrigation supply

was imposed at the specific applied times with optimal ni-

trate application. The simulated LAI was scaled to an hourly

basis using linear interpolation between two adjacent simu-

lated daily values of LAI. The model was run for optimal (no

water limitation) and realistic conditions (actual water inlet

i.e. irrigation and rainfall) for each growing season. Figure 3

represents predicted LAI and grass yield of 2012 and 2013.

2.3.2 Simulation of water flow

The simulated soil profile in the hydrological model extends

to 150 cm depth and is divided into two layers: Layer 1 (0

to 33 cm) and Layer 2 (33 to 150 cm). Simulation of root

water uptake and water flow, which is assumed to be in the

vertical direction in the vadose zone, was carried out for two

growing seasons (from 1 March until 25 November in 2012

and 2013) using Hydrus 1D version 4.16 which solves the

1-D Richards’ equation:

∂θ

∂t
=
∂

∂z

[
K(h)

(
∂h(θ)

∂z
+ 1

)]
− S(h), (5)

where θ is the volumetric water content (cm3 cm−3), t is time

(h), z is the radial and vertical space coordinate taken posi-

tive downward (cm), K(h) is the unsaturated hydraulic con-

ductivity function (cm h−1), h is the pressure head (cm) and

S(h) represents a sink term (cm3 cm−3 h−1), defined as the

volume of water removed from a unit volume of soil per unit

time due to plant water uptake.

To solve Eq. (5), the MVG soil hydraulic model (Eqs. 1–

4) without air entry value and without hysteresis was used.

The initial pressure head distribution was calculated using

the inverse of Eq. (3), h(Se),from the measured initial water

content of each observation node. These point values were

then interpolated linearly from the deepest observation node

to the groundwater level (h= 0, GWL). The pore connectiv-

ity parameter of the MVG model was fixed at l = 0.5. The

upper condition for water flow was an atmospheric bound-

ary condition – based on rainfall and irrigation water sup-

ply, LAI calculated by LINGRA-N (see Sect. 2.3.1) and ref-

erence evapotranspiration (ETo) – with surface runoff. The

model performance was assessed using various implemented

bottom boundary conditions, i.e. free drainage and incremen-

tal constant head conditions, as a manual sensitivity analy-

sis (see the Supplement). The Feddes model (Feddes et al.,

1978) without solute stress was used for root water uptake.

The default grass parameters values provided by Hydrus 1D

were used (Taylor and Ashcroft, 1972).

2.4 Soil water stress and yield reduction

In the Feddes model (Feddes et al., 1978) the sink term of

Richards’ Eq. (5), S(h), is specified in terms of quantify po-

tential root water uptake and water stress as

S(h)= w(h)R (x)Tp, (6)

where R(x) is the root distribution function (cm), Tp is po-

tential transpiration (cm h−1) and w(h) is the water stress re-

sponse function (0≤w(h)≤ 1) which prescribes the reduc-

tion in uptake that occurs due to drought stress. Crop-specific

values of this reduction function are chosen from the default

Hydrus data set. The actual plant transpiration is calculated

numerically, as

Ta =

∫
Lr

S (h)dx = Tp

∫
Lr

w(h)R (x)dx, (7)

where Lr is the rooting depth (cm).

By assuming root water uptake is equal to actual transpi-

ration, the ratio of actual to potential transpiration by the

root uptake was introduced as a degree of water stress, DWS

(Jarvis, 1989), as

DWS=
Ta

Tp

=

∫
Lr

w(h)R (x)dx. (8)

The effect of the boundary conditions and parameter uncer-

tainty on soil water stress was evaluated using the ratio be-

tween the calculated actual water uptake/actual transpiration

and the potential transpiration provided by the model (Li et

al., 2012; Zhou et al., 2012). In optimal and stress-free con-

ditions, this ratio should be (close to) unity (> 0.90 of maxi-

mum reference evapotranspiration).

The ratio between actual crop evapotranspiration and po-

tential evapotranspiration was introduced as a water stress

factor equal to the crop yield reduction due to water shortage

(Doorenbos and Kassam, 1979), given as

1−
Ya

Ym

=Ky

(
1−

ETa

ETp

)
, (9)

where Ya is actual crop yield, Ym is the maximum crop yield

in optimal condition, Ky is the crop yield factor (for grass

Ky = 1), ETa is actual crop evapotranspiration estimated by

the model. The Ym value was simulated using LINGRA-N in

optimal condition (no water stress) for 2012 and 2013 grow-

ing seasons. ETp is potential evapotranspiration and can be
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calculated from the reference evapotranspiration by

ETp = ET0×Kc, (10)

whereKc is the crop coefficient and equal to 1, assuming that

grass at our site did not differ much from the reference crop.

Accordingly, crop yield reduction of each scenario was cal-

culated using Eq. (9) for both periods to show to what extent

different scenarios affect soil water stress and crop yield.

2.5 Sensitivity analysis

The effect of each input factor or parameter on the model

output is determined by a local sensitivity analysis (SA), us-

ing a one-at-a-time (OAT) approach. We used this approach

because it allows a clear identification of single-parameter ef-

fects. Relevant parameters have major effects on output vari-

ables with only a small change in their value (Saltelli et al.,

2008). SA is, among other purposes, used to find the most

relevant parameters which enable a reduction of the number

of parameters that need to be optimized. In a local SA, only

the local properties of the parameter values are taken into

account, in contrast to global SA which computes a num-

ber of local sensitivities. Since the interest in this study goes

specifically to the measured (parameter) values in the field, a

local SA is chosen. Furthermore, an OAT approach (local or

global) does not provide direct information about higher- and

total-order parameter interaction as is provided by variance-

based SA (Saltelli et al., 2008). However, by evaluating the

parameter sensitivities in time, insight is given about poten-

tial interaction when similar individual effects are observed.

The latter can be quantified by a collinearity analysis (Brun

et al., 2001), but will be done graphically in this contribution.

A dynamic sensitivity function can be written as follows:

SF(t)=
∂y(t)

∂x
, (11)

where SF(t), y(t) and x denote the sensitivity function, out-

put variable and parameter respectively. If an output variable

(y) significantly changes (evaluated by calculating the vari-

ance or coefficient of determination or by visualizing in a

scatter plot) due to small changes of the parameter of interest

x, it is called a sensitive parameter.

This partial derivative can be calculated analytically or nu-

merically with a finite difference approach by a local linearity

assumption of the model on the parameters. Local sensitivity

functions evaluate the partial derivative around the nominal

parameter values. The central differences of the sensitivity

function are used to rank the parameter sensitivities and can

be expressed as follows:

1xj = pf · xj (12)

CAS=
∂y(t)

∂x
=
y
(
t,xj +1xj

)
− y

(
t,xj −1xj

)
21xj

(13)

CTRS=
∂y (t)

∂x

xj

y
CPRS=

∂y(t)

∂x
xj , (14)

where pf is the perturbation factor, xj is the parameter value

and 1xj is the perturbation, CAS is the Central Absolute

Sensitivity, CTRS is the Central Total Relative Sensitivity

analysis, and CPRS is a Central Parameter Relative Sensitiv-

ity. Since the parameters and variables have different orders

of magnitude for which the sensitivity is calculated, direct

comparison of the sensitivity indices with CAS is not pos-

sible. Hence, recalculation towards relative and comparable

values is needed. In order to compare the sensitivity of the

different parameters towards the different variables, CTRS

is preferred. CPRS is sufficient when the sensitivity of dif-

ferent parameters is compared for a single variable, i.e. soil

water content. Here, a dynamic (time-variable) local sensi-

tivity analysis was conducted by linking Eqs. (11)–(14), pro-

grammed in Python software (https://www.python.org/) to

Hydrus 1D.

Given the output accuracy of Hydrus 1D (0.001), a pertur-

bation factor of 0.1 was chosen. To carry out the SA, each

hydraulic parameter (Ks, θr, θs, α, and n) in each layer was

varied (measured value ± perturbation factor) and its CTRS

was calculated (Eqs. 13–14), while the values of other param-

eters were fixed to the measured values. The model was run

in forward mode 20 times, i.e. 10 runs for each layer and two

runs for each parameter. A weak direct effect of a parameter

in SA is denoted by low absolute values close to 0. A positive

effect is expressed by a positive value and a negative effect

by a negative value.

2.6 Model calibration and validation

2.6.1 Model calibration

For accurate parameter estimation, a longer period such as

a growing season (i.e. 2012) with several drying and wet-

ting events was selected. This was also suggested by Wöh-

ling et al. (2008, 2009). Therefore, the period between 1

March 2012 (00:00 CET) and 25 November 2012 (23:00 h)

was used as the calibration period. We used a time interval

of 2 h, resulting in 12 960 soil water content records for four

depths (as data for inverse solution), based on hourly precip-

itation and evaporation input data. Based on our experience

this number of data is sufficient for optimization purposes.

The objective functions were soil water content and water

retention data for both soil layers with unit weighting. In the

calibration, we optimized only the values of the most sensi-

tive parameters (Ks, n and α) of the two layers, taking initial

values of hydraulic parameters for each layer equal to the val-

ues estimated by the RETC program for the independent field

Hydrol. Earth Syst. Sci., 20, 487–503, 2016 www.hydrol-earth-syst-sci.net/20/487/2016/
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samples, while keeping the insensitive hydraulic parameters

(θs, θr) fixed to the measured values. Thirty-seven parameter

optimization scenarios were selected and analysed to iden-

tify correlations among optimized parameters and to identify

the most influential parameter sets on soil water stress and

water content in different lower boundary conditions. The 37

scenarios comprised optimizing all six parameters simultane-

ously (one scenario), four parameters (nine scenarios), three

parameters (18 scenarios) and two parameters (nine scenar-

ios). Finally, the best-performing parameter set – based on

performance criteria, the correlation between optimized pa-

rameters (non-uniqueness of the parameter sets) and the vi-

sual inspection of simulated and observed soil water content

– was selected for validation using independent data from

2013 (from 1 March until 12 September 2013).

2.6.2 Model evaluation and statistical analysis

The performance of models can be evaluated with a variety

of statistics (Neuman and Wierenga, 2003). It is known that

there is no efficiency criterion which performs ideally. Each

of the criteria has specific pros and cons which have to be

taken into account during model calibration and evaluation. It

is suggested to use a combination of different efficiency crite-

ria to assess of the absolute or relative volume error (Krause

et al., 2005). The root-mean-square errors (RMSE), the co-

efficient of determination (r2) and the Nash–Sutcliffe coef-

ficient of model efficiency (Ce) (American Society of Civil

Engineers, 1993) are popular and widely used performance

criteria to evaluate the difference between observed and mod-

elled data (Wöhling and Vrugt, 2011; Verbist et al., 2009,

2012; Gandolfi et al., 2006; Vrugt et al., 2004; Wollschlager

et al., 2009; Nasta et al., 2013). They are calculated as fol-

lows:

Ce = 1−

∑n
i=1(Oi − Si)

2∑n
i=1(Oi − Ō)

2
(15)

r2
= (

∑n
i=1

(
Oi − Ō

)(
Si − S̄

)√∑n
i=1

(
Si − S̄

)2∑n
i=1

(
Oi − Ō

)2 )2 (16)

RMSE=

√∑n
i (Oi − Si)

2

n
, (17)

where O and S are observed and simulated values at

time/place i, respectively.

Ce and r2 are considered to be satisfactory when they are

close to 1, while RSME should be close to 0. Ce may result

in negative values when the mean square error exceeds the

variance (Hall, 2001).

2.7 Irrigation scheduling

The value of soil water stress, and the number and the dura-

tion of stress periods was calculated for two growing seasons

(2012 and 2013), as an indicator for the performance of the

irrigation scheduling (van Dam et al., 2008). To optimize the

irrigation scheduling (timing of application), the actual water

supply (all irrigation events) was deleted from the model in-

put of the hydrological model. Secondly, the LAI simulated

with the LINGRA-N for optimal conditions (no water stress)

was used as a variable in the hydrological model. Then, the

hydrological model with a constant bottom boundary condi-

tion was run with the new input variables to elucidate water

stress without actual water supply (see the Supplement). Sub-

sequently, the required irrigation was added to the precipita-

tion at the beginning of each water stress period to exclude

water stress from the simulations. To simulate crop yield

at the optimized condition, the new precipitation variables

(rainfall and required irrigation) were used in LINGRA-N

model. The optimal yield obtained using the optimized irri-

gation scheduling was compared to the actual (simulated and

measured) yield of current irrigation management practices.

3 Results and discussion

3.1 Parameter sensitivity analysis

Due to the variable rainfall, irrigation, evapotranspiration and

drainage, the soil water content changes in the soil profile,

and, consequently, parameter sensitivities are time depen-

dent. The soil water content has a low sensitivity to θs and θr,

especially for the second layer. Low sensitivities to θr have

been reported by others (Kelleners et al., 2005; Mertens et

al., 2006; Wöhling et al., 2008).

Figure 4 illustrates the results of the sensitivity analysis as

a function of time for the most influential parameters α, n

and Ks, and for both soil layers as depicted by the suffix 1

for layer 1 and suffix 2 for layer 2. A weak direct effect of a

parameter is reflected by low absolute values (close to 0).

The results show for all parameters a general change in

sensitivity with time with the seasonal changes in irrigation

application and rainfall. Generally, all soil hydraulic param-

eters showed higher sensitivity in dry periods as compared to

wet periods. On the other hand, there is a clear effect of pa-

rameter variability in layer 1 on water content estimation at

10 cm, and the effect is slightly declining at 20 and 30 cm,

which suggests the great importance and influence of up-

per boundary variables, especially evapotranspiration. Simi-

lar results were observed by Rocha et al. (2006). They found

that soil water content and pressure heads were most sensi-

tive to hydraulic parameters variation in the dry period near

the soil surface using local sensitivity analysis of Hydrus.

Soil water content is sensitive to variations of α, n and Ks

in both layers. The sensitivity is the largest for n, α and less

so for Ks in the first layer. For the second layer, soil water

content was most sensitive to α followed by n and Ks. Ab-

basi et al. (2003) reported that n, θs and Ks were the most

sensitive parameters in their study and that this sensitivity
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Figure 4. Parameter sensitivity as a function of time. The numbers 1 and 2 correspond to the first and second layer, respectively.

was more pronounced in deeper parts, however they also ob-

served some sensitivity near the soil surface during the drier

conditions. The most sensitive parameters were θs,n and α

and least sensitive parameter was Ks in the study by Schnei-

der et al. (2013) using Hydrus 1D. They found large inter-

action (correlation) among sensitive parameters. In contrast,

Wegehenkel and Beyrich (2014) reported that soil water con-

tent predictions were most sensitive to θr and θs and least

sensitive to α, n and Ks input parameters using Hydrus 1D.

Similarly, Caldwell et al. (2013) found that θr, n and l were

sensitive and θs,α and Ks were insensitive to water content

simulation. In dry periods, there is a general negative correla-

tion between n and α on the one hand and soil water content

on the other hand, whereas a positive correlation exists be-

tweenKs and soil water content (Fig. 4). Figure 4 shows that

in the first layer, the soil water content is more influenced by

rainfall at 10 cm than at 30 cm (higher and lower sensitivity

for observation nodes 10 and 30 cm, respectively, within first

layer).

The fact that the model predictions in the upper part of the

soil profile are extremely sensitive to variations in hydraulic

parameters in dry periods, is of great importance to irriga-

tion management. To improve the timing of irrigation in these

crucial periods, numerical soil models that are used to deter-

mine irrigation requirement, need to be well parametrized for

α, n and Ks.

3.2 Model calibration

Since soil water content prediction was insensitive to the pa-

rameters θs and θr, they were fixed to the measured (initial)
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Table 2. Optimized values of hydraulic parameters for the optimization scenarios yielding uncorrelated parameters (except for reference

scenario with six optimized parameters). Values indicated in italic are values fixed to the measured values close to the sensor location.

Numbers in parentheses represent the standard errors of optimized parameter.

Boundary condition Number of First soil layer Second soil layer

optimized

parameters

α1 (cm−1) n1 Ks1 (cm h−1) α2 (cm−1) n2 Ks2 (cm h−1)

Constant head (−140 cm)

6 0.023 (0.0004) 2.14 (0.02) 2.87 (0.111) 0.022 (0.0006) 2.15 (0.034) 1.95 (0.14)

4 0.017 2.64 (0.003) 1.54 (0.028) 0.020 (0.00005) 2.34 1.43 (0.026)

3 0.017 2.72 1.39 (0.026) 0.020 (0.00005) 2.34 1.65 (0.031)

2 0.017 2.72 1.20 (0.023) 0.021 2.34 2.17 (0.044)

Constant head (−120 cm) 2 0.017 2.72 3.45 (0.162) 0.021 2.34 0.75 (0.0107)

Free drainage

6 0.036 (0.0007) 1.45 (0.003) 16.68 (0.48) 0.013 (0.0005) 1.59 (0.013) 5.10 (0.51)

4 0.017 1.53 (0.003) 5.09 (0.12) 0.003 (0.00013) 2.34 0.33 (0.005)

3 0.017 2.72 0.97 (0.02) 0.017 (0.00008) 2.34 0.22 (0.004)

2 0.017 2.72 0.86 (0.022) 0.021 2.34 0.39 (0.004)

values (Table 1). Similar strategies were used by Verbist et

al. (2012) and Schwartz and Evett (2002).

The model was run inversely using time series of soil wa-

ter content with values for α, n and Ks being optimized for

the two layers (i.e. six-parameter optimization scenario). A

significant correlation appears between optimized α and Ks

for both layers (layer 1: r = 0.85; layer 2: r = 0.95 constant

head; and layer 1: r = 0.82; layer 2: r = 0.80 free drainage)

and between optimized n and α (both layers: r =−0.99 con-

stant head; and layer 1: r =−0.83 and layer 2: r =−0.84

free drainage) within each layer, but not between layers. On

the other hand, there is a significant correlation between n

andKs in both layers (layer 1: r =−0.85; layer 2: r =−0.94

constant head; and layer 1: r =−0.75; layer 2: r =−0.98

free drainage). This means that α, n and Ks within one layer

cannot be determined independently and different sets of cor-

related parameters lead to very similar predictions of soil

water content. The high correlation between optimized pa-

rameters within a layer leads to a large uncertainty of the

final parameter estimates (Hopmans et al., 2002). To avoid

non-uniqueness of the inverse solution (Šimůnek and Hop-

mans, 2002), 36 additional systematic four-, three- and two-

parameter optimizations were conducted. All optimizations

resulting in correlations among the optimized parameters

were removed and only the optimization scenarios with the

uncorrelated parameters were kept. This resulted in parame-

ter values as shown in Table 2 for a constant head correspond-

ing to a groundwater depth of −140 cm and free drainage.

For comparison purposes, the six-parameter scenario (all pa-

rameters optimized) and only the best-performing optimiza-

tion with two parameters is presented for the other boundary

condition (i.e. GWL=−120 cm).

The performance results of the parameter optimizations

according to the performance criteria for all scenarios with

uncorrelated parameters and different boundary conditions

are presented in Table 3, together with the performance of

the six-parameter scenario. The results show that a two-

parameter optimization (optimizing only Ks in both layers)

performs equally well as compared to a six-, four- or three-

parameter scenario for all performance criteria and observa-

tion depths. However, parameters in the six-parameter sce-

nario are considered unidentifiable due to their correlations.

In this case, the model was not able to find a global minimum

but found a local minimum (Levenberg–Marquardt method)

due to the high dimensionality of the problem (Ritter et al.,

2003) and the large uncertainty of the optimized values.

Large differences in model performance were obtained

when using free drainage or constant head conditions (Ta-

ble 3). After optimization, the r2 for different free drainage

and constant head conditions and various optimization sce-

narios was similar, whileCe and RSME were different. Over-

all, the performance of the model to predict soil water con-

tent at 40 cm was lowest. The model performs well for the

10, 20 and 30 cm depths where the plant roots are concen-

trated and which are consequently the most critical in terms

of irrigation optimization. The model with a constant head

(−140 cm) clearly performed better than the free drainage

boundary condition. The smallest differences were detected

at the top node (10 cm) compared to deeper nodes in con-

stant head and free drainage conditions. The optimization

approach showed that the free drainage condition was un-

successful to predict soil water content sufficiently well, in

agreement with observations, even using different parameter

estimations.

The two-parameter scenario requires fewer parameters

(one parameter for each layer) to be optimized, performs

better as compared to the uncalibrated model (see Supple-

mentary Material) and is therefore to be preferred. Large

confidence limits indicate uncertain estimations of a par-

ticular parameter (Šimůnek and Hopmans, 2002). The op-

timized Ks with 95 % confidence limits (CL) for the first

and second layer were 1.20 (1.15–1.24) cm h−1, and 2.17
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Figure 5. Observed and simulated time series of soil water content with calibration using the two-parameter Ks scenario for 2012 and

validation results of 2013.

(2.06–2.26) cm h−1, respectively, in the two-parameter sce-

nario with −140 cm GWL. Therefore, this optimization re-

sult was considered the best and was chosen for the evalua-

tion run.

3.3 Model evaluation

The validation results (using the same hydraulic parameter

values as in the calibration period) under different upper

(rainfall and water supply, ETo, LAI) and lower (ground-

water depth, i.e. −135 cm) boundary conditions, show that

model performance during the calibration was superior to the

validation period at all observation depths (Fig. 5, Table 3).

The same result was reported by Wöhling et al. (2008, 2009).

Similar to the calibration period, soil water content was pre-

dicted better during the rain and irrigation period than in

the dry period. Specifically, soil water content was overpre-

dicted during summer months (June–August) and underpre-

dicted during winter and spring. Wöhling et al. (2009) ex-

plained that the differences can be partly attributed to non-

uniqueness of the optimization process, inadequacy of the

model structure, the large number of optimized parameters,

different information content in the calibration and evalua-
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Table 3. Calculated performance criteria describing the correspondence between measured and simulated soil water content for each scenario

for various boundary conditions.

Boundary Number of optimized Node RMSE∗ C∗e r2∗

condition parameters depth (cm)

Calibration

period

(2012)

Constant head (−140 cm)

6

10 0.023 0.56 0.62

20 0.016 0.53 0.74

30 0.010 0.67 0.69

40 0.008 0.63 0.64

4

10 0.024 0.52 0.62

20 0.016 0.54 0.76

30 0.010 0.65 0.70

40 0.008 0.64 0.64

3

10 0.026 0.45 0.62

20 0.014 0.65 0.75

30 0.010 0.65 0.70

40 0.008 0.63 0.64

2

10 0.026 0.46 0.63

20 0.014 0.65 0.75

30 0.010 0.66 0.69

40 0.010 0.45 0.63

Constant head (−120 cm) 2

10 0.022 0.60 0.61

20 0.031 −0.65 0.72

30 0.025 −0.97 0.64

40 0.019 −1.01 0.56

Free drainage

6

10 0.023 0.57 0.60

20 0.018 0.46 0.71

30 0.016 0.19 0.56

40 0.011 0.34 0.50

4

10 0.022 0.62 0.64

20 0.018 0.45 0.71

30 0.014 0.13 0.55

40 0.016 −0.11 0.42

3

10 0.032 0.18 0.54

20 0.021 0.29 0.62

30 0.027 0.12 0.50

40 0.019 −0.95 0.43

2

10 0.028 0.39 0.51

20 0.022 0.31 0.59

30 0.015 0.12 0.51

40 0.014 −0.98 0.50

Validation

period

(2013)

Constant head (−135 cm) 2

10 0.042 0.34 0.37

20 0.027 0.30 0.40

30 0.020 0.24 0.33

40 0.016 0.11 0.29

∗ RMSE, Ce and r2 are the root-mean-square deviation (cm3 cm−3), the Nash–Sutcliffe coefficient of efficiency and the coefficient of

determination.

tion data, and seasonal changes in soil hydraulic properties.

The extent to which the soil water content prediction affects

the calculated irrigation requirements is dealt with in the next

section.
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Table 4. Total duration, number and extent of water stress for different boundary conditions and scenarios (from 1 March to 12 Septem-

ber). Total rainfall and irrigation amount were 398.2 and 64.5 mm in 2012 and 343.3 and 85.4 mm in 2013 respectively. Number between

parentheses represents the duration of first water stress event due to light-radiation and temperature limitations.

Boundary Number of Number of Total duration Degree of Profile Yield

condition parameters water stress of water stress water stress bottom flux reduction

optimized periods

h mm %

Calibration

period

Free drainage 2 7 867 (345) 0.37 −167.7 18

Constant head (−120 cm) 2 0 0 ≥ 1 71.9 0

Constant head (−140 cm) 2 7 671 (328) 0.65 −15.4 16

Constant head (−140 cm) 4 4 524 (277) 0.65 −1 13

Constant head (−140 cm) 6 5 540 (276) 0.66 −4.6 13

Validation

period

Free drainage 2 7 1093 0.10 −148.7 23

Constant head (−120 cm) 2 1 20 0. 85 64.4 0

Constant head (−135 cm) 2 5 675 0.65 63.3 13

Constant head (−135 cm) 4 4 598 0.65 76.6 11

Constant head (−135 cm) 6 3 579 0.65 76.9 11

3.4 Effect of optimization scenarios on estimated water

stress and yield reduction

Using the two-parameter optimization scenario (Table 4), the

calculated potential-reference evapotranspiration (ETo) val-

ues for 2012 and 2013 (same period from 1 March to 12

September) were 523 and 524 mm, respectively. The cumu-

lative actual transpiration and evaporation, provided by the

hydrological model, were 353 and 86 mm for the calibration

(2012) and 343 and 114 mm for validation (2013) periods.

Calculated cumulative actual fluxes across the bottom of the

soil profile were −15.4 mm (outflow) and 63.3 mm (upward

inflow), respectively. The calculations are valid for the lo-

cation where the soil moisture sensor was placed, i.e. in the

drier part of the field with groundwater depths below 120 cm.

The sum of irrigation and precipitation over the simulation

period was 463 mm (64.5 mm irrigation and 398.5 mm pre-

cipitation) in 2012 and 428.7 mm (85.4 mm irrigation and

343.3 mm precipitation) in 2013. In 2013, the amount of wa-

ter from irrigation and rainfall was lower as compared to

2012, resulting in a larger recharge from the groundwater.

Overall, the periods of water stress totalled 671 h in 2012

and 675 h in 2013 (Table 4). Despite the similarity, the ex-

tent of soil water stress was larger in 2013 as compared to

2012. This can be attributed to the fact that the first water

stress event in 2012 with about 328 h duration is not related

to soil water availability but is also due to climate limitations

(low temperature and light-radiation limitation). No signif-

icant reduction or increase in yield and LAI was achieved

during this first water stress event in current and optimum

conditions (Fig. 3).

There was a significant effect of the bottom boundary con-

dition on the calculated water stress. A free drainage condi-

tion resulted in a larger number, longer duration of stress con-

ditions (Fig. 6 and Table 4) and overestimated water stress

due to excessive recharge to the groundwater (more than

148 mm). On the other hand, a shallower imposed ground-

water level (−120 cm) creates less estimated water stress

(Fig. 6 and Table 4), because this boundary condition al-

lows inflow (upward flow) from the groundwater table. When

the groundwater level was −140 cm the outflow of the bot-

tom flux increased from the six-optimized parameter sce-

nario (−4.6 mm) to the two-parameter scenario (−15.4 mm)

in the calibration period, while upward flow increased with

increasing number of optimized parameters in validation pe-

riod (63.3 to 76.9 mm). But these inflows did not meet the

crop water requirement (see next section). Huo et al. (2012)

reported that the maximum contribution of groundwater level

to crop water requirement occurred when the groundwater

level was less than 100 cm. Overall, to overcome the wa-

ter stress effects on crop yield, additional irrigation should

be supplied for different optimization scenarios and bound-

ary conditions. During water stress, yield reduction would

be in range of 0 to 33 % for different optimization scenarios

(Table 4). In addition, two- to six-parameter optimizations

showed a similar value in yield reduction (16 % for two- and

13 % for three- to six-parameter in calibration; and 13 % for

two- and 11 % for three- to six-parameters to be optimized

in validation periods). The maximum yield reduction oc-

curred in the free drainage condition among different bound-

ary conditions and parameter optimization scenarios. Dif-

ferent parameter optimization strategies (two-, three-, four-

or six-parameter optimizations) do not affect the calculated

water stress as significantly as does the bottom boundary.

Therefore, these results suggest that simultaneous optimiza-

tion is needed for irrigation management purposes, i.e. op-

timize/choosing boundary conditions to accurately describe

recharge to or from groundwater and, in second order, opti-
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Figure 6. Degree of water stress at potential reference evapotranspiration in 2012 and 2013 for various scenarios and bottom boundary

conditions.

Table 5. Comparison of optimized irrigation schedule with farmer’s conventional irrigation schedule.

Boundary condition

Observed irrigation schedule Optimized irrigation schedule Difference

Time amount Yield observed Yield simulated Time amount Yield simulated amount

(day) (mm) (t ha−1) (day) (mm) (t ha−1) (mm)

Calibration period (2012) 20 May 22.5 27 May 15

Constant head (−140 cm) with 11 June 21 10.39 10.91 2 July 15 11.39 14.5

2 optimized parameters 13 August 21 11 August 20

Validation period (2013) 13 June 32.4 6 June 25

Constant head (−135 cm) with 23 July 24.8 10.83 11.11 8 July 25 11.82 10.4

2 optimized parameters 23 August 28.2 17 July 25

mize hydraulic parameters to accurately describe soil water

content variation in the topsoil.

3.5 Irrigation scheduling scheme

The simulated results further showed that, to avoid drought

stress during summer, a more accurate irrigation schedule
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Figure 7. Comparison degree of water stress between farmer’s conventional irrigation (current irrigation), without irrigation and optimized

irrigation scheme for calibration and validation periods.

Figure 8. Actual flux of farmer’s conventional irrigation (current irrigation), without irrigation and optimized irrigation scheme (guided

irrigation) for 2012 and 2013.

would be needed in the drier part of the field. It would be bet-

ter to supply water in June and July instead of a huge amount

in late summer or at an inappropriate time (see Figs. 6 and 7).

Results revealed that the actual water supply exceeded crop

demand but did not meet the crop requirement (Fig. 7 and Ta-

ble 5). Irrigation volume affects soil water fluxes. In the “no

irrigation” scenario for 2012 the upward/inflow fluxes from

groundwater were larger than current and guided irrigation

scenarios (Fig. 8). The upward flow of water was not suf-

ficient to meet the crop requirement. For guided irrigation,

recharge from groundwater was larger than current irrigation

in 2012 and 2013 – which means some part of crop water de-
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mand would need to be supplied from groundwater in guided

irrigation.

Results show that, despite reducing water supply through-

out the growth period by about 22.5 % in 2012 and 12 % in

2013, yield would have increased about 4.5 % in 2012 and

6.5 % in 2013 on average (Table 5, Fig. 3), by rescheduling ir-

rigation at the precise time when the crop is exposed to water

stress. The number of irrigation events would remain similar

to realistic applications (three times in each growing season).

At the field scale, non-uniform irrigation distribution (water

supply in drier parts with groundwater level below 120 cm)

would be necessary.

4 Conclusions

The results of this study have demonstrated clearly the pro-

found effect of the position of the groundwater table on the

estimated soil water content and associated water stress in a

sandy two-layered soil under grass in a temperate maritime

climate. Indeed, field-scale variations in soil water content

can be very large, due to topography and variable depth of the

groundwater. Furthermore, the model performance was af-

fected by the spatial variability of hydraulic parameters such

as Ks. Results show that the uniform distribution of water

using standard gun sprinkler irrigation may not be an effi-

cient approach since at locations with shallow groundwater,

the amount of water applied will be excessive as compared

to the crop requirements, while in locations with a deeper

groundwater table, the crop irrigation requirements will not

be met during crop water stress.

The results show that the effect of groundwater level was

dominant in soil water content prediction, at least under con-

ditions similar to those in our study. This reflects the need

for accurate determination of the bottom boundary condi-

tion, both in space and time. In a subsequent field experi-

ment in an adjacent field, the temporal fluctuations of the

groundwater table based on diver (Mini-Diver, Eijkelkamp

Agrisearch Equipment, Giesbeek, the Netherlands) measure-

ments in boreholes revealed changes in groundwater depth

of about 10 cm. The temporal changes were smaller than

the expected variation due to topography which may well

range more than 100 cm even for relatively flat areas. This

has important consequences for precision irrigation manage-

ment and variable water applications at sub-field scale. The

use of detailed (cm scale) digital elevation models, geophys-

ical measurement techniques such as electromagnetic induc-

tion or ground-penetrating radar as proxies for hydraulic pa-

rameters will serve as valuable data sources for hydrological

models to calculate variable irrigation requirements within

agricultural fields. The parametrization scenarios in the cal-

ibration and validation stage of model development should

be kept simple in view of the information they generate. We

have shown that it is sufficient to estimate a limited amount

of key parameters for which the temporal variant informa-

tion of the sensitivity is crucial, and also that optimization

strategies involving multiple parameters do not perform bet-

ter in view of the optimization of irrigation management. We

have shown that a combined modelling approach could in-

crease water use efficiency (12–22.5 %) and yield (5–7 %) by

changing the irrigation scheduling. However, these efficien-

cies can only be achieved if rainfall is known a priori– while

the soil water status could indicate when to irrigate, it would

be impossible to know how much to irrigate if the rainfall

cannot be accurately predicted. Therefore, the results of the

study call for taking into account accurate weather forecast

and water content data in irrigation management and preci-

sion agriculture. The combination of accurate and spatially

distributed field data with appropriate numerical models will

make it possible to accurately determine the field-scale irri-

gation requirements, taking into account variations in bound-

ary conditions across the field and the spatial variations of

model parameters. The information gained in this study with

respect to dominant parameters and the effect of boundary

conditions at the plot scale (1-D) will be scaled up in a 2-D

approach to the field scale using detailed spatial information

on groundwater depth and hydraulic conductivity Ks.

The Supplement related to this article is available online

at doi:10.5194/hess-20-487-2016-supplement.
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Hopmans, J. W., Šimůnek, J., Romano, N., and Durner, W.: Simul-

taneous determination of water transmission and retention prop-

erties. Inverse Methods, in: Method of soil analysis. Part 4. Phys-

ical methods, edited by: Dane, J. H. and Topp, G. C., Soil Sci-

ence Society of America Book Series, Madison, USA, 963–1008,

2002.

Huo, Z., Feng, S., Dai, X., Zheng, Y., and Wang, Y.: Simulation of

hydrology following various volumes of irrigation to soil with

different depths to the water table, Soil Use Manage., 28, 229–

239, doi:10.1111/j.1475-2743.2012.00393.x, 2012.

Jacques, D., Smith, C., Simunek, J., and Smiles, D.: In-

verse optimization of hydraulic, solute transport, and cation

exchange parameters using HP1 and UCODE to simu-

late cation exchange, J. Contam. Hydrol., 142, 109–125,

doi:10.1016/j.jconhyd.2012.03.008, 2012.

Jarvis, N. J.: A simple empirical model of root water uptake, J. Hy-

drol., 107, 57–72, doi:10.1016/0022-1694(89)90050-4, 1989.

Jones, H. G.: Irrigation scheduling: advantages and pitfalls

of plant-based methods, J. Exp. Bot., 55, 2427–2436,

doi:10.1093/jxb/erh213, 2004.

Kelleners, T. J., Soppe, R. W. O., Ayars, J. E., Simunek, J.,

and Skaggs, T. H.: Inverse analysis of upward water flow in

a groundwater table lysimeter, Vadose Zone J., 4, 558–572,

doi:10.2136/Vzj2004.0118, 2005.

Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different effi-

ciency criteria for hydrological model assessment, Adv. Geosci.,

5, 89–97, doi:10.5194/adgeo-5-89-2005, 2005.

Li, Y., Kinzelbach, W., Zhou, J., Cheng, G. D., and Li, X.: Mod-

elling irrigated maize with a combination of coupled-model sim-

ulation and uncertainty analysis, in the northwest of China, Hy-

drol. Earth Syst. Sci., 16, 1465–1480, doi:10.5194/hess-16-1465-

2012, 2012.

Mertens, J., Stenger, R., and Barkle, G. F.: Multiobjective inverse

modeling for soil parameter estimation and model verification,

Vadose Zone J., 5, 917–933, doi:10.2136/Vzj2005.0117, 2006.

Mohanty, B. P., Cosh, M., Lakshmi, V., and Montzka, C.: Remote

sensing for vadose zone hydrology: A synthesis from the vantage

point, Vadose Zone J., 12, 1–6, doi:10.2136/vzj2013.07.0128,

2013.

Mualem, Y.: New model for predicting hydraulic conductivity of

unsaturated porous-media, Water Resour. Res., 12, 513–522,

doi:10.1029/Wr012i003p00513, 1976.

Nasta, P., Vrugt, J. A., and Romano, N.: Prediction of the saturated

hydraulic conductivity from Brooks and Corey’s water retention

parameters, Water Resour. Res., 49, 2918–2925, 2013.

Neuman, S. P. and Wierenga, P. J.: A comprehensive strategy of

hydrogeologic modeling and uncertainty analysis for nuclear fa-

cilities and sites, Division of Systems Analysis and Regulatory

Effectiveness, Office of Nuclear Regulatory Research, US Nu-

clear Regulatory Commission, Washington, DC, 2003.

Nosetto, M. D., Jobbagy, E. G., Brizuela, A. B., and Jack-

son, R. B.: The hydrologic consequences of land cover

change in central Argentina, Agr. Ecosyst. Environ., 154, 2–11,

doi:10.1016/j.agee.2011.01.008, 2012.

Pardossi, A., Incrocci, L., Incrocci, G., Malorgio, F., Battista,

P., Bacci, L., Rapi, B., Marzialetti, P., Hemming, J., and

Balendonck, J.: Root zone sensors for irrigation manage-

ment in intensive agriculture, Sensors-Basel, 9, 2809–2835,

doi:10.3390/S90402809, 2009.

Rezaei, M., Saey, T., Seuntjens, P., Joris, I., Boënne, W., Van Meir-

venne, M., and Cornelis, W.: Predicting saturated hydraulic con-

ductivity in a sandy grassland using proximally sensed apparent

electrical conductivity, J. Appl. Geophys., 126, 35–41, 2016.

Hydrol. Earth Syst. Sci., 20, 487–503, 2016 www.hydrol-earth-syst-sci.net/20/487/2016/

http://dx.doi.org/10.1061/(ASCE)0733-9437(1993)119:3(429)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1993)119:3(429)
http://dx.doi.org/10.1017/S0021859604004289
http://dx.doi.org/10.1029/2000wr900350
http://dx.doi.org/10.2136/vzj2012.0083
http://dx.doi.org/10.2136/sssaj2004.0238
http://dx.doi.org/10.1111/j.1365-2389.2005.00761.x
http://dx.doi.org/10.1111/j.1365-2389.2005.00761.x
http://dx.doi.org/10.1016/j.envsoft.2006.04.004
http://dx.doi.org/10.1111/j.1475-2743.2012.00393.x
http://dx.doi.org/10.1016/j.jconhyd.2012.03.008
http://dx.doi.org/10.1016/0022-1694(89)90050-4
http://dx.doi.org/10.1093/jxb/erh213
http://dx.doi.org/10.2136/Vzj2004.0118
http://dx.doi.org/10.5194/adgeo-5-89-2005
http://dx.doi.org/10.5194/hess-16-1465-2012
http://dx.doi.org/10.5194/hess-16-1465-2012
http://dx.doi.org/10.2136/Vzj2005.0117
http://dx.doi.org/10.2136/vzj2013.07.0128
http://dx.doi.org/10.1029/Wr012i003p00513
http://dx.doi.org/10.1016/j.agee.2011.01.008
http://dx.doi.org/10.3390/S90402809


M. Rezaei et al.: Sensitivity of water stress in a two-layered sandy grassland soil 503

Richards, L. A.: Capillary conduction of liqids through porous

mediums, J. Appl. Phys., 1, 318–333, doi:10.1063/1.1745010,

1931.

Ritter, A., Hupet, F., Muñoz-Carpena, R., Lambot, S., and Van-

clooster, M.: Using inverse methods for estimating soil hydraulic

properties from field data as an alternative to direct methods, Agr.

Water Manage., 59, 77–96, doi:10.1016/S0378-3774(02)00160-

9, 2003.

Rocha, D., Abbasi, F., and Feyen, J.: Sensitivity analysis of soil

hydraulic properties on subsurface water flow in furrows, J.

Irrig. Drain E-ASCE, 132, 418–424, doi:10.1061/(Asce)0733-

9437(2006)132:4(418), 2006.

Sadeghi, M. and Jones, S. B.: Scaled solutions to coupled soil-water

flow and solute transport during the redistribution process, Va-

dose Zone J, 11, 10 pp., doi:10.2136/Vzj2012.0023, 2012.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,

Gatelli, D., Saisana, M., and Tarantola, S.: Global sensitivity

analysis, The Primer, John Wiley & Sons, West Sussex, England,

296 pp., 2008.

Satchithanantham, S., Krahn, V., Sri Ranjan, R., and Sager, S.:

Shallow groundwater uptake and irrigation water redistribution

within the potato root zone, Agr. Water Manage., 132, 101–110,

2014.

Schapendonk, A. H. C. M., Stol, W., van Kraalingen, D. W. G., and

Bouman, B. A. M.: LINGRA, a sink/sourced model to simulate

grassland productivity in Europe, Eur. J. Agr., 9, 87–100, 1998.

Schneider, S., Jacques, D., and Mallants, D.: Inverse modelling with

a genetic algorithm to derive hydraulic properties of a multi-

layered forest soil, Soil Res., 51, 372–389, doi:10.1071/Sr13144,

2013.

Schwartz, R. C. and Evett, S. R.: Estimating hydraulic properties of

a fine-textured soil using a disc infiltrometer, Soil Sci. Soc. Am.

J., 66, 1409–1423, 2002.
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