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S.1 Properties of the function E/P = B1
’
(0) 

Putting y = E/P with 0 ⩽ y ⩽1, x = 0 and a = α0/[(1+b)αw], function B1’ given by Eq. (20) can be rewritten as: 

𝑥 = 𝑎 [(𝑦−𝜆 − 1)
−1/𝜆

+ 𝑏𝑦].          (S1.1) 10 

For x = 0, y is obviously equal to 0. When x tends to infinite the result is less evident. Eq. (S1.1) can be rewritten as: 

𝑥

𝑎
− 𝑏𝑦 =

1

(
1

𝑦𝜆−1)

1
𝜆

 .           (S1.2) 

When x tends to infinite, given that y is limited by 1, the right-hand term of the equation should tend to infinite. This means 

that y should tend to 1 so that the denominator tends to zero.   

The derivative of the function (Eq. S1.1) is given by: 15 

𝑑𝑥

𝑑𝑦
= 𝑎 [𝑏 + 𝑦−(𝜆+1)(𝑦−𝜆 − 1)

−
1

𝜆
−1

],         (S1.3) 

which can be rewritten as: 

𝑑𝑦

𝑑𝑥
=

1

𝑎
[𝑏 + (1 − 𝑦𝜆)

−(1+𝜆)/𝜆
]

−1

.          (S1.4) 

Close to x = 0, y is close to zero and the derivative can be approximated by: 

𝑑𝑦

𝑑𝑥
≈

1

𝑎(1+𝑏)
[1 − (

1+𝜆

𝜆(1+𝑏)
) 𝑦𝜆] ≈

𝛼𝑤

𝛼0
 .         (S1.5) 20 

If Eq. (22) is taken into account: 

𝛼𝑤

𝛼0
=

[1+𝑏(1+𝑥𝜆)
−

1
𝜆]

(1+𝑏)
  ,                                                                                                                        (S1.6) 

which means that αw/α0 and dy/dx tend to 1 when x tends to zero.  
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S.2 Properties of the function E/E0 = B2
’
(0

-1
) 

With X = 0
-1

, Y = E/E0 and the parameter a defined as above in S1, function B2’ (Eq. 21) can be written as 

𝑋−𝜆 = 𝑌−𝜆 − (
1

𝑎
− 𝑏𝑌)

−𝜆

 .              (S2.1) 

When X tends to zero, Y (limited by 1) necessarily tends to zero, and when X tends to infinite Y tends to 1/[(1+b)a] = αw/α0,  

which is equal to 1 according to Eq. (S1.6) (x =1/X = 0).  5 

The derivative of B2’ can be written as: 

𝑑𝑌

𝑑𝑋
=

𝑋−𝜆−1

𝑌−𝜆−1+𝑏(
1

𝑎
−𝑏𝑌)

−𝜆−1 =   
1

(
𝑋

𝑌
)

𝜆+1
[1+

𝑏

(
1

𝑎𝑌−𝑏)
𝜆+1

]

  .                                                                                                              (S2.2) 

When X tends to zero, Y also tends to zero and the term into square brackets tends to 1 which means that: 

𝑑𝑌

𝑑𝑋
 →  (

𝑌

𝑋
)

𝜆+1

 .             (S2.3) 

Taking into account Eq. (S2.1), we have: 10 

(
𝑌

𝑋
)

𝜆+1

= [1 − (
1

𝑎𝑌
− 𝑏)

−𝜆

]

𝜆+1

𝜆

 ,           (S2.4) 

which tends to 1. 

 

S.3 Transcendental forms of the basic equations E/P = B1(p) and E/Ep = B2(p
-1

) 

Eqs. (4) and (5) have the same following form:  15 

𝑦 = (1 + 𝑥−𝜆)
−1/𝜆

  ,            (S3.1) 

with x = p  and y = E/P. Eq. (S3.1) can be also written as: 

𝑥 = (𝑦−𝜆 − 1)
−1/𝜆

  .            (S3.2) 

With similar notations, Eq. (23) can be written as: 

𝑦 + (𝑦−𝜆 − 1)
−1/𝜆

= 𝑥 + (1 + 𝑥−𝜆)
−1/𝜆

 .          (S3.3) 20 

Eq. (S3.3) is equivalent to y + x = x + y, which means that S3.1 or S3.2 are solutions of Eq. (S3.3).  

A similar reasoning can be conducted with Eq. (24), which can be written with X = p
-1

 and Y = E/Ep: 

[1 − 𝑌 + (1 + 𝑋−𝜆)
−1/𝜆

]
−𝜆

= 𝑌−𝜆 − 𝑋−𝜆 .          (S3.4) 

Given that Eq. (S3.1) is verified by X and Y:  

𝑌−𝜆 = 1 + 𝑋−𝜆 .             (S3.5) 25 

Eq. (S3.4) is equivalent to 1 = 1, which means that Eq. (S3.1) or (S3.2) is solution of Eq. (S3.4). 
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S.4 Calculations made with the Fu-Zhang equation 

The Fu-Zhang equation is written as: 

𝐸 

𝑃
= 1 + 𝛷𝑝 − [1 + (𝛷𝑝)

𝜔
 ]

1
𝜔  .           (S4.1) 

First, we study the feasible domain of the drying power of the air Ea and the correspondence with the evaporation rate E. 

Inserting Eq. (S4.1) into Eq. (9) yields: 5 

𝐸𝑎

𝐸𝑃
= 𝐷(𝛷𝑃

−1) = (1 +
𝛥

𝛾
) (1 −

1

(1+𝑏)𝛼𝑤
{1 + 𝑏 [1 + 𝛷𝑃

−1  − (1 + 𝛷𝑃
−𝜔 )

1
𝜔]}).      (S4.2) 

The limits given in Eqs. (11), (12) and (13) are independent from the Budyko function used. Consequently D* remains 

unchanged: 

𝐷∗ =
𝑏

(1+𝑏)𝛼𝑤
(1 +

𝛥

𝛾
) .            (S4.3) 

Using a similar reasoning as in Eqs (14), (15), (16) and (17), we obtain: 10 

𝑑∗ = 2
1

𝜔 − 1 ,             (S4.4) 

𝜔 =
𝑙𝑛2

ln (𝑑∗−1)
 ,             (S4.5) 

𝛿∗ = (1 +
𝛥

𝛾
)

𝑏

(1+𝑏)𝛼𝑤
(1 − 2−

1

𝜆) = 𝐷∗𝑑∗ .          (S4.6) 

Second, we link the Priestley-Taylor coefficient α0 to the Fu-Zhang shape parameter ω. Substituting Ep in Eq. (S4.1) 

by its value given by Eq. (18) and putting 0 = E0/P gives: 15 

𝐸 

𝑃
= 1 +

(1+𝑏)𝛼𝑤

𝛼0
𝛷0 − 𝑏

𝐸

𝑃
− {1 + [

(1+𝑏)𝛼𝑤

𝛼0
𝛷0 − 𝑏

𝐸

𝑃
]

𝜔

 }

1
𝜔

 .        (S4.7) 

Eq. (S4.7) can be rewritten as: 

[1 + (1 + 𝑏) (
𝛼𝑤

𝛼0
𝛷0 −

𝐸

𝑃
)]

𝜔

= 1 + [(1 + 𝑏)
𝛼𝑤

𝛼0
𝛷0 − 𝑏

𝐸

𝑃
]

𝜔

  .        (S4.8) 

An equation similar to Eq. (21) can be obtained expressing E/E0 as a function of 0
-1

 = P/E0: 

[1 +
(1+𝑏)

𝛷0
−1 (

𝛼𝑤

𝛼0
−

𝐸

𝐸0
)]

𝜔

= 1 + (
1

𝛷0
−1)

𝜔

[
(1+𝑏)𝛼𝑤

𝛼0
− 𝑏

𝐸

𝐸0
]

𝜔

 .        (S4.9) 20 

Eqs. (S4.8) and (S4.9) obtained from the Fu-Zhang formulation correspond respectively to E/P = B1’(0) (Eq. 20) and E/E0 

= B2’(0
-1

) (Eq. 21) obtained with the Turc-Mezentsev equation. 

Using a similar reasoning as in Eq. (22), the expression of α0 can be inferred by matching Eqs. (S4.8) and (S4.1): 

for a given value of the aridity index , we have the same value of E/P. This leads to: 

{(1 + 𝑏) [(
𝛼𝑤

𝛼0
− 1) 𝛷 + (1 + 𝛷𝜔 )

1
𝜔] − 𝑏}

𝜔

= 1 + {[
(1+𝑏)𝛼𝑤

𝛼0
− 𝑏] 𝛷 + 𝑏(1 + 𝛷𝜔 )

1
𝜔 − 𝑏}

𝜔

 .                 (S4.10) 25 

Eq. (S4.10) is equivalent to Eq. (22), but with a transcendental form. It can be resolved numerically and Fig. (S1) shows the 

variation of the Priestley-Taylor coefficient α0 as a function of the aridity index  for different values of the  parameter. 

The shape of the curves is very similar to those of Fig. (5a) obtained with the parameter λ of the Turc-Mezentsev function. 



4 

 

 

 

 

Figure S1: Variation of the Priestley-Taylor coefficient α0 with b = 1 as a function of the aridity index  for different values of the 

shape parameter  of the Fu-Zhang function. The bold lines indicate the limits of the feasible domain. 5 
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S.5 Results obtained with the Turc-Mezentsev function making b = 4.5 instead of b = 1 

 

 

Figure S2: Variation of the Priestley-Taylor coefficient α0 (Eq. (22) with b = 4.5 and αw = 1.26): (a) as a function of the aridity index 

 for different values of the shape parameter λ of the Turc-Mezentsev function; (b) as a function of  for different values of the 5 
aridity index . The bold lines indicate the limits of the feasible domain. 

 


