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S.1 Properties of the function E/P = B, (&)

Putting y = E/P with 0 <y <1, X = @ and a = a/[(1+b)a,], function B’ given by Eq. (20) can be rewritten as:

x=a|(y*-1)"" + byl (SL.1)
For x =0, y is obviously equal to 0. When x tends to infinite the result is less evident. Eq. (S1.1) can be rewritten as:
X bhy=—1—. (S1.2)
a 1 2

(y—fl)

When x tends to infinite, given that y is limited by 1, the right-hand term of the equation should tend to infinite. This means
that y should tend to 1 so that the denominator tends to zero.

The derivative of the function (Eq. S1.1) is given by:
d _ _ -1
éza[b +y GD(y=2 — 1) ] (51.3)
which can be rewritten as:

_ -1
) (1+/1>/A] _ (s14)

E_i[b+(1—

Close to x =0, y is close to zero and the derivative can be approximated by:

Z_ic/ ~ a(11+b) [ (/1(11:/117)) ] ~ _W ' (S1.5)

If Eqg. (22) is taken into account:

1
[1+b(1+x’1) 2

@ (+b) ’ (S1.6)

which means that a,/aq and dy/dx tend to 1 when x tends to zero.
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S.2 Properties of the function E/E, = BZ’(q)o'l)

With X = @&, Y = E/E, and the parameter a defined as above in S1, function B,” (Eq. 21) can be written as

X A=y A— (i - by)_/1 :

(S2.1)

When X tends to zero, Y (limited by 1) necessarily tends to zero, and when X tends to infinite Y tends to 1/[(1+b)a] = aw/a,

which is equal to 1 according to Eq. (S1.6) (x =1/X = 0).
The derivative of B, can be written as:

dy x—A-1 1

= ==

A+1
(av-)
When X tends to zero, Y also tends to zero and the term into square brackets tends to 1 which means that:
day A+l
w6

Taking into account Eq. (S2.1), we have:

y=A=11b(2-by)

O =[i- G-

which tends to 1.

S.3 Transcendental forms of the basic equations E/P = B,(®,) and E/E, = Bz(cbp'l)

Egs. (4) and (5) have the same following form:
-1/

y=(1+x7%) ,

with x = @, and y = E/P. Eq. (S3.1) can be also written as:
x=(y™*- 1)_1//1 .

With similar notations, Eq. (23) can be written as:
y+(r-1)"
Eq. (S3.3) is equivalent to y + x = x + y, which means that S3.1 or S3.2 are solutions of Eq. (S3.3).

- x + (1 + x"l)_lm .

A similar reasoning can be conducted with Eq. (24), which can be written with X = @,™ and Y = E/E;;:

[1-v+(+ X"‘)‘W]_A =y X2,

Given that Eq. (S3.1) is verified by X and Y:

Y r=1+x"*.

Eq. (S3.4) is equivalent to 1 = 1, which means that Eq. (S3.1) or (S3.2) is solution of Eq. (S3.4).

(S2.2)

(S2.3)

(S2.4)

(S3.1)

(S3.2)

(S3.3)

(S3.4)

(S3.5)
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S.4 Calculations made with the Fu-Zhang equation
The Fu-Zhang equation is written as:

_1+c1>—[1+( ,)" ]‘° (S4.1)
First, we study the feasible domain of the drying power of the air E, and the correspondence with the evaporation rate E.

Inserting Eq. (S4.1) into Eq. (9) yields:
Ea _ -1y — 4 _
=D(®;) = (1+y)(1

Ep

{1+b[1+o5! -1 +059)0 ]}) (S4.2)

(1+b)aw

The limits given in Egs. (11), (12) and (13) are independent from the Budyko function used. Consequently D* remains

unchanged:

D=t (1+9) 49

Using a similar reasoning as in Egs (14), (15), (16) and (17), we obtain:

4" =261, (S4.4)
= ln(Zl_Z_I) , (S4.5)

5 =(142) g (1-2 ) =Dd". (54.6)

Second, we link the Priestley-Taylor coefficient aq to the Fu-Zhang shape parameter w. Substituting E, in Eq. (S4.1)
by its value given by Eq. (18) and putting @, = E/P gives:

1
E _ (1+b)ay, E (1+b)ay, E|® Yo
;—1+a—0¢0—b;—{1+[a—0¢0—b;] . (S4.7)
Eq. (S4.7) can be rewritten as:
ay E
[1+(1+b)(a—0q§0—;)] _1+[(1+b)  p, — b ] (34.8)
An equation similar to Eq. (21) can be obtained expressing E/E, as a function of @, = P/Eq:
(1+b) E (1+b)ay, @
oS- = () [ ] (49

Eqgs. (S4.8) and (S4.9) obtained from the Fu-Zhang formulation correspond respectively to E/P = B; (@) (Eq. 20) and E/E,
=B, (@) (Eq. 21) obtained with the Turc-Mezentsev equation.
Using a similar reasoning as in Eq. (22), the expression of o can be inferred by matching Eqgs. (S4.8) and (S4.1):

for a given value of the aridity index @, we have the same value of E/P. This leads to:

aw oA a+b)aw _ wys — pl°
{(1+b)[(a—0—1)d)+(1+<1> ya| - b} =1+{] - b +b(1+@° )b} . (S4.10)
Eq. (S4.10) is equivalent to Eq. (22), but with a transcendental form. It can be resolved numerically and Fig. (S1) shows the

variation of the Priestley-Taylor coefficient o, as a function of the aridity index @ for different values of the @ parameter.

The shape of the curves is very similar to those of Fig. (5a) obtained with the parameter A of the Turc-Mezentsev function.
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Figure S1: Variation of the Priestley-Taylor coefficient aywith b = 1 as a function of the aridity index @ for different values of the
5 shape parameter w of the Fu-Zhang function. The bold lines indicate the limits of the feasible domain.
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S.5 Results obtained with the Turc-Mezentsev function making b = 4.5 instead of b =1
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Figure S2: Variation of the Priestley-Taylor coefficient a, (Eq. (22) with b = 4.5 and a,, = 1.26): (a) as a function of the aridity index
5 @ for different values of the shape parameter 4 of the Turc-Mezentsev function; (b) as a function of 4 for different values of the
aridity index @. The bold lines indicate the limits of the feasible domain.



