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Abstract. The relationship between terrestrial water storage
(TWS) and atmospheric processes has important implica-
tions for predictability of climatic extremes and projection
of future climate change. In places where moisture availabil-
ity limits evapotranspiration (ET), variability in TWS has the
potential to influence surface energy fluxes and atmospheric
conditions. Where atmospheric conditions, in turn, influence
moisture availability, a full feedback loop exists. Here we
developed a novel approach for measuring the strength of
both components of this feedback loop, i.e., the forcing of
the atmosphere by variability in TWS and the response of
TWS to atmospheric variability, using satellite observations
of TWS, precipitation, solar radiation, and vapor pressure
deficit during 2002–2014. Our approach defines metrics to
quantify the relationship between TWS anomalies and cli-
mate globally on a seasonal to interannual timescale. Met-
rics derived from the satellite data were used to evaluate the
strength of the feedback loop in 38 members of the Commu-
nity Earth System Model (CESM) Large Ensemble (LENS)
and in six models that contributed simulations to phase 5 of
the Coupled Model Intercomparison Project (CMIP5). We
found that both forcing and response limbs of the feedback
loop in LENS were stronger than in the satellite observations
in tropical and temperate regions. Feedbacks in the selected
CMIP5 models were not as strong as those found in LENS,
but were still generally stronger than those estimated from
the satellite measurements. Consistent with previous studies
conducted across different spatial and temporal scales, our
analysis suggests that models may overestimate the strength
of the feedbacks between the land surface and the atmo-
sphere. We describe several possible mechanisms that may
contribute to this bias, and discuss pathways through which

models may overestimate ET or overestimate the sensitivity
of ET to TWS.

1 Introduction

Land–atmosphere feedbacks can result from the coupling of
the terrestrial moisture state with temperature, precipitation,
or radiation (Betts et al., 2014; Findell and Eltahir, 1997;
Guillod et al., 2015; Koster et al., 2004). Land–atmosphere
coupling occurs when terrestrial moisture anomalies influ-
ence the partitioning of surface energy between latent and
sensible heat fluxes that, in turn, influence the development
of the planetary boundary layer (PBL) (Seneviratne et al.,
2010). Temperature coupling generally leads to a positive
feedback, with wetter soil contributing to a higher evapora-
tive fraction (EF; the ratio of the latent heat flux to the sum of
the sensible and latent heat fluxes), a lower surface tempera-
ture, and decreased evaporative demand (Hirschi et al., 2011;
Miralles et al., 2012). Precipitation coupling can lead to both
positive and negative feedbacks, as the influence of EF on the
development of the PBL can serve to either enhance or sup-
press cloud formation and precipitation (Findell and Eltahir,
2003; Guillod et al., 2015). Cloud radiative coupling can
likewise lead to positive or negative feedbacks as insolation
and evaporative demand, as a function of cloud cover, are
either enhanced or suppressed (Betts, 2009; Cheruy et al.,
2014). Temperature, precipitation, and radiation feedbacks
each stem from coupling between terrestrial moisture and
evapotranspiration (ET), which occurs most strongly in con-
ditions of intermediate moisture availability (Seneviratne et
al., 2010).
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Evidence of these feedbacks has been observed in both
in situ and remotely sensed data (Eltahir, 1998; Findell
and Eltahir, 1997; Guillod et al., 2014, 2015). Some ob-
servational analyses have found land–atmosphere feedback
strength to be relatively weak compared to the influence of
large-scale atmospheric forcing (Alfieri et al., 2008; Phillips
and Klein, 2014). Other observational studies have high-
lighted the role of these feedback mechanisms in the initi-
ation and exacerbation of climatic extremes such as droughts
and heat waves (Hirschi et al., 2011; Miralles et al., 2014;
Whan et al., 2015).

Large-scale land–atmosphere coupling in general circula-
tion models has been demonstrated by a series of experi-
ments from the Global Land–Atmosphere Coupling Experi-
ment (GLACE) project (Guo et al., 2006; Koster et al., 2004,
2006). The GLACE efforts found that coupled climate mod-
els differed greatly in the extent to which soil moisture vari-
ations affect precipitation and surface air temperature, but
models generally agreed on the spatial distribution of rel-
ative coupling strength, with “hotspots” of strong coupling
during boreal summer found in the central United States,
northern Amazonia, the Sahel, western Eurasia, and north-
ern India. These hotspots were found in regions of interme-
diate soil wetness, which is consistent with the understand-
ing that strong land–atmosphere coupling occurs under con-
ditions in which terrestrial moisture availability limits ET
(Seneviratne et al., 2010). GLACE efforts also showed that
correct soil moisture initialization improves seasonal fore-
cast skill of temperature and, to a lesser extent, precipitation,
particularly in cases with a large initial soil moisture anomaly
(Koster et al., 2010, 2011).

Additional studies have considered land–atmosphere feed-
backs in the coupled Earth system models (ESMs) used
by the Intergovernmental Panel on Climate Change (IPCC)
(Dirmeyer et al., 2013; Notaro, 2008; Seneviratne et al.,
2006, 2013). Notaro (2008) was able to confirm the boreal
summer GLACE hotspots, as well as identify several addi-
tional austral summer hotspots, in the models used for the
IPCC Fourth Assessment Report (AR4). Analysis of long-
term projections from phase 5 of the Coupled Model Inter-
comparison Project (CMIP5) indicated an increased control
of land surface moisture on boundary layer conditions with
climate change (Dirmeyer et al., 2013). The GLACE-CMIP5
experiment found that modeled coupling strength plays an
important role in simulated response to global warming, with
greater warming evident in more strongly coupled models
due to interactions between soil moisture, temperature, and
precipitation (Berg et al., 2015; May et al., 2015; Seneviratne
et al., 2013).

Despite the importance of land–atmosphere coupling in
both short-term predictability of climatic extremes and long-
term uncertainty in climate change, validation efforts have
suggested that climate models may not be correctly repre-
senting the strength, and in some cases even the sign, of
these feedbacks (Ferguson et al., 2012; Hirschi et al., 2014).

The metrics developed for the GLACE are based on model
experiments with no direct observational equivalents. How-
ever, correlation-based metrics that do enable direct com-
parison with observations suggest that models may overes-
timate land–atmosphere coupling strength (Dirmeyer et al.,
2006a). Zeng et al. (2010) found that version 3 of the Com-
munity Climate System Model (CCSM3) showed a higher
coupling strength than reanalysis or observational data. Mei
and Wang (2012) found that coupling strength was reduced
when the Community Atmosphere Model (the land surface
component of CCSM3) was updated from version 3 (CAM3)
to version 4 (CAM4), though the coupling strength of the
updated version was still stronger than observations and re-
analysis.

The Local Land–Atmosphere Coupling (LoCo) project
has focused on developing a suite of metrics for diagnosing
land–atmosphere coupling strength in observations and mod-
els. LoCo metrics consider both the influence of soil mois-
ture on EF, and the influence of EF on diurnal-scale bound-
ary layer development (Santanello et al., 2009). Ferguson et
al. (2012) used the LoCo approach to compare global remote
sensing data sets of soil moisture, EF, and the lifting con-
densation level with several land surface models and reanal-
yses. They found that even though the models were able to
simulate the correct spatial pattern of stronger coupling in
moist–arid transitional regions, the models tended to simu-
late a stronger influence of soil moisture on surface turbulent
fluxes than what was observed in the satellite data. Guillod
et al. (2014) used a combination of flux tower, remote sens-
ing, and reanalysis data sets to demonstrate that the measured
strength of coupling between EF and precipitation depends
greatly on the data source and scale, and that a strong cou-
pling apparent in a previous analysis (Findell et al., 2011)
was not consistent with the observations.

While many of the previously mentioned studies have con-
firmed the long-standing suspicion that models may overes-
timate coupling strength relative to observations, more re-
cent work has indicated that observations and models may
not even agree on the sign of the precipitation feedback. Tay-
lor et al. (2012) performed a spatial analysis of the relation-
ship between soil moisture and afternoon precipitation using
data from remote sensing, reanalysis, and coupled models.
They found evidence of a negative feedback in the remote
sensing observations, with afternoon rain being more likely
over regions of drier soil, as opposed to the positive feed-
back that was apparent in the models. Guillod et al. (2015)
addressed these findings by replicating the spatial analysis
and complementing it with a temporal analysis. They found
a negative spatial feedback, consistent with the one found by
Taylor et al. (2012), but a positive temporal feedback, with
afternoon precipitation at a given location being more likely
after mornings of relatively moist soil.

These studies highlight the need for continued efforts to-
ward evaluating the coupling strength of models relative to
observations using a wide array of data sources at a range of
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spatiotemporal scales. Apparent coupling strength depends
greatly on the spatial scales of analysis (Hohenegger et al.,
2009), indicating that observations at the scale of flux towers
should not be expected to yield the same coupling strength
as those at the scale of global climate models (Guillod et al.,
2014). Consistency between the spatial scale of observations
and models is greatly assisted by Earth observation satellites
that have been continuously monitoring several relevant land
surface and atmospheric variables over multiple years (Teix-
eira et al., 2014). Measured or modeled coupling strength
will also depend on the timescales in question (Guillod et
al., 2015), and while the LoCo efforts have improved the un-
derstanding of synoptic and diurnal-scale mechanisms, there
is an additional need to examine these processes on seasonal
to interannual time periods.

Here we introduce a set of metrics for measuring
the strength of land–atmosphere interactions on seasonal
timescales by combining satellite remote sensing data sets
of terrestrial water storage, precipitation, shortwave radia-
tion, and surface atmospheric temperature and water vapor
during 2002–2014. These new metrics complement previ-
ous studies and are unique in several ways. In particular, we
designed our metrics to consider interannual variability of
entire seasons in order to complement the temporal resolu-
tion of LoCo metrics, which focus on day-to-day variabil-
ity within one or more seasons. Land–atmosphere coupling
on seasonal timescales has been shown to be essential in en-
abling tropical forests to survive during the dry season in the
Amazon (Lee et al., 2005) and as a mechanism enabling sea-
sonal forecasts of fire risk (Chen et al., 2013, 2016).

Until recently, studies using remote sensing data to look
for evidence of land–atmosphere coupling relied on products
that provide information about surface soil moisture (Fergu-
son et al., 2012; Taylor et al., 2012). Consideration of root-
zone soil moisture has recently been accomplished only in-
directly via data-assimilated estimates (Guillod et al., 2015).
The inability to directly consider root-zone soil moisture has
been suggested as an explanation for the relatively weak cou-
pling observed using remote sensing data (Hirschi et al.,
2014). In order to include root-zone soil moisture, as well
as other sources of moisture available across entire seasons,
here we analyzed remote sensing data of the entire terrestrial
water storage (TWS) column.

The metrics introduced here were specifically designed to
use the monthly TWS anomaly (TWSA) product from the
Gravity Recovery and Climate Experiment (GRACE) mis-
sion (Landerer and Swenson, 2012; Wahr et al., 2004). The
GRACE TWSA product integrates soil moisture at all layers
along with surface, canopy, snow/ice, and aquifer storage,
as each of these components represents a potential source
of moisture for fulfilling evaporative demand. For example,
in areas where agricultural ecosystems are important, diver-
sion of lake and river water resources and withdrawal from
aquifers may contribute to irrigation fluxes and thus ET. Fur-
thermore, surface storage of liquid water and snow represents

sources of water that are available for and potentially lim-
iting to ET. Under these conditions, month-to-month TWS
anomalies capture portions of the terrestrial water cycle that
soil moisture alone may not.

Previous studies have largely focused on land surface
moisture availability as a forcing mechanism on the atmo-
sphere, as this relationship has important implications for
seasonal predictability as well as the projection of the fre-
quency and severity of climatic extremes. However, the land
surface response to the atmosphere is governed by many of
the same processes through which terrestrial moisture avail-
ability forces atmospheric conditions, and it determines the
conditions that drive subsequent land surface forcing. It is
therefore critical to assess the response of land surface mois-
ture to atmospheric conditions, as an accurate representation
of these processes is essential for generating the correct ter-
restrial moisture variability that will go on to influence the
atmosphere. As far as we can tell, this response limb of the
land surface feedback loop has not been systematically in-
tegrated with existing analyses of land–atmosphere coupling
strength.

Our globally applicable approach used the annual cycle of
TWS drawdown and recharge to isolate the months of the
year during which the land surface loses moisture, which
we refer to as the drawdown interval (Fig. 1a). We selected
this interval because past work has shown that the land sur-
face’s influence on the atmosphere is most prevalent during
summer in the Northern Hemisphere (Cheruy et al., 2014;
Phillips and Klein, 2014) and during the dry season in trop-
ical forests (Harper et al., 2013; Lorenz and Pitman, 2014).
This approach allowed us to investigate land surface coupling
at a global scale, and to extend metrics developed in previ-
ous work for pre-defined monthly intervals corresponding to
boreal summer (e.g., Guo and Dirmeyer, 2013; Koster et al.,
2006) to be applicable to any seasonality.

In our analysis, separate metrics were calculated to con-
sider the influence of TWS at the onset of the drawdown in-
terval on atmospheric conditions in subsequent months, and
simultaneously, the influence of atmospheric conditions dur-
ing the drawdown interval on terrestrial water storage at the
end of the season. We refer to these two relationships as the
forcing and response limbs, respectively, of the fully cou-
pled feedback loop between the land surface and the atmo-
sphere (Fig. 1b). We estimated the strength of these feed-
backs during 2002–2014 using GRACE and other satellite
remote sensing data (Table 1). We then used the satellite
observations to evaluate the strength of these feedbacks in
the Community Earth System Model (CESM) Large Ensem-
ble (LENS) (Kay et al., 2014) and in several models that con-
tributed simulations to CMIP5 (Table 2).
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Figure 1. Conceptual description of coupling metrics: (a) exam-
ple TWSA climatology from a typical midlatitude location in cen-
tral North America (38◦ N, 92◦W) illustrating the definition of
the drawdown interval as the months from the maximum TWSA
through the minimum TWSA. TWSAmax and TWSAmin are the
TWSA values (in units of water height) during the maximum and
minimum months, respectively, and ATMdi is the atmospheric vari-
able of interest averaged across the months of the drawdown in-
terval. (b) Representation of the interactions between TWS and at-
mospheric component, demonstrating the forcing limb of the feed-
back loop, in which TWSAmax forces subsequent atmospheric con-
ditions, as well as the response limb, in which TWSAmin responds
to the atmospheric state during the drawdown interval.

2 Methods

2.1 Remote sensing data

We obtained level 3 TWSA data from GRACE using the Uni-
versity of Texas at Austin Center for Space Research (CSR)
spherical harmonic solutions (Swenson, 2012). Global land
data at a 1◦ resolution were scaled using the coefficients pro-
vided by Landerer and Swenson (2012). The study period
was limited to September 2002 through November 2014, in
order to minimize temporal gaps. GRACE data during the
study period included 8 non-consecutive and 2 consecutive
missing months, which were filled using linear interpolation.
At each grid cell, the TWSA time series was decomposed
into linear trend, seasonal cycle, and interannual variability
components using ordinary least squares regression. This de-
composition allowed us to estimate a mean annual cycle at
each grid cell with minimal influence of any long-term trend.

Level 3 near-surface temperature and relative humidity
were obtained globally at a monthly, 1◦ resolution from
the ascending (daytime) orbit of the Atmospheric Infrared
Sounder (AIRS) platform (Susskind et al., 2014). Vapor pres-
sure deficit (VPD) was calculated from the AIRS data using
the August–Roche–Magnus approximation to the Clausius–
Clapeyron relation (Lawrence, 2005). Precipitation (PPT)
data were obtained from the Global Precipitation Clima-
tology Project (GPCP), a merged satellite and gauge-based
data set (Huffman et al., 2009), at a daily, 1◦ resolution
and then integrated monthly. Downwelling shortwave radi-
ation (SW↓) was obtained globally at a monthly, 1◦ resolu-
tion from the Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) Energy Balanced and Filled (EBAF) surface
product (Loeb et al., 2009). More information describing the
remote sensing and reanalysis data products used in our anal-
ysis is summarized in Table 1.

2.2 Drawdown interval

As a first step, we used the mean annual cycle from GRACE
to determine the months of the maximum and minimum
TWS anomalies in order to define the drawdown interval at
each 1◦ land grid cell (Fig. 2). Northern Hemisphere mid-
dle and high latitudes exhibited a drawdown interval begin-
ning in the spring (MAM, March–April–May) and ending in
the late summer or fall (ASO, August–September–October),
reflecting the timing of the boreal summer growing season.
At lower latitudes, the North American, African, and Asian
monsoons were evident, with Mexico, India, and the Sahel
showing a drawdown interval beginning in September, after
the monsoonal precipitation has peaked, and ending the fol-
lowing spring after the winter dry season. The onset of the
drawdown interval reversed abruptly at the Equator in Africa
and Asia, with the drawdown interval reflecting a winter dry
season in the austral low latitudes transitioning to a sum-
mer growing season in the austral midlatitudes. Within the
months of our study period, the portion of land grid cells
that experience 11, 12, and 13 complete drawdown intervals
are 9.4, 90.5, and 0.1 %, respectively.

2.3 Coupling metrics

Existing literature generally defines “land–atmosphere cou-
pling” as the extent to which atmospheric conditions are
forced by the land surface state, and would use the term
“atmosphere–land coupling” to refer to the land surface re-
sponse to atmospheric drivers (Seneviratne et al., 2010). In
this study, we develop what we refer to as “coupling metrics”
to indicate the strength of both limbs of the fully coupled
land–atmosphere feedback loop. We use the terms “forcing”
and “response” to indicate whether we are considering the
forcing of the atmosphere by the land surface, or the response
of the land surface to the atmosphere (Fig. 1b).
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Table 1. Remote sensing products used for analysis.

Variable Abbr. Data product Spatial Temporal Reference
resolution resolution

Terrestrial water storage TWS GRACE Tellus RL05.1 1◦ monthly Landerer and Swenson (2012)
Vapor pressure deficit VPD AIRS AIRX3STM v6 1◦ monthly Susskind et al. (2014)
Precipitation PPT GPCP 1DD v1.2 1◦ daily Huffman et al. (2009)
Downwelling shortwave radiation SW↓ CERES EBAF Ed2.8 1◦ monthly Loeb et al. (2009)

Figure 2. Month of maximum and minimum TWSA and the length of the drawdown interval from GRACE (a–c) and the LENS ensemble
mean (d–f). Months of maximum and minimum were based on the climatology of detrended TWSA over the 146 months in the GRACE
record.

We defined our forcing metric as the Pearson product-
moment correlation coefficient between the TWS anomaly
at the onset of the drawdown interval (TWSAmax) and the
surface atmospheric conditions during the drawdown inter-
val (abbreviated here as ATMdi). In our analysis, we se-
lected three variables to represent the atmospheric state:
VPD, SW↓, and PPT. These atmospheric variables were av-
eraged during the drawdown interval, including during the
months of climatological maximum and minimum TWSA.
We chose these variables because they represent various as-
pects of evaporative supply (PPT) and demand (VPD and
SW↓).

Similarly, we defined our response metric as the correla-
tion coefficient between ATMdi and the land surface state at
the end of the drawdown interval (TWSAmin). Although most
previous diagnoses of land–atmosphere coupling has focused
on the forcing limb, we argue the response limb is equally
important as a metric for model evaluation. Specifically, if
variability in the balance between evaporative supply and de-
mand does not lead to the correct TWS variability, then the
incorrect TWS response will feed back into subsequent forc-
ing on the atmosphere.

We note that these metrics do not provide distinctive infor-
mation for measuring the strength of land–atmosphere cou-
pling or the land surface response. While the metrics include
the influence of direct land–atmosphere interactions, they are
also potentially influenced by atmospheric and soil moisture
persistence, as well as remote forcing from sea surface tem-
peratures (SSTs) (Orlowsky and Seneviratne, 2010; Mei and
Wang, 2011). Nevertheless, these metrics may still serve as
useful benchmarks against which to evaluate the ability of
ESMs to reproduce the proper relationships based on the
combination of these factors.

Here we note that our evaluation of both the forcing and
response metrics will follow a nomenclature that considers
strong coupling as acting in the direction of an overall pos-
itive feedback loop. In regions with a strong positive feed-
back, higher than average TWS would be followed by lower
than average VPD, as more available water is able to fulfill
evaporative demand. Therefore, strong TWS forcing on VPD
would be associated with a negative correlation coefficient.
Higher VPD during the drawdown interval would increase
evaporative demand, potentially leading to a more negative
TWS anomaly; therefore, a strong response of the land sur-
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Table 2. CMIP5 models used for analysis.

Model acronym Atmospheric model Land surface model Horizontal Ens. Reference(s)
resolution size

CCSM4 National Center for Community Land 288× 192 6 Lawrence et al. (2011);
Atmospheric Research Model (CLM4) Neale et al. (2013)
(NCAR) Community
Atmospheric Model
version 4 (CAM4)

CESM1-CAM5 NCAR Community CLM4 288× 192 3 Lawrence et al. (2011);
Atmosphere Model Meehl et al. (2013)
version 5 (CAM5)

CESM1-BGC NCAR CAM4 with CLM4 288× 192 1 Lawrence et al. (2011);
biogeochemistry Lindsay et al. (2014);

Neale et al. (2013)

IPSL-CM5A-LR Laboratoire de Organizing Carbon and 96× 96 3 Cheruy et al. (2013);
Météorologie Hydrology in Dynamic Dufresne et al. (2013);
Dynamique atmospheric Ecosystems Hourdin et al. (2013)
model (LMDZ5A) (ORCHIDEE)

GFDL-ESM2G Geophysical Fluid Land Model 3.0 144× 90 1 Dunne et al. (2012);
Dynamics Laboratory (LM3.0) Shevliakova et al. (2009)
(GFDL) Earth System
Model 2 (ESM2)

GFDL-ESM2M GFDL ESM2 LM3.0 144× 90 1 Dunne et al. (2012);
Shevliakova et al. (2009)

face to VPD would also be associated with a negative corre-
lation coefficient.

Because the partitioning of surface fluxes can, depending
on the spatiotemporal scale, cause a change of either sign to
cloudiness and precipitation (Taylor et al., 2012; Guillod et
al., 2015), correlation coefficients of either sign could indi-
cate strong land surface forcing on PPT and SW↓. However,
the response metrics would be expected to show greater con-
sistency. Higher PPT during the drawdown interval would
be expected to increase TWS (positive correlation), while
higher SW↓would increase evaporative demand, thereby de-
creasing TWS (negative correlation). Therefore, to maintain
consistent nomenclature based on evaluating the strength of
a positive moisture feedback, we consider strong coupling in
both the forcing and response metrics to be associated with a
positive correlation in the case of PPT and a negative corre-
lation in the case of SW↓.

2.4 Community Earth System Model Large Ensemble

We used the metrics described above to evaluate feedback
strength in the CESM LENS. LENS comprises an ensem-
ble of 38 fully coupled runs in which air temperature ini-
tial conditions are perturbed slightly (by an amount less than
the round-off error) to reveal the internal variability inherent
within the coupled climate model. LENS has demonstrated
that the uncertainty in climate projections due to internal

climate variability inherent in CESM is comparable to the
ranges of output within the entire CMIP5 experiment (Kay
et al., 2014). LENS uses version 1 of CESM (CESM1) with
version 5 of the Community Atmosphere Model (CAM5) and
version 4 of the Community Land Model (CLM4) at a hori-
zontal resolution of 1◦. The ensemble run follows protocols
from the CMIP5 experiment, with historical radiative forcing
for the 20th century and representative concentration path-
way 8.5 (RCP8.5) forcing for the 21st century.

The LENS data were chosen as a starting point for feed-
back evaluation for two reasons. First, the availability of a
TWS variable in these simulations enabled a direct compari-
son with metrics derived using data from GRACE. The TWS
field in CLM4 included water from surface and canopy stor-
age, snow and ice, soil moisture, and a dynamic aquifer, in
addition to river water storage terms from the coupled River
Transport Module (RTM). The coupling of CLM4 with RTM
has been shown to be important for simulating both the an-
nual cycle and interannual variability of TWS in comparison
with GRACE (Kim et al., 2009).

Second, the ensemble allowed us to test the importance
of internal model variability for the diagnosis of feedback
strength. Because the complete satellite record was relatively
short (containing no more than 12 drawdown intervals at any
location), comparison with an equivalent single time series
of model output could be influenced by a model’s internal
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decadal-scale variability (Kay et al., 2014). Analyzing the
full ensemble from LENS enabled us to assess the sensitivity
of our forcing and response metrics to this variability. We ex-
tracted from each ensemble member the equivalent months
of the satellite record, with data prior to December 2005
coming from the historical runs, and data from January 2006
onward coming from the RCP8.5 simulations.

2.5 Assessment of uncertainty

To assess the sensitivity of our metrics to observational un-
certainty, we used a Monte Carlo sampling approach. For
each of the 38 members of LENS, we calculated coupling
metrics 10 times with random noise added to both TWSA
and atmospheric variable time series at each grid cell. The
noise was randomly generated from a Gaussian distribution
with a mean of zero and a standard deviation equal to 25 % of
the standard deviation of the original data. Comparing these
results with those from the unaltered data provided some in-
dication of how much our coupling metrics are degraded by
random noise as an approximation of observational uncer-
tainty.

In addition, to assess how our analysis may be influenced
by uncertainty due to the selection of satellite data, we sub-
stituted data from the European Centre For Medium-range
Weather Forecasting (ECMWF) Interim Reanalysis (ERA-
Interim) (Dee et al., 2011) in place of AIRS-, GPCP-, and
CERES-derived variables. We only used atmospheric reanal-
ysis data for this sensitivity analysis, as these data benefit
from assimilation of observations, while we continued to use
GRACE for TWSA. Comparing results from this GRACE-
reanalysis hybrid to those using only satellite data provided
a general indication of how sensitive our coupling metrics
were to the data source.

2.6 CMIP5 analysis

To extend our analysis to models that did not output an ex-
plicit TWS field, we compared accumulated residuals of pre-
cipitation, evapotranspiration, and total runoff (surface and
subsurface) with the explicit TWS variable in the LENS
simulations. We also compared coupling metrics calculated
from LENS using accumulated residuals with those calcu-
lated from the explicit TWS field. After we determined that
the accumulated residuals of the water balance represented
much of the variability in the explicit TWS variable and
yielded coupling metrics with similar distributions within
LENS, we calculated equivalent metrics for several model
simulations in the CMIP5 archive (Table 2). We selected the
CMIP5 models that were similar to LENS (CESM1-CAM5
and CESM1-BGC) as well as the models that participated
in the GLACE-CMIP5 experiment (Seneviratne et al., 2013)
for which each necessary output field was available (CCSM4,
GFDL-ESM2M, GFDL-ESM2G and IPSL-CM5A-LR).

3 Results

3.1 Drawdown interval and interannual variability

A comparison of the months of maximum and minimum
terrestrial water storage as determined by climatologies of
GRACE and the LENS ensemble mean indicated that the
model largely reproduces the timing of TWSA seasonality
evident in the satellite observations (Fig. 2). Geographic pat-
terns of seasonality were consistent between the model and
observations, though a phase shift in the drawdown interval is
apparent in eastern Canada and central Eurasia where LENS
had a 1-month early bias for both the maximum and min-
imum TWSA, in southeast North America where the onset
of the modeled drawdown interval was slightly later than the
observations, and in parts of east Asia and Australia where
the modeled drawdown interval ended earlier than in the
observations. However, despite capturing generally correct
timing, the model exhibited higher interannual variability of
TWSAmax and TWSAmin across the 11–12 drawdown inter-
vals compared with the satellite data (Fig. 3) particularly in
the southern United States, southern South America, central
and eastern Africa, southern Asia, and eastern Australia. One
possible explanation for this is the presence of multi-year
trends in aquifer storage in CLM4 that are not consistent with
GRACE (Swenson and Lawrence, 2015).

A comparison of the interannual variability of atmospheric
variables across multiple drawdown intervals between the
model and satellite data showed various degrees of con-
sistency (Fig. 4). The magnitude and geographic pattern
of VPDdi was generally consistent, though LENS showed
greater interannual variability than AIRS in central and west-
ern North America, South America, northern and south-
ern Africa, and southern Asia. In the case of PPTdi, LENS
showed less interannual variability than GPCP in southeast
North America and much of South America, but the two
were largely consistent elsewhere. SW↓di was the least con-
sistent between the model and satellite data, as LENS showed
greater interannual variability than CERES in southern North
America, northern Eurasia, most of Africa, and most of Aus-
tralasia.

Comparing both the timing of TWS dynamics and the
interannual variability of TWS and the atmospheric vari-
ables between the observations and model output provides
a context for interpreting the correlation-based metrics we
present next. Although there are some inconsistencies, as
noted above, the model largely reproduced the same patterns
evident in the remote sensing data. In many regions, the in-
terannual variability in model output was similar to the ob-
served variability, indicating that CESM was able to simulate
reasonably well the baseline properties (timing and variabil-
ity) that influence feedback dynamics.
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Figure 3. Interannual variability (standard deviation) of TWSAmax and TWSAmin from GRACE (a, b) and the LENS ensemble mean (c, d).

Figure 4. Interannual variability (standard deviation) of VPDdi from AIRS (a), PPTdi from GPCP (b), SW↓di from CERES (c) and the
equivalent quantities from the LENS ensemble mean (d–f).

3.2 Evaluating feedbacks for a single model simulation

The forcing metric for VPD derived from GRACE and AIRS
showed regions of strong coupling, in which TWSAmax
was negatively correlated with VPDdi, in the northern Great
Plains, northern South America, southern Africa, south-
ern and western India, north central Eurasia, and northern
Australia (Fig. 5a). Regions with strong positive correla-
tion were much less common, and were largely confined
to areas of very low GRACE-derived TWSAmax variability
(Fig. 3a). Positive correlations are unlikely to reflect direct
land–atmosphere coupling. Instead, they demonstrate how

remote SST forcing, depending on persistence and time de-
lays with atmospheric responses, can lead to apparent neg-
ative relationships such as those demonstrated by Wei et
al. (2008). In comparison with the satellite data, the VPD
forcing metrics from the first ensemble member of LENS
(Fig. 5c) showed much stronger coupling in the southern and
eastern Amazon, and marginally stronger coupling strength
across many regions in temperate Asia.

The response metrics for VPD showed much stronger cou-
pling than the forcing metrics in both the satellite data and the
model (Fig. 5b and d). Satellite data yielded negative corre-
lation coefficients nearly everywhere, with positive correla-
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Figure 5. Forcing and response metrics for VPD from GRACE/AIRS (a, b) and LENS ensemble member 001 (c, d). Cross-hatching indicates
a correlation coefficient that is statistically significant at p≤ 0.05.

tions found only in arid regions of low TWS variability. Par-
ticularly strong response metrics were found in eastern North
America, northern South America, western Eurasia, the Sa-
hel, India, and eastern Australia. The first ensemble mem-
ber from LENS showed widespread negative correlations,
and did not show the positive correlations found in the satel-
lite data. Response coupling in LENS was much more spa-
tially homogeneous than in the satellite data, though north-
ern South America and western Eurasia still showed stronger
coupling than elsewhere.

Many of the areas that showed a strong forcing metric for
VPD also showed a relatively strong forcing metric for PPT,
though the PPT forcing metric was overall weaker than that
for VPD (Fig. 6a). The response metric for PPT was gener-
ally positive, indicating that for much of the globe, a more
positive TWSAmin was associated with higher precipitation
rates (Fig. 6b). Both the forcing and response metrics were
somewhat stronger in the LENS member relative to those ev-
ident in the satellite data (Fig. 6c and d).

The forcing metrics for SW↓ showed a mixture of positive
and negative correlations, indicating that higher TWSAmax
was either positively or negatively coupled with shortwave
radiation (Fig. 7a). This finding is consistent with both posi-
tive and negative coupling between cloud cover and terres-
trial moisture observed over shorter timescales (Taylor et
al., 2012; Guillod et al., 2015). The response metrics for
SW↓ were generally negative, indicating that greater sea-
sonal shortwave radiation was associated with more nega-
tive TWSAmin (stronger coupling), with western Africa be-

ing a notable exception (Fig. 7b). The LENS member showed
generally stronger coupling in both the forcing and response
metrics for SW↓ (Fig. 7c and d).

3.3 Evaluating the CESM Large Ensemble

In temperate and tropical regions, forcing metrics were gen-
erally stronger in LENS (more positive correlations for PPT,
more negative for VPD and SW↓) than in the satellite and
reanalysis data, indicating a stronger land surface forcing of
the surface atmospheric state in the model than in the obser-
vations (Fig. 8). In boreal regions, forcing metrics were much
weaker (closer to zero) than at lower latitudes in both the
satellite data and in LENS, indicating very little relationship
between TWSAmax and ATMdi. This is consistent with high
levels of climate variability in many high-latitude regions
driven by the Arctic Oscillation, the North Atlantic Oscilla-
tion, and other dynamical modes (Cohen and Barlow, 2005).
Furthermore, at high latitudes, ET is generally energy lim-
ited rather than moisture limited, which would lead to weak
forcing metrics as moisture availability would not strongly
influence atmospheric conditions.

Response metrics were also generally higher in LENS than
in both the satellite and reanalysis data (Fig. 9). Noticeable
exceptions were the VPD and PPT response metrics in the
tropics, which were close to the satellite observations, and
the boreal SW↓ and tropical PPT response metrics, which
were close to the reanalysis estimates. Despite the internal
variability evident within the model ensemble, and the differ-
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Figure 6. Forcing and response metrics for PPT from GRACE/GPCP (a, b) and LENS ensemble member 001 (c, d). Cross-hatching indicates
a correlation coefficient that is statistically significant at p≤ 0.05.

Figure 7. Forcing and response metrics for SW↓ from GRACE/CERES (a, b) and LENS ensemble member 001 (c, d). Cross-hatching
indicates a correlation coefficient that is statistically significant at p≤ 0.05.

ence between metrics as measured by the satellite data com-
pared with the reanalysis data, the general pattern indicated
that modeled response metrics were higher than those from
observations and reanalysis.

3.4 Analysis of uncertainty

The internal variability across the ensemble of simulations
in LENS yielded a distribution of forcing and response met-
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Figure 8. Ensemble histogram of forcing metrics from the 38 simulations in LENS (gray bars) compared to satellite observations from
GRACE/AIRS/GPCP/CERES (solid black line) and the alternate set of observations from GRACE and ERA-Interim (dashed black line),
averaged across land regions within different latitude bands.

rics with a spread on the same order of magnitude as the
difference between modeled and satellite-derived zonal av-
erages. The distribution of coupling metrics from LENS re-
vealed the sensitivity of the relationships to decadal climate
variability given the relatively short TWS time series. Com-
paring this distribution with the spread between the purely
satellite-derived metrics and GRACE-reanalysis hybrid in-
dicated the sensitivity of our metrics to the choice of data
source. The differences between satellite and reanalysis met-
rics were generally greater in the tropics, particularly for
VPD and SW↓, and in midlatitude VPD for both forcing and
response variables. Elsewhere, the differences were generally
similar to or less than the differences between the observa-
tionally constrained zonal averages and the LENS distribu-
tions.

Comparing the original LENS forcing and response met-
rics with those calculated after adding random noise to LENS
(Figs. S1 and S2 in the Supplement) provided an estimate of
the metrics’ sensitivity to observational uncertainty. Adding
random noise with 25 % of the standard deviation of the orig-

inal data to the model time series of TWSA and atmospheric
variables at each grid cell does degrade the metrics slightly,
causing areal averages to be closer to zero, but the differences
are relatively small compared to the differences between ob-
served and modeled averages as well as the spread of the
ensemble itself. This sensitivity analysis provided evidence
that observational errors likely have a relatively small impact
on the quality of our satellite-derived metrics.

3.5 Evaluating CMIP5 models

Comparison of the explicit TWS field from LENS with the
accumulated residuals of the surface water budget, as well
as the forcing and response metrics calculated using both
(Figs. S3 and S4), indicated that the alternative formula-
tion provides an acceptable substitute when an explicit TWS
field is not available from an ESM. More specifically, it sug-
gests that water storage in rivers, lakes, and other parts of the
terrestrial hydrologic system that are downstream from grid
cell-level runoff did not significantly degrade the set of met-
rics evaluated here. Some degradation of the forcing metrics
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Figure 9. Ensemble histogram of response metrics from the 38 simulation in LENS (gray bars) compared to satellite observations from
GRACE/AIRS/GPCP/CERES (solid black line) and the alternate set of observations from GRACE and ERA-Interim (dashed black line),
averaged across land regions within different latitude bands.

for PPT was apparent in the middle and low latitudes, but the
remaining metrics are not highly sensitive to TWS formula-
tion. This suggests that metrics calculated for CMIP5 output
using accumulated residuals could be reasonably and effec-
tively compared with the metrics derived from LENS and the
observations (Fig. 10).

As with LENS, the metrics derived from CMIP5 output in-
dicated generally stronger coupling metrics than the observa-
tions for both the forcing and response limbs. Exceptions in-
clude the VPD response metric in the tropics, the boreal PPT
and SW↓ forcing metrics, and the midlatitude SW↓ response
metrics. The spread between various models was generally
greater than the spread within any single model with a multi-
member ensemble. Of the four models that use CLM4 for
the land surface, the two that use CAM5 for the atmosphere
(LENS and CESM1-CAM5) were clustered close together,
and exhibited generally the strongest forcing and response
metrics. The two that use CAM4 (CCSM4 and CESM1-
BGC) were close to each other, but with lower metrics in
both forcing and response than the CAM5 models. The two

GFDL models were both within the general ensemble range
in the metrics for both VPD and PPT, but GFDL-ESM2M
was an extreme outlier in both forcing and response metrics
for SW↓.

Comparison of CMIP5 and LENS models indicated a
mostly positive relationship between forcing and response
metrics in temperate and tropical latitude bands. In boreal
latitudes, there was little distinction between the forcing
metrics of the different models, all of which were close to
zero, though there were some clear differences within the
response metrics. In temperate and tropical latitudes, mod-
els that showed the strongest forcing metrics generally also
showed the strongest response metrics for a given variable.
This relationship suggests that analysis of the response limb
of the feedback loop is important for understanding how con-
ditions are set up for subsequent forcing via land–atmosphere
coupling.
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4 Discussion

4.1 Benchmarking models with observed coupling
metrics

The metrics developed here from satellite observations pro-
vide a means for evaluating land–atmosphere feedback
strength on seasonal to interannual timescales in coupled
ESMs. The use of correlation coefficients in this study
does not enable a direct assessment of whether the rela-
tionships are directly causal, as correlation between atmo-
spheric and terrestrial conditions could result from atmo-
spheric persistence and remote forcing from SSTs (Orlowsky
and Seneviratne, 2010; Mei and Wang, 2011). Nonetheless,
the satellite-derived metrics provide a meaningful constraint
against which coupled models can be benchmarked, as these
models need to correctly represent the combined effects of
persistence, remote SST forcing, and land–atmosphere cou-
pling.

The forcing metrics, by indicating the relationship be-
tween antecedent TWS and subsequent atmospheric char-
acteristics, provide observational constraints to complement
previous research in large-scale land–atmosphere coupling
in global models (e.g., Guo and Dirmeyer, 2013; Koster et
al., 2006; Seneviratne et al., 2013). Observed forcing metrics
were found to be strong in some of the regions of interme-
diate wetness in which ET is limited by terrestrial moisture
availability, in addition to some regions in the moist trop-
ics in which ET is generally considered to be energy lim-
ited. Recent observational analyses by Hilker et al. (2014)
demonstrated that at least in the Amazon, deep rooting-zone
water supplies can become seasonally depleted, leading to a
stronger land–atmosphere coupling. This is consistent with
findings that deep rooted plants vertically redistribute soil
water to shallower layers, allowing higher levels of evapo-
transpiration to be sustained during the dry season (Lee et al.,
2005). It is also consistent with recent work demonstrating
that TWSAs can be used as predictors for fire season sever-
ity in the Amazon (Chen et al., 2013).

The inclusion of response metrics in our analysis allows
the full feedback loop to be considered by recognizing the
two-way dependence between the land surface and the atmo-
sphere. The generally higher correlation coefficients in ob-
served response metrics indicates the importance of the land
surface response in priming the system for subsequent forc-
ing on the atmosphere. For example, if the TWS response
is too strongly coupled to the atmosphere, a small change in
atmospheric conditions could yield an unrealistically large
change in TWS. The unrealistically large TWS anomaly, in
turn, would have the potential to impart a larger land sur-
face forcing of the atmosphere in subsequent time steps.
That models and ensemble members with high forcing met-
rics were also generally found to have high response metrics
(Fig. 10) highlights the need to consider this.

Both the forcing and response metrics as calculated from
the output of the ESMs analyzed in the current study indi-
cated generally stronger coupling compared with those de-
rived from the satellite observations. There are exceptions to
this pattern, but it holds generally true, particularly across
middle and lower latitudes, and particularly in the LENS
data. This is consistent with previous studies conducted at
finer temporal resolutions (Ferguson et al., 2012) and across
more limited spatial domains (Hirschi et al., 2011). As de-
scribed below, there are several possible explanations as to
why models may simulate a stronger feedback than is ob-
served in the satellite record.

4.2 Possible explanations for enhanced feedback
strength in models

One set of possible explanations for the stronger coupling
metrics in models relative to observations involves models
overestimating the amount of water available for ET dur-
ing the drawdown interval. The land surface influence on
the atmosphere requires water to be a limiting factor to ET
but not limiting enough to prevent it altogether. Under more
moisture-limited conditions, a drawdown interval may expe-
rience multiple shorter time periods during which ET is in-
hibited due to insufficient water, and the terrestrial moisture
state exerts no control over flux partitioning. These periods of
insufficient moisture would tend to reduce the overall feed-
back strength integrated across the duration of the drawdown
interval. Model shortcomings that make water too readily
available for ET could reduce the amount of time spent in
a periods of insufficient moisture during the drawdown in-
terval, thereby unrealistically strengthening the longer-term
feedback. We note that the opposite could take place un-
der near-saturated conditions if a model overestimates the
amount of time in which ET is energy limited, but we would
not expect these conditions to be as prevalent during the
drawdown interval that was the time period of focus in our
analysis.

ESMs are known to simulate unrealistically homogeneous
rainfall intensity, with overestimates of drizzle and underesti-
mates of large infrequent events (Dai, 2006). Infrequent high-
intensity rainfall events would yield much more runoff from
saturated soil, which would lead to a weaker connection be-
tween the land and atmosphere than frequent low-intensity
drizzle. If a model simulates too much drizzle, precipita-
tion could lead to too much storage, which would cause a
model to overestimate the response metrics. Too much stor-
age also could allow water to be too readily available for ET,
causing an overestimate of the forcing metrics. Contributions
from drizzle could be offset if insufficient rainfall intensity
does not allow for high enough throughfall or soil moisture
recharge. The issue of rainfall intensity is related to issues of
convective parameterization (described below), and may be
addressed in future versions of ESMs through atmospheric
superparameterization, in which a model’s convective param-
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Figure 10. Scatter plots of forcing and response metrics for LENS and CMIP5 models with observations, averaged across land regions within
different latitude bands. For LENS, we show metrics calculated using the explicit TWS output (darker gray) and TWSA estimates from the
accumulated residuals of the surface water balance (lighter gray). For CMIP5 models, we calculated metrics using TWSA estimates from the
accumulated residuals of the surface water balance.

eterization is replaced with embedded cloud-resolving mod-
els (Kooperman et al., 2016).

A misrepresentation of either the amount of bare soil or
of bare soil processes also could lead to overestimates of
the amount of water available for ET and thereby coupling
strength. Current land surface schemes of ESMs are based on
the “big leaf” model paradigm, which could lead to overesti-
mates of ET if runoff and groundwater recharge are underes-
timated as a consequence of an unrealistically small bare soil
fraction. In addition, even if bare soil fraction were correct,
overestimates of ET due to an incomplete representation of
surface resistance of bare soil, as found in CLM4 by Swen-
son and Lawrence (2014), would amplify positive feedbacks.

Additional explanations for why models may overestimate
feedback strength include the parameterization of convection
in the PBL or stomatal conductance responses to soil mois-
ture. Previous work using a regional climate model (RCM)
with a higher spatial resolution have determined that convec-
tive parameterizations are as important as spatial resolution
in the simulation of precipitation coupling (Hohenegger et

al., 2009). Taylor et al. (2013) similarly found parameter-
ized convection in an RCM yielding a positive coupling in
contrast to the negative coupling found in both observations
and model runs with explicitly simulated convection. If neg-
ative coupling mechanisms are present in reality but absent
from models, this could contribute to an overestimate of cou-
pling metrics and underrepresentation of negative feedbacks
in models. Similarly, the diversity of stomatal conductance
parameterizations in CMIP5 ESMs is relatively low (Medlyn
et al., 2011; Swann et al., 2016), and if stomatal apertures
close too rapidly in response to an initial deficit in terrestrial
water storage, transpiration–humidity feedbacks may be in-
tensified in an unrealistic manner.

One factor that could contribute toward stronger coupling
metrics in models relative to observations is the effect of
observational uncertainty combined with a relatively short
time series. Adding random error to one or more variables
in a correlation analysis will reduce the correlation coef-
ficient, and this degradation has been shown to be sensi-
tive to the length of data sets used to establish metrics of
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land–atmosphere coupling (Findell et al., 2015). Given the
relatively short time series available for the current analy-
sis, the correlation coefficients derived from remote sensing
data may be reduced due to observational uncertainty, unlike
those derived from internally consistent models. We found
that adding random noise to LENS at 25 % of the standard
deviation of the original data caused some degradation of our
area-averaged coupling metrics, but only by a small amount
relative to the difference between LENS and the observa-
tions (Figs. S1 and S2). We chose 25 % as a qualitative upper
bound on likely uncertainties introduced from random ob-
servational error within the TWSA and atmospheric variable
time series. This highlights the need for developing more
quantitative error estimates in remote sensing and reanalysis
products. More generally, this sensitivity analysis suggests
that our coupling metrics, when averaged across large areas,
may be useful in identifying robust data–model differences.

Another possible explanation stems from the fact that
our coupling metrics include co-variability due to atmo-
spheric persistence and remote forcing by SST (Orlowsky
and Seneviratne, 2010; Mei and Wang, 2011) alongside the
direct influence of land–atmosphere interactions. For this
reason, we caution that overestimates of coupling metrics
do not imply that the land–atmosphere feedback is neces-
sarily stronger, but could be due to an overestimate of SST-
driven correlations between the land surface and the atmo-
sphere. Wei et al. (2008) demonstrated that negative cor-
relations between soil moisture and subsequent precipita-
tion can be explained by precipitation persistence combined
with negative temporal autocorrelation of precipitation asso-
ciated with intra-seasonal modes such as the Madden–Julian
Oscillation (MJO). Poor representation of the MJO period
in CMIP5 models leads to unrealistic patterns of precipita-
tion persistence (Hung et al, 2013). If models are failing to
capture MJO-driven negative correlations, this could lead to
overly strong positive correlations relative to observations.
However, this would depend on the length of the drawdown
interval relative to persistence time and the period of intra-
seasonal modes.

4.3 Uncertainties and future applications

The current study demonstrates the utility of the coupling
metrics presented here, but conclusions are limited by the
time span of the satellite record. While LENS enables the
internal variability of these relationships to be investigated
within the model, it is unclear how much natural climate
variability affects these relationships in reality on timescales
longer than the satellite record. Furthermore, we acknowl-
edge that observational error over an insufficiently long time
series could reduce the apparent strength of correlations
(Findell et al., 2015). Therefore, the utility of the coupling
metrics we present will increase alongside the length of the
time series available from remote sensing platforms. This
emphasizes the importance of the GRACE follow-on mis-

sion (Flechtner et al., 2014) and the need for continuity in
the record between missions.

Furthermore, incorporating additional remote sensing
products can reduce uncertainties inherent in the satellite-
derived data sets. We presented metrics derived using ERA-
Interim in place of AIRS, GPCP, and CERES in order to
qualitatively illustrate this uncertainty. We found a non-
negligible amount of uncertainty in both forcing and re-
sponse metrics due to inconsistencies between the remote
sensing and reanalysis products. Future work will address
these uncertainties by incorporating additional observations
and observationally constrained data sets such as those from
the Global Soil Wetness Project (Dirmeyer et al., 2006b)
and the Global Land Data Assimilation System (Rodell et
al., 2004). In addition, as increasingly long time series of
data become available from the Soil Moisture Ocean Salinity
(Mecklenburg et al., 2012) and Soil Moisture Active Passive
(Panciera et al., 2014) missions, the metrics developed here
can be applied to those data sets as well, which will elucidate
the importance of surface soil moisture relative to the total
TWS column in these interactions.

Finally, the issue of causality and the possibility that cor-
relations result primarily from atmospheric persistence and
remote forcing from SST rather than land–atmosphere inter-
actions may be addressed using sensitivity experiments sim-
ilar to those of the GLACE and GLACE-CMIP experiments.
While the previous experiments have tested the importance
of soil moisture interaction with the atmosphere, additional
experiments could expand upon these methods by treating
SST variability similar to terrestrial soil moisture availability.
Such experiments could determine the relative importance of
remote SST forcing, including the effect of atmospheric per-
sistence, and local land–atmosphere coupling in explaining
correlations between TWS and atmospheric conditions.

As these sources of uncertainty are diminished, the cou-
pling metrics introduced here may be used to assess whether
improvements to model biogeophysics and parameteriza-
tions yield relationships that are more consistent with obser-
vations. CMIP5 models are known to have a high ET bias
(Mueller and Seneviratne, 2014), which could be due in part
to the explanations proposed as possible reasons for overes-
timated coupling metrics in models. As data become avail-
able from phase 6 of the Coupled Model Intercomparison
Project (CMIP6), these metrics could provide an assessment
of whether improvements to ET processes in models also im-
proves the relationship between the land surface and the at-
mosphere.

5 Conclusion

We have developed a new approach for measuring the
strength of the two-way feedback relationships between
TWS and the atmosphere. This approach was designed
specifically to take advantage of TWSA data from the
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GRACE mission, along with concurrently collected remote
sensing and reanalysis data sets of atmospheric variables, in
a manner that could then be applied to Earth system models.
The coupling metrics described here quantify the relation-
ships between both antecedent TWS and subsequent atmo-
spheric conditions, as well as antecedent atmospheric condi-
tions and subsequent TWS.

Regions of strong forcing, in which the TWSA at the be-
ginning of the drawdown interval was related to the subse-
quent atmospheric state, coincided with the semi-arid zones
previously found to be hot spots of land–atmosphere cou-
pling, as well as some new tropical zones that may have
moisture-limited ET regimes. Regions of strong response
metrics, in which the TWSA at the end of the draw-
down interval is related to the atmosphere, are much more
widespread. Modeled coupling metrics are generally found
to be stronger than those observed in the satellite record. If
this discrepancy is due to models overestimating the two-
way feedback between the land surface and the atmosphere,
this could lead to models incorrectly projecting future warm-
ing trends and climatic extremes (e.g., Hirschi et al., 2011;
Seneviratne et al., 2013; Cheruy et al., 2014; Miralles et al.,
2014).

The results of this study are consistent with previous stud-
ies at smaller temporal scales indicating land–atmosphere
coupling strength may be stronger in models than in observa-
tions. There are several possible mechanisms that may con-
tribute to the overestimation of land–atmosphere coupling in
models, and future studies may incorporate the metrics in-
troduced here to assess the role of these mechanisms. These
metrics will become increasingly useful as the temporal cov-
erage of the remote sensing record grows longer and addi-
tional missions come online.

6 Data availability

All data used in this analysis are publicly available.
GRACE Monthly Land Water Mass Grids NetCDF Re-
lease 5.0 is available from http://podaac.jpl.nasa.gov/dataset/
TELLUS_LAND_NC_RL05, doi:10.5067/TELND-NC005.
AIRS/Aqua L3 Monthly Standard Physical Retrieval
(AIRX3STM) v0006 is available from http://disc.sci.
gsfc.nasa.gov/uui/datasets/AIRX3STM_V006/summary,
doi:10.5067/AQUA/AIRS/DATA319. GPCP One-Degree
Daily v1.2 is available from http://precip.gsfc.nasa.gov.
CERES EBAF-Surface is available from https:
//ceres.larc.nasa.gov/products.php?product=EBAF-Surface.
ERA-Interim is available from http://www.ecmwf.int/
en/research/climate-reanalysis/era-interim. CESM LENS
is available from http://www.cesm.ucar.edu/projects/
community-projects/LENS/data-sets.html. CMIP5 archives
are available through the Earth System Grid Federation at
http://pcmdi9.llnl.gov/.

The Supplement related to this article is available online
at doi:10.5194/hess-20-4837-2016-supplement.
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