

Supplement of

Matching the Budyko functions with the complementary evaporation relationship: consequences for the drying power of the air and the Priestley–Taylor coefficient

J.-P. Lhomme and R. Moussa

Correspondence to: Roger Moussa (roger.moussa@inra.fr)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

S.1 Properties of the function $E/P = B_I'(\Phi_0)$

Putting $y = E/P$ with $0 \leq y \leq 1$, $x = \Phi_0$ and $a = \alpha_0/[1+b)\alpha_w]$, function B_I' given by Eq. (20) can be rewritten as:

$$10 \quad x = a \left[(y^{-\lambda} - 1)^{-1/\lambda} + by \right]. \quad (S1.1)$$

For $x = 0$, y is obviously equal to 0. When x tends to infinite the result is less evident. Eq. (S1.1) can be rewritten as:

$$\frac{x}{a} - by = \frac{1}{\left(\frac{1}{y^\lambda} - 1\right)^{\frac{1}{\lambda}}}. \quad (S1.2)$$

When x tends to infinite, given that y is limited by 1, the right-hand term of the equation should tend to infinite. This means that y should tend to 1 so that the denominator tends to zero.

15 The derivative of the function (Eq. S1.1) is given by:

$$\frac{dx}{dy} = a \left[b + y^{-(\lambda+1)} (y^{-\lambda} - 1)^{-\frac{1}{\lambda}-1} \right], \quad (S1.3)$$

which can be rewritten as:

$$\frac{dy}{dx} = \frac{1}{a} \left[b + (1 - y^\lambda)^{-(1+\lambda)/\lambda} \right]^{-1}. \quad (S1.4)$$

Close to $x = 0$, y is close to zero and the derivative can be approximated by:

$$20 \quad \frac{dy}{dx} \approx \frac{1}{a(1+b)} \left[1 - \left(\frac{1+\lambda}{\lambda(1+b)} \right) y^\lambda \right] \approx \frac{\alpha_w}{\alpha_0}. \quad (S1.5)$$

If Eq. (22) is taken into account:

$$\frac{\alpha_w}{\alpha_0} = \frac{\left[1+b(1+x^\lambda)^{-\frac{1}{\lambda}} \right]}{(1+b)}, \quad (S1.6)$$

which means that α_w/α_0 and dy/dx tend to 1 when x tends to zero.

S.2 Properties of the function $E/E_0 = B_2(\Phi_0^{-1})$

With $X = \Phi_0^{-1}$, $Y = E/E_0$ and the parameter a defined as above in S1, function B_2' (Eq. 21) can be written as

$$X^{-\lambda} = Y^{-\lambda} - \left(\frac{1}{a} - bY\right)^{-\lambda}. \quad (\text{S2.1})$$

When X tends to zero, Y (limited by I) necessarily tends to zero, and when X tends to infinite Y tends to $1/[1+(1+b)a] = \alpha_w/a_0$,

5 which is equal to I according to Eq. (S1.6) ($x=I/X=0$).

The derivative of B_2' can be written as:

$$\frac{dY}{dX} = \frac{X^{-\lambda-1}}{Y^{-\lambda-1} + b\left(\frac{1}{a} - bY\right)^{-\lambda-1}} = \frac{1}{\left(\frac{Y}{X}\right)^{\lambda+1} \left[1 + \frac{b}{\left(\frac{1}{aY} - b\right)^{\lambda+1}}\right]}. \quad (\text{S2.2})$$

When X tends to zero, Y also tends to zero and the term into square brackets tends to 1 which means that:

$$\frac{dY}{dX} \rightarrow \left(\frac{Y}{X}\right)^{\lambda+1}. \quad (\text{S2.3})$$

10 Taking into account Eq. (S2.1), we have:

$$\left(\frac{Y}{X}\right)^{\lambda+1} = \left[1 - \left(\frac{1}{aY} - b\right)^{-\lambda}\right]^{\frac{\lambda+1}{\lambda}}, \quad (\text{S2.4})$$

which tends to 1.

S.3 Transcendental forms of the basic equations $E/P = B_1(\Phi_p)$ and $E/E_p = B_2(\Phi_p^{-1})$

15 Eqs. (4) and (5) have the same following form:

$$y = (1 + x^{-\lambda})^{-1/\lambda}, \quad (\text{S3.1})$$

with $x = \Phi_p$ and $y = E/P$. Eq. (S3.1) can be also written as:

$$x = (y^{-\lambda} - 1)^{-1/\lambda}. \quad (\text{S3.2})$$

With similar notations, Eq. (23) can be written as:

$$20 \quad y + (y^{-\lambda} - 1)^{-1/\lambda} = x + (1 + x^{-\lambda})^{-1/\lambda}. \quad (\text{S3.3})$$

Eq. (S3.3) is equivalent to $y + x = x + y$, which means that S3.1 or S3.2 are solutions of Eq. (S3.3).

A similar reasoning can be conducted with Eq. (24), which can be written with $X = \Phi_p^{-1}$ and $Y = E/E_p$:

$$\left[1 - Y + (1 + X^{-\lambda})^{-1/\lambda}\right]^{-\lambda} = Y^{-\lambda} - X^{-\lambda}. \quad (\text{S3.4})$$

Given that Eq. (S3.1) is verified by X and Y :

$$25 \quad Y^{-\lambda} = 1 + X^{-\lambda}. \quad (\text{S3.5})$$

Eq. (S3.4) is equivalent to $I = I$, which means that Eq. (S3.1) or (S3.2) is solution of Eq. (S3.4).

S.4 Calculations made with the Fu-Zhang equation

The Fu-Zhang equation is written as:

$$\frac{E}{P} = 1 + \Phi_p - \left[1 + (\Phi_p)^\omega \right]^{\frac{1}{\omega}}. \quad (\text{S4.1})$$

First, we study the feasible domain of the drying power of the air E_a and the correspondence with the evaporation rate E .

5 Inserting Eq. (S4.1) into Eq. (9) yields:

$$\frac{E_a}{E_p} = D(\Phi_p^{-1}) = \left(1 + \frac{d}{\gamma} \right) \left(1 - \frac{1}{(1+b)\alpha_w} \left\{ 1 + b \left[1 + \Phi_p^{-1} - (1 + \Phi_p^{-\omega})^{\frac{1}{\omega}} \right] \right\} \right). \quad (\text{S4.2})$$

The limits given in Eqs. (11), (12) and (13) are independent from the Budyko function used. Consequently D^* remains unchanged:

$$D^* = \frac{b}{(1+b)\alpha_w} \left(1 + \frac{d}{\gamma} \right). \quad (\text{S4.3})$$

10 Using a similar reasoning as in Eqs (14), (15), (16) and (17), we obtain:

$$d^* = 2^{\frac{1}{\omega}} - 1, \quad (\text{S4.4})$$

$$\omega = \frac{\ln 2}{\ln(d^*-1)}, \quad (\text{S4.5})$$

$$\delta^* = \left(1 + \frac{d}{\gamma} \right) \frac{b}{(1+b)\alpha_w} \left(1 - 2^{-\frac{1}{\lambda}} \right) = D^* d^*. \quad (\text{S4.6})$$

Second, we link the Priestley-Taylor coefficient α_0 to the Fu-Zhang shape parameter ω . Substituting E_p in Eq. (S4.1)

15 by its value given by Eq. (18) and putting $\Phi_0 = E_0/P$ gives:

$$\frac{E}{P} = 1 + \frac{(1+b)\alpha_w}{\alpha_0} \Phi_0 - b \frac{E}{P} - \left\{ 1 + \left[\frac{(1+b)\alpha_w}{\alpha_0} \Phi_0 - b \frac{E}{P} \right]^\omega \right\}^{\frac{1}{\omega}}. \quad (\text{S4.7})$$

Eq. (S4.7) can be rewritten as:

$$\left[1 + (1+b) \left(\frac{\alpha_w}{\alpha_0} \Phi_0 - \frac{E}{P} \right) \right]^\omega = 1 + \left[(1+b) \frac{\alpha_w}{\alpha_0} \Phi_0 - b \frac{E}{P} \right]^\omega. \quad (\text{S4.8})$$

An equation similar to Eq. (21) can be obtained expressing E/E_0 as a function of $\Phi_0^{-1} = P/E_0$:

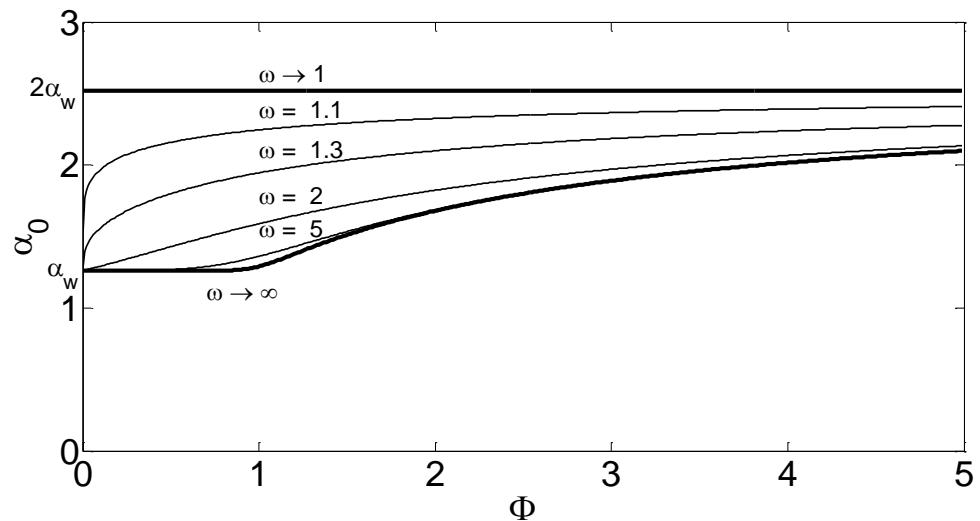
$$20 \quad \left[1 + \frac{(1+b)}{\Phi_0^{-1}} \left(\frac{\alpha_w}{\alpha_0} - \frac{E}{E_0} \right) \right]^\omega = 1 + \left(\frac{1}{\Phi_0^{-1}} \right)^\omega \left[\frac{(1+b)\alpha_w}{\alpha_0} - b \frac{E}{E_0} \right]^\omega. \quad (\text{S4.9})$$

Eqs. (S4.8) and (S4.9) obtained from the Fu-Zhang formulation correspond respectively to $E/P = B_1'(\Phi_0)$ (Eq. 20) and $E/E_0 = B_2'(\Phi_0^{-1})$ (Eq. 21) obtained with the Turc-Mezentsev equation.

Using a similar reasoning as in Eq. (22), the expression of α_0 can be inferred by matching Eqs. (S4.8) and (S4.1): for a given value of the aridity index Φ , we have the same value of E/P . This leads to:

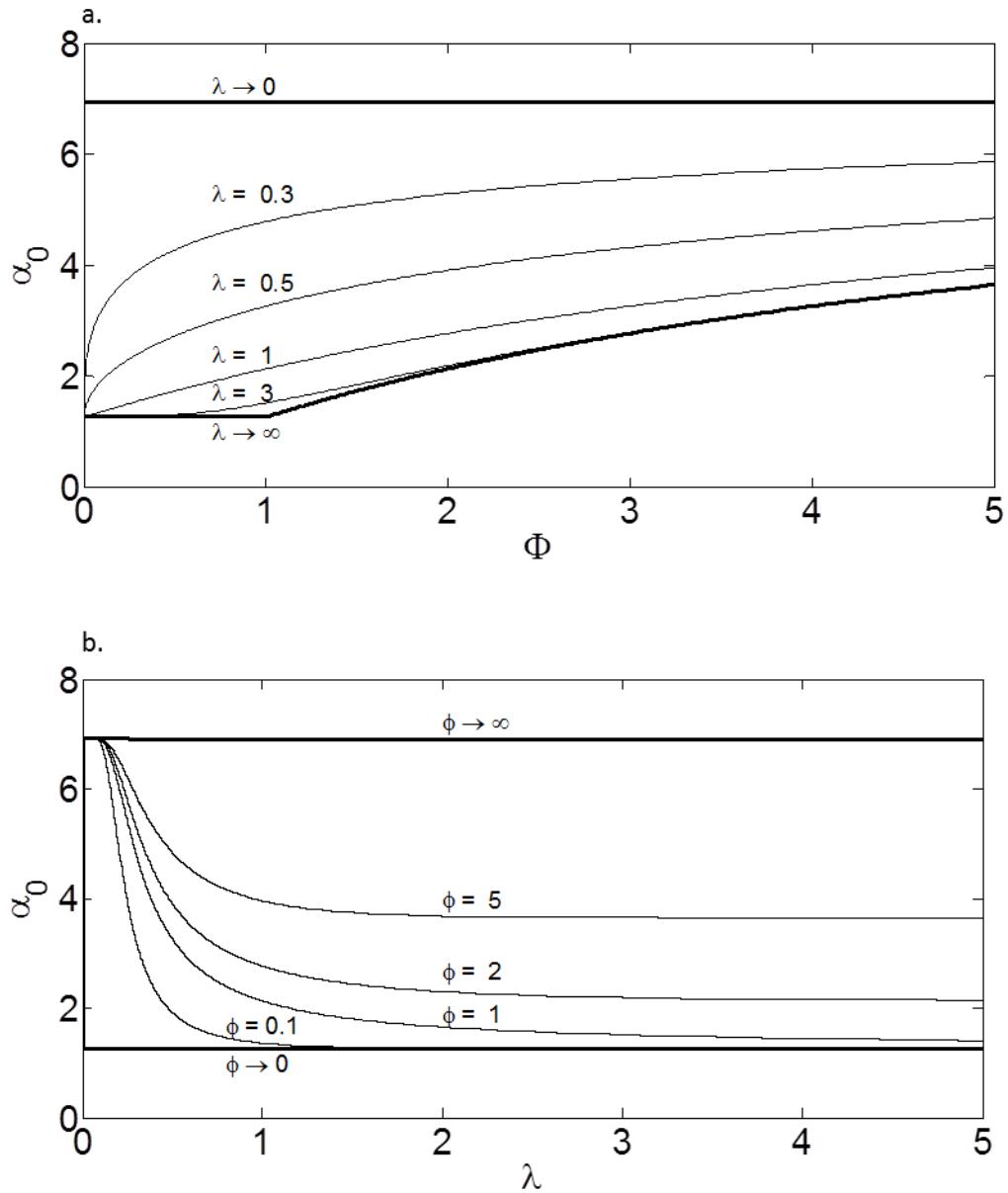
$$25 \quad \left\{ (1+b) \left[\left(\frac{\alpha_w}{\alpha_0} - 1 \right) \Phi + (1 + \Phi^\omega)^{\frac{1}{\omega}} \right] - b \right\}^\omega = 1 + \left\{ \left[\frac{(1+b)\alpha_w}{\alpha_0} - b \right] \Phi + b(1 + \Phi^\omega)^{\frac{1}{\omega}} - b \right\}^\omega. \quad (\text{S4.10})$$

Eq. (S4.10) is equivalent to Eq. (22), but with a transcendental form. It can be resolved numerically and Fig. (S1) shows the variation of the Priestley-Taylor coefficient α_0 as a function of the aridity index Φ for different values of the ω parameter. The shape of the curves is very similar to those of Fig. (5a) obtained with the parameter λ of the Turc-Mezentsev function.



5 **Figure S1:** Variation of the Priestley-Taylor coefficient α_0 with $b = 1$ as a function of the aridity index Φ for different values of the shape parameter ω of the Fu-Zhang function. The bold lines indicate the limits of the feasible domain.

S.5 Results obtained with the Turc-Mezentsev function making $b = 4.5$ instead of $b = 1$



5 **Figure S2: Variation of the Priestley-Taylor coefficient α_0 (Eq. (22) with $b = 4.5$ and $\alpha_w = 1.26$): (a) as a function of the aridity index Φ for different values of the shape parameter λ of the Turc-Mezentsev function; (b) as a function of λ for different values of the aridity index Φ . The bold lines indicate the limits of the feasible domain.**