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Abstract. Urban inundation forecasting with extended lead
times is useful in saving lives and property. This study pro-
poses the integration of rainfall thresholds and ensemble pre-
cipitation forecasts to provide probabilistic urban inunda-
tion forecasts. Utilization of ensemble precipitation forecasts
can extend forecast lead times to 72 h, predicting peak flows
and to allow response agencies to take necessary prepara-
tory measures. However, ensemble precipitation forecasting
is time- and resource-intensive. Using rainfall thresholds to
estimate urban areas’ inundation risk can decrease this com-
plexity and save computation time. This study evaluated the
performance of this system using 352 townships in Taiwan
and seven typhoons during the period 2013–2015. The lev-
els of forecast probability needed to issue inundation alerts
were addressed because ensemble forecasts are probability
based. This study applied six levels of forecast probability
and evaluated their performance using five measures. The re-
sults showed that this forecasting system performed better
before a typhoon made landfall. Geography had a strong im-
pact at the start of the numerical weather modeling, resulting
in the underestimation of rainfall forecasts. Regardless of this
finding, the inundation forecast performance was highly con-
tingent on the rainfall forecast skill. This study then tested
a hybrid approach of on-site observations and rainfall fore-
casts to decrease the influence of numerical weather predic-
tions and improve the forecast performance. The results of
this combined system showed that forecasts with a 24 h lead
time improved significantly. These findings and the hybrid
approach can be applied to other hydrometeorological early
warning systems to improve hazard-related forecasts.

1 Introduction

Flooding is one of the most destructive disasters in the world
and results in enormous losses of life and property annu-
ally (Gruntfest and Handmer, 2001; Barredo, 2009; Halle-
gatte et al., 2013; Sampson et al., 2015). Global flood risk is
likely to increase under climate change; as a result, numerous
adaption strategies should be considered (Hirabayashi et al.,
2013). Establishing an early flood warning system to reduce
disaster losses is the most cost-effective solution of all of the
structural and non-structural measures studied (Alfieri et al.,
2012; Hallegatte, 2012). Several flood warning systems have
been developed and implemented in response to floods (Pap-
penberger et al., 2005; Thielen et al., 2009; López-Trujillo,
2010; De Kleermaeker et al., 2012; Doong et al., 2012).

Various approaches are used to simulate flooding based
on the available rainfall data. Complex models such as the
one- or two-dimensional Saint-Venant equations better de-
scribe flow behaviors and provide detailed spatial informa-
tion as part of their flood forecasts (e.g., Nguyen et al., 2015;
Huthoff et al., 2015). However, the high computation costs
and substantial data requirements involved in solving these
detailed models limit the application of these models dur-
ing an emergency response or real-time forecast. Therefore,
a variety of alternatives, such as simplified equation-based
systems, data-driven models, and rainfall threshold-based ap-
proaches, have been developed to improve the computing ef-
ficiency of the models.
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– Simplified equation-based systems (e.g., Cirbus and
Podhoranyi, 2013; Liu et al., 2015; Shao et al., 2015)
use simplified equations, such as Manning’s equation,
to describe water spreading, thereby improving the cal-
culation efficiency of the forecasting models. However,
the data required, including digital elevation models
(DEMs) and surface roughness, are sometimes difficult
to collect. As a result, data preparedness is still a practi-
cal concern for the abovementioned models.

– Data-driven models are based on computational intelli-
gence or machines. Flood forecasting is just one of the
applications of these models (e.g., Chang et al., 2010;
Lin et al., 2013). As indicated by the name, the quality
and quantity of data used in the model have a consider-
able impact on the performance of data-driven models.
To collect accurate flood inundation data is a challenge
in itself. In addition, the performance of data-driven
models deteriorates as forecast time increases (e.g., Lin
and Jhong, 2015; Badrzadeh et al., 2015). Data-driven
models also cannot provide forecasts with longer lead
times.

– A rainfall threshold approach is commonly applied to
evaluate landslide risk (e.g., Crosta and Frattini, 2003;
Guzzetti et al., 2007; Posner and Georgakakos, 2015).
Meteorological organizations generally issue flood fore-
casts/warnings if a critical value – namely, a rainfall
threshold – is exceeded by the observed or predicted
rainfall (Martina et al., 2006). Several operational me-
teorological agencies throughout the world issue warn-
ings based on Flash Flood Guidance (FFG) values
(Gourley et al., 2014). The US National Weather Ser-
vice (NWS) developed FFG values for flash flooding
(Carpenter et al., 1999). Based on these values, floods
are predicted, and flood warnings are issued Geor-
gakakos (2005, 2006) studied operational flash flood
warning systems based on FFG and provided analyt-
ical results. These studies found that an FFG thresh-
old is likely to produce a high probability of detec-
tion in regions where flash floods are frequent. The Eu-
ropean Flood Awareness System (EFAS) uses numer-
ical weather predictions and the Enhanced Runoff In-
dex based on Climatology, which is based on simulated
climatology, an FFG-related concept, to provide flash
flood warnings (Raynaud et al., 2015). In countries such
as Kenya and Haiti that do not have enough well-trained
operators and resources to set up an efficient flood warn-
ing system, the approach is a viable alternative that al-
lows for the mitigation of flood damage (Georgakakos
et al., 2013; Shamir et al., 2013; Hoedjes et al., 2014).
The rainfall threshold approach has proven successful in
identifying a number of flash floods across Europe (Al-
fieri et al., 2014). Although it should not be considered
a substitute for complex hydro-meteorological models

because of its simplicity, using a rainfall threshold ap-
proach to develop a flood warning system can be an im-
mediately useful tool for a variety of decision makers
interested in early warnings and flash floods (Martina et
al., 2006). Only a few studies (Jang, 2015; Wu et al.,
2015) have applied rainfall thresholds to evaluate urban
inundation risk. The present study represents the first of
its kind to use the rainfall threshold approach and quan-
titative precipitation forecasts (QPFs) to evaluate inun-
dation risk in Taiwan. By directly comparing QPFs with
critical rainfall thresholds, this study aims to propose an
early warning system that provides forecasts, allows for
the possibility of issuing urban inundation warnings and
gives response agencies enough lead time to implement
emergency preparedness plans.

A flood warning system that uses QPFs as the rainfall in-
put could increase the forecasting horizon from a few hours
to a few days (Pappenberger et al., 2005; Shi et al., 2015).
Georgakakos (2005) concluded that the dominant source of
uncertainty in applying a rainfall thresholds approach to eval-
uate flood risk is precipitation. The uncertainty in forecasted
rainfall values is generally higher than that for observed rain-
fall data. Nevertheless, to extend the forecast lead time, op-
erational and research flood forecasting systems around the
world are increasingly moving toward using QPFs to pro-
vide early warnings (Cloke and Pappenberger, 2009). Mar-
tina et al. (2006) discussed the possibility of providing flood
warnings at given river reaches by directly comparing the
QPF to a critical rainfall threshold value. Regardless of the
forecasts’ uncertainty, considering which probabilistic fore-
cast levels should be used to issue inundation alerts or take
actions is a challenging topic. Higher levels of probabilis-
tic forecasts usually give the practitioner more confidence in
the results. Dale et al. (2014) proposed a risk-based decision-
support framework that could be easily applied in an opera-
tional flood forecast and early warning context. Other studies
have also discussed the selection of appropriate probabilis-
tic forecasts in terms of the economic and practical conse-
quences of taking action (Coughlan de Perez et al., 2015,
2016). Therefore, the present study evaluates the system’s
performance in terms of different levels of forecast probabil-
ity. In addition, this study proposes a data assimilation tech-
nique that uses real-time observations to decrease the uncer-
tainty from rainfall forecasts and increases the 24 h forecast
accuracy.

2 System development

The proposed inundation early warning system integrates en-
semble precipitation forecasts, rainfall thresholds, and a real-
time data assimilation technique to assess the possibility of
issuing inundation alerts. Figure 1 shows the system’s oper-
ational process during a typhoon event. The forecast results
are intended to be provided to practitioners through a web
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Figure 1. The operational flow chart for the proposed urban inun-
dation early warning system.

page. Due to a limitation in the computing resources and data
retrieval tools available, the system generates a forecast ev-
ery 6 h and updates the results on the web page. The details
of each component in the system are as follows.

2.1 Ensemble precipitation forecasts for system input

This study used rainfall forecasts from a precipitation ensem-
ble forecast experiment, namely, the Taiwan cooperative pre-
cipitation ensemble forecast experiment (TAPEX). TAPEX
is a collective effort among academic institutes and govern-
ment agencies such as National Taiwan University (NTU),
National Central University (NCU), National Taiwan Nor-
mal University (NTNU), Chinese Culture University (CCU),
the Central Weather Bureau (CWB), the National Center
for High-Performance Computing (NCHC), the Taiwan Ty-
phoon and Flood Research Institute (TTFRI), and the Na-
tional Science and Technology Center for Disaster Reduc-
tion (NCDR). The experiment began in 2010 and was the
first attempt to design a high-resolution numerical ensemble
weather model in Taiwan. The experiment collects world-
wide observation data, including temperature, wind, surface
pressure, and relative humidity, from satellites, atmospheric
sounding devices, buoys, aviation routine weather reports,
ships, and other available sources (e.g., Hsiao et al., 2012,
2013). TAPEX uses the outputs from the Global Forecast
System (GFS) produced by the National Centers for Envi-
ronment Prediction (NCEP), along with observation data, as
the initial and boundary conditions for its forecasts. Various
model physics schemes and data assimilation strategies are
used to perturb the numerical weather models and create dif-

Figure 2. The identification process of rainfall thresholds (modified
from Wu and Wang, 2009).

ferentiated ensemble members. To date, 20 ensemble mem-
bers and 4 different regional models (AWR-WRF, HWRF,
MM5 and CreSS) have been established for precipitation
forecasting. The experiment aims to provide 24, 48, and 72 h
typhoon rainfall forecasts and generates four runs per day
at a 5 km spatial resolution. TAPEX’s rainfall forecasts can
extend the inundation forecast lead time to 72 h, which ex-
ceeds the average rainfall-runoff concentration time and the
lag between observed peak participation and flooding in Tai-
wan. This lead time is thus considered sufficient for decision-
making processes to be implemented prior to inundation.

2.2 Rainfall threshold for urban inundation alerts

Coughlan de Perez et al. (2016) defined the danger level of
flooding as the 95th percentile of a flood model’s forecasts
at a lead time of 0 h. The present study considered rainfall
thresholds as danger levels related to the likelihood of urban
inundation. In Taiwan, the Water Resources Agency (WRA)
has developed rainfall thresholds for all townships (Wu and
Wang, 2009). Figure 2 shows the WRA’s identification pro-
cess for rainfall thresholds at the township level. It starts by
collecting historical flood records that show when and where
a flood occurred. The initial rainfall thresholds can then be
estimated by determining the cumulative rainfall amounts at
nearby rain gauges. The finalized rainfall thresholds for dif-
ferent townships are based on further investigations of lo-
cal drainage capacity, local characteristics (e.g., land subsi-
dence), and the professional judgement of local experts. The
WRA reviews the rainfall thresholds every year once the new
records are available. Inundation alerts are issued when ob-
served rainfall meets or exceeds a given rainfall threshold.
Local governments and civil agencies take necessary mea-
sures such as evacuating residents and deploying dewatering
pumps based on the alerts. Given the historical record, the
WRA assumes that inundations are directly related to accu-
mulated rainfall and use a regression analysis to identify a

www.hydrol-earth-syst-sci.net/20/4731/2016/ Hydrol. Earth Syst. Sci., 20, 4731–4745, 2016



4734 T.-H. Yang et al.: Using rainfall thresholds and ensemble precipitation forecasts

two-level alarm for five duration periods. The five duration
periods are 1, 3, 6, 12, and 24 h; a total of 10 rainfall thresh-
olds are used to issue urban inundation alerts. The two levels
of alarms are defined as follows:

– First-level alert: If the rain continues, the roads and vil-
lages subject to a high risk of flooding in the alerted
townships may flood.

– Second-level alert: If the rain continues, the roads and
villages subject to a high risk of flooding in the alerted
townships will flood in the next 3 h.

The WRA has associated different rain gauges with differ-
ent townships and issues warnings by comparing the obser-
vations with the associated rain gauges. The rainfall thresh-
olds for the first and second alerts are different. There is a 3 h
lead time before flooding if the accumulated rainfall reaches
the second-level alert. The first-level alert is at an immedi-
ate risk of flooding. The WRA identified the rainfall thresh-
olds of the second-level alerts for the purpose of precaution
so that the responding authorities have time to take action.
An inundation alert is issued if any of the rainfall thresh-
olds is met by the observed rainfall. Wu (2013) compared the
alerts to collected inundation records in 2012 and 2013 and
concluded that the forecast accuracy rate is above 60 %. As
the only rainfall threshold approach used to issue inundation
alerts in Taiwan, it has proven its applicability in predicting
flood inundation. This study used the rainfall thresholds of
the second-level alerts to develop an early flood warning sys-
tem.

2.3 Inundation risk evaluation and a data assimilation
technique to modify the forecasts

In practice, the WRA issues inundation alerts when the cu-
mulative rainfall exceeds the rainfall threshold at time T

(Fig. 3). However, WRA compares real-time precipitation
observations to the rainfall thresholds, and thus the lead time
is usually not long enough to allow communities to im-
plement emergency preparedness measures. This study pro-
poses a practical early warning system that compares cumu-
lative projected rainfall instead of observed rainfall to pro-
vide probabilistic urban inundation forecasts. The system
uses TAPEX’s forecasted rainfall to extend the model’s lead
time to 72 h. Figure 4 shows the forecast length during a real-
time operation. TAPEX uses available observations at t − 6
as its model’s initial conditions, and its numerical weather
model computation process took 6 h to produce rainfall fore-
casts from t to t + 72 h; 352 Taiwanese townships were used
in this study to evaluate the proposed system’s performance.
Equations (1) and (2) were used to calculate the probabil-
ity of inundation in any given township; the forecasts were
displayed over three distinct time periods (1–24, 25–48, and
49–72 h). A rolling window approach was applied to esti-
mate the probability of issuing an inundation alert: each hour

Figure 3. WRA issues an inundation alert when observed rainfalls
meet or exceed any given rainfall thresholds (modified from Martina
et al., 2006).

of the forecasting period was considered an evaluation end
point, and the cumulative rainfall was calculated for the dif-
ferent durations.

fi =

{
1 if PFi,accu ≥ PTdur
0 if PFi,accu < PTdur

dur= {1,3,6,12,24h} , (1)

where PFi,accu is the cumulative forecasted rainfall of the ith
ensemble member in TAPEX. PTdur represents cumulative
rainfall thresholds for the different durations (dur) (1, 3, 6,
12, and 24 h). An inundation occurred (fi = 1) if the cumu-
lative forecasted rainfall exceeded any of these thresholds.

Pr=
1
N

N∑
i=1

fi × 100, N = 1,2, . . .,20 (2)

There are 20 ensemble members (N = 20) in TAPEX. Equa-
tion (2) sums the fi values to obtain a probability (Pr), which
represents the inundation risk for any given township. Each
township’s inundation risk can be obtained by repeating the
above steps and comparing the results to TAPEX’s 72 h rain-
fall forecasts. Three separate time periods (1–24, 25–48, and
49–72 h) illustrate the township’s future inundation risk.

The accuracy of the rainfall forecasts has a consider-
able impact on the flood inundation forecasts. McBride
and Ebert (2000) revealed that most numerical global mod-
els over-predicted and slightly under-predicted the rain-
fall frequency of various thresholds in Australia in sum-
mer and winter, respectively. These authors used a bias
score (bias) to address the over- or under-estimation issue.
A prediction is underestimated if the bias is less than 1.0.
McBride and Elbert (2000) found that the biases of most
numerical models were less than 1.0 for rainfall thresh-
olds greater than 20 mm day−1. The TAPEX under-predicted
the rainfall frequencies during a rainfall event greater than
100 mm day−1 according to the forecast results in 2016. The
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Figure 4. A combination of real-time rainfall observations and forecasts to improve 1 to 24 h inundation forecasts.

biases were 0.49 and 0.12 for rainfall thresholds of 100 and
350 mm day−1, respectively. The complexity of the earth–
atmosphere system and associated physical interactions adds
uncertainty to the ensemble rainfall forecasts. However, this
is beyond the scope of this study. The purpose of this study is
to provide flood warnings by adopting the existing uncertain-
ties in numerical weather forecasts and to improve the fore-
casts by using a data assimilation technique that uses real-
time rainfall observations. This study used the technique to
modify the 24 h urban inundation forecast performance. Fig-
ure 4 illustrates the combination of observations and fore-
casts used in the forecasting process. This study utilized five
rainfall thresholds to represent different rainfall durations.
However, these five thresholds could not be applied to eval-
uate the inundation risk at every hour within the first 24 h
forecast. For example, only one rainfall threshold covers the
1 h period, which can be considered time t in Fig. 3; how-
ever, there is a lack of forecasts for t − 1 and the preceding
hours. When t = t + 2, only rainfall thresholds for 1 and 3 h
can be adopted. This shortcoming results in the underestima-
tion of inundation forecasts. Given the above assumption, all
five duration periods are applicable after the 25th hour. This
study proposes a data assimilation technique using observed
rainfall data to address the absence of rainfall forecasts. It
applies available observation data from t − 24 to t − 1 prior
to issuing inundation forecasts at t (Fig. 4). Figure 2 com-
bines the observation data (red line) and forecasts (dash line)
with all rainfall thresholds (solid blue line). Alerts are issued
if the combination exceeds the rainfall threshold at any given
duration. In other words, the inundation forecast is improved
within the first 24 h.

3 Study area and data

3.1 Study area

Taiwan has an area of approximately 36 000 km2, and ap-
proximately 70 % of the island is covered by mountains. A
mountain range runs through the center of the island from
north to south and forms a ridge dividing the east- and west-
bound rivers. The rest of the island is composed of alluvial
plains below 100 m in elevation. Ninety percent of the popu-
lation lives on these alluvial plains. The distance from the

mountaintops to the sea is very short, less than 70 km on
average. Most of the riverbed slopes exceed 1/100 in the
upstream reaches and are between 1/200 and 1/500 in the
downstream reaches, which results in average rainfall-runoff
concentration times of between 6 and 72 h in the townships
(Jang, 2015) and a lag time between observed peak precipi-
tation and flooding of between 2 and 10 h (Jang et al., 2012)
time and high density of the population in the plains areas
further increase the damage caused by floods. Taiwan is one
of the most disaster-prone countries in the world; thus, it has
been selected as the study area here for the development of
an urban inundation warning system.

3.2 Observed inundation alerts

Records such as the time of occurrence, depth, and extent
of inundation are used to calibrate and validate early warn-
ing systems. Collecting accurate information is thus incredi-
bly important. However, data collection during major floods
is challenging. For example, identifying the occurrence time
of an inundation is always an issue because of the lack of
in situ monitoring devices. This study used urban inunda-
tion alerts issued by the WRA as a reference to evaluate
the system’s performance. The WRA issues alerts follow-
ing the Common Alerting Protocol (CAP), which was first
published by the OASIS Emergency Management Technical
Committee in 2005 (OASIS Emergency Management Tech-
nical Committee, 2005). The WRA updates its alerts ev-
ery 10 min and uploads the information to an open-source
platform operated by the National Science and Technol-
ogy Center for Disaster Reduction (Lee et al., 2014). The
CAP data include observed flood warning information, such
as the flood warning’s location and duration. Information
on seven typhoons, including Soulik (2013), Trami (2013),
Matmo (2014), Fung-wong (2014), Linfa (2015), Soude-
lor (2015), and Dujuan (2015), was collected to evaluate the
system’s performance. Five of these typhoons made land-
fall and resulted in heavy rainfall and floods. For example,
Soudelor dropped more than 1100 mm of precipitation within
24 h and had wind gusts of up to 66.1 m s−1 in northern Tai-
wan (i.e., Suao Township, Yilan County). Detailed informa-
tion on these seven typhoons is listed in Table 1. The landfall
time was identified when the eye of the typhoon made land-
fall. Of these typhoons, the eyes of Trami and Linfa did not
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Table 1. Information of seven typhoons during 2013–2015 used to evaluate the system performance.

Year Name Warning period (LST) Landfall time (LST)

2013 Soulik 2013/07/11 08:30–2013/07/13 23:30 2013/07/13 03:00
2013 Trami 2013/08/20 11:30–2013/08/22 08:30 2013/08/21/ 18:00∗

2014 Matmo 2014/07/21 17:30–2014/07/23 23:30 2014/07/23 00:10
2014 Fung-wong 2014/09/19 08:30–2014/09/22 08:30 2014/09/21 10:00
2015 Linfa 2015/07/06 08:30–2015/07/09 05:30 2015/07/08 15:00∗

2015 Soudelor 2015/08/06 11:30–2015/08/09 08:30 2015/08/08 04:40
2015 Dujuan 2015/09/27 08:30–2015/09/29 17:30 2015/09/28 17:40

∗ For typhoons that did not make landfall, this study defined the landfall time while the minimum observational
station pressure was observed when typhoon was closest to Taiwan.

Table 2. Contingency table used for the system performance evalu-
ation.

CAP records from WRA

Issued Not issued

Forecasted by the Issued Hit False alarm
proposed system Not issued Miss No event

make landfall. For reference, this study selected the mini-
mum observed atmospheric pressure at a weather station to
define the time when these two typhoons were closest to Tai-
wan. The selected weather stations were the Taipei station
for Trami and the Kaohsiung station for Linfa.

4 Results and discussion

This study relied on the contingency information shown in
Table 2 to evaluate the performance of the proposed system.
Hits and misses were associated with the observed records
and determined based on whether the system’s warning fore-
casts were consistent with the observations. A false alarm
was associated with forecasts that did not correlate with ob-
served data. “No event” was assigned to a township when
neither the CAP records nor the model indicated flooding.
Because floods are not frequent events, the no event (no
flooding) scenario typically had a higher frequency than the
other three fields. Different measures that have been broadly
adopted by previous studies (e.g., Nguyen et al., 2015; Yang
et al., 2015; Zhang et al., 2015) were used to evaluate the
system’s performance:

probability of detection (POD)=
Hit

Hit+Miss
, (3)

false alarm ratio (FAR)=
False alarm

Hit+ false alarm
, (4)

success ratio (SR)=
Hit

Hit+ false alarm
, (5)

threat score (TS)=
Hit

Hit+Miss+ false alarm
. (6)

Both POD and TS are sensitive to hits and range from 0 to
1. The only difference between these two values is that POD
ignores false alarms and TS does not. POD has the ability to
be artificially improved by the issuance of additional alarms,
which would increase the number of hits. TS is also known as
the critical success index (CSI) and usually results in poorer
scores for rare events. SR and FAR are the success ratio and
false alarm ratio, respectively. FAR is used in conjunction
with POD. If FAR equals 0.5 or less, the performance is con-
sidered tolerable (Coughlan de Perez et al., 2016). The sum
of SR and FAR equals 1, and both indices ignore misses. This
study combined SR and FAR into one index (SR–FAR) that
had a range from−1 to 1. A positive value (> 0) for SR–FAR
was expected given that the likelihood of correct warnings
is acceptable. Rare events such as floods result in extremely
large numbers of no events, which could greatly affect the
forecast results. In this study, a no event forecast can provide
information to decision makers that allows them to allocate
resources to those townships with a higher inundation risk.
Equations (3)–(6) do not consider the “no event” scenario in
their formulas. The accuracy (ACC) of the model, which is
shown in Eq. (7) and is also called the proportion of correct
forecasts (Wilks, 2005), is simple and intuitive, and it served
as a valuable reference in this study.

Accuracy (ACC)= (7)
Hit+No event

Hit+False alarm+Miss+No event

The next section presents the performance evaluation of
the proposed system and then modifies the forecasting results
using a hybrid of real-time observation and rainfall forecasts
to improve the first 24 h inundation forecasts. This study used
the time the typhoon made landfall as a reference point to
define the evaluation period. The time needed to generate a
rainfall forecast is 6 h, noted as one date–time group (dtg).
The evaluation period was plus–minus three dtg’s (18 h) rel-
ative to the time at which a typhoon made landfall. For exam-
ple, Table 1 shows that Trami made landfall at 18:00, 21 Au-
gust 2013. The landfall dtg is at 14:00, 21 August for 1–24 h;
14:00, 20 August for 25–48 h; and 14:00, 19 August for 49–
72 h. The −1 dtg is 08:00, 21 August for 1–24 h; 08:00, 20
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Figure 5. Location of the island of Taiwan, seven typhoons during
2013–2015, and their observed tracks.

August for 25–48 h; and 08:00, 19 August for 49–72 h. The
average impact duration of a typhoon in Taiwan is 73.68 h
(Huang et al., 2012). A typhoon has the most impact during
the evaluation period (a total of 36 h).

4.1 Original forecast results without a data
assimilation technique

Both the typhoon tracks and geography affected the perfor-
mance of the rainfall forecasts. Figure 5 shows the observed
typhoon tracks, and Fig. 6 compares the forecasted and ob-
served tracks for Soulik, Soudelor, and Matmo. The models
of the first two typhoons were consistent with the observed
tracks, while the third was not; as a result, the performance
of rainfall forecasts during the first two typhoons exceeded
that of the third typhoon. The causes of the track forecast
errors are beyond the discussion of this study. Use of en-
semble rainfall forecasts as inputs to produce flood warn-
ing forecasts should take into account uncertainties such as
track and rainfall forecast errors in numerical weather pre-
dictions. Figures 7–9 show the differences between the ob-
served and forecasted flood warnings without a data assimi-
lation technique over three lead-time periods (1–24, 25–48,
and 49–72 h). Tables 3–5 summarize the average ACC, POD
and SR–FAR results for different lead-time lengths during
the evaluation period. The proposed system provides proba-
bilistic forecasts. For example, 50 % flood probability means
that at least 10 out of 20 TAPEX members produced rainfall
forecasts that met or exceeded the rainfall thresholds. The ap-
propriate probability threshold that initiated response actions
was discussed. Six probability thresholds (10, 30, 50, 70, 80,

Figure 6. Comparisons of forecasted and observed typhoon tracks
for Soulik (top), Soudelor (middle), and Matmo (bottom): black
lines are TAPEX’s ensemble mean forecasted tracks and each black
line’s forecasting length is 72 h.

and 100 %) were selected. The results showed that forecasts
with lower possibility thresholds had higher TSs (Figs. 7–9).
For example, Fig. 7 shows that the TSs of Soudelor are 0.1–
0.4 for the 10 % probability threshold, which are higher than
those for the 70 % probability threshold. All tables showed
that the average performance of low-possibility thresholds
over the evaluation period resulted in better TS and POD

www.hydrol-earth-syst-sci.net/20/4731/2016/ Hydrol. Earth Syst. Sci., 20, 4731–4745, 2016
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Figure 7. Comparisons of TS performance with a 1 to 24 h lead
time considering various probability thresholds without a data as-
similation technique.

scores. A lower probability threshold means a lower inun-
dation threshold. Thus, the number of hits increased, but the
number of false alarms increased as well. Decision makers
generally consider an increased number of actions “in vain”
when taking emergency measures based on a low probabil-
ity threshold. The higher probability thresholds (e.g., a prob-
ability threshold > 50 %) had lower TSs and indicated that
TAPEX ensemble rainfall forecasts were usually underesti-
mated in this study. TAPEX’s forecasted tracks had an im-
pact on the rainfall forecasts, which affected the accuracy
of the inundation forecasting. Soudelor and Soulik had the
best performance in terms of TSs. The results for these ty-
phoons were consistent with the track forecasts’ performance
(Fig. 5). The results also showed that the TS performance
decreased after the typhoons made landfall. The period from
−3 dtg to landfall is shown in Figs. 7–9. The steep terrain of
Taiwan poses a challenge to the vortex initialization in nu-
merical weather prediction models. Most current techniques
are unable to properly initiate a typhoon vortex near complex
terrain, when in reality the typhoons are already well devel-
oped at the time of landfall. The typhoons, due to their prox-
imity to Taiwan by the time of model initiation, are not well
developed in the models because of the terrain. The vortex
is initialized near the complex terrain, and the current tech-
nique in TAPEX may not perform as well as it does when the
vortex is in the open ocean. This introduces errors into the

Figure 8. Comparisons of TS performance with a 25 to 48 h lead
time considering various probability thresholds without a data as-
similation technique.

consequent precipitation forecast. This observation explains
the decreased system performance when the TAPEX model
initialization involves a typhoon close to or making landfall
on Taiwan, even if the forecast time is as small as 1 to 24 h.
The same issue does not create problems when the lead time
is greater (or the typhoon is farther away). However, due to
the complexity of the atmosphere, other issues, such as lack
of observations, can cause the initial field degradation. Con-
sequently, the typhoon tracks, rainfall, and related inunda-
tion forecasts were inevitably influenced. In the tables, the
majority of ACC values exceeded 0.7. The less likely the in-
undation, the higher the ACC value. For example, only a few
inundation alerts were issued during Linfa; the system’s cor-
responding ACC scores were above 0.9. However, the POD
and SR–FAR values were not as good as the ACC values
in this case. The POD scores were zero. The SR–FAR val-
ues could not be calculated because there were zero hits and
false alarms. When the system produced less accurate fore-
casts, the performance of the POD and SR–FAR functions
decreased, resulting in a lower number of observed inunda-
tion alerts. A large number of inundation alerts were issued
by the WRA during Soudelor and Soulik. The ACC numbers
were below 0.8. The POD and SR–FAR numbers were rela-
tively better than those in Linfa. A lower possibility thresh-
old indicated that more hits and false alarms occurred; this
resulted in negative SR–FAR scores.
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Figure 9. Comparisons of TS performance with a 49 to 72 h lead
time considering various probability thresholds without a data as-
similation technique.

In general, the SR–FAR scores decreased when the fore-
cast lead time increased. However, the results for Soulik were
opposite for the 50 % probability threshold and below. The
TS was higher when the probability increased by up to 50 %
prior to the typhoon making landfall (i.e., −1 dtg). The num-
ber of false alarms decreased when the probability threshold
increased. This helped improve the TS at −1 dtg. However,
this finding did not hold true when the probability thresh-
old was above 70 %. Typhoon Matmo performed worst in
terms of SR–FAR scores for the three different lead-time
lengths. Figure 5 shows that the forecasted tracks did not co-
incide with the observed track. When a typhoon made land-
fall, the topography affected the performance of the numer-
ical weather models, worsening the performance of the in-
undation warning forecasts. All of the results above indicate
that the greatest uncertainty in the forecasts appears in the
numerical weather predictions, which also has an important
impact on other related disaster forecasts.

4.2 Modified forecasts using the data assimilation
technique

To decrease the uncertainty of numerical weather predictions
and improve the performance of inundation alert forecasting,
this study applied a data assimilation technique that com-
bined real-time observed and forecasted rainfall amounts to
modify the forecasts. The data assimilation technique de-
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Table 7. Performance of all typhoons with the data assimilation
technique for 1 to 24, 25 to 48, and 49 to 72 h lead time

% 1–24 h 25–48 h 49–72 h

FAR TS FAR TS FAR TS

10 0.51 0.33 0.67 0.25 0.76 0.18
30 0.26 0.25 0.49 0.19 0.75 0.08
50 0.18 0.18 0.34 0.11 0.72 0.03
70 0.15 0.15 0.29 0.03 0.59 0.01
80 0.14 0.13 0.38 0.01 0.42 0.01
100 0.12 0.11 0.20 0.00 – 0.00

creased the temporal uncertainty of numerical rainfall fore-
casts and improved the accuracy of early warning notifica-
tions. The longest rainfall threshold duration to trigger an
inundation alerts is 24 h in this study. The technique was
used to address the gap in forecasted rainfall data with ob-
served rainfall information. The absence of forecasted rain-
fall values occurred in the first warning period (i.e., 1–24 h).
Therefore, this study used the data assimilation technique to
improve the 1 to 24 h forecasts. Table 6 shows the modified
forecast results compared to the original forecasts. Compared
to the results without the hybrid technique, all performance
measures’ scores improved significantly. For example, when
all typhoons were tested using the original forecasts, the sys-
tem performed best during Soulik. Using the hybrid tech-
nique, the POD scores improved from 0.517 to 0.783 and
from 0.002 to 0.245 for the 10 and 100 % probability thresh-
olds, respectively. The TSs improved from 0.293 to 0.513
and from 0.002 to 0.235 for the 10 and 100 % probability
thresholds, respectively. The probability threshold represents
the number of ensemble members’ forecasted rainfall events
that met or exceeded the rainfall thresholds. The hybrid tech-
nique forecasts thus support the idea that a higher probabil-
ity threshold indicates lower uncertainty in terms of forecast-
ing. The FAR and POD scores decreased when the proba-
bility threshold increased. Decision-making confidence in-
creases when the probability threshold increases and the FAR
decreases. Coughlan de Perez et al. (2016) concluded that
the likelihood of taking a necessary action when the FAR is
lower than 0.5 would satisfy the decision maker’s require-
ments for not taking action potentially in vain. Table 6 shows
that most of the FAR scores improved to below 0.5 using
the hybrid technique. Though these values improved com-
pared to previous results, all of the POD scores were still low
and continued to decrease when the probability threshold in-
creased. The low POD score implies a lower hit rate. To im-
prove these values, identifying the accuracy and uncertainty
of rainfall forecasts is necessary.

Table 7 shows the overall performance of the system for
seven typhoons in terms of FAR and TS scores. The overall
results indicate that the FAR score decreases when the pos-
sibility threshold increases. The FAR score is smaller than
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0.5 when the possibility is greater than 30 % with a lead
time of 48 h. Therefore, the system performance meets the
requirements of decision makers to take action during ty-
phoon events (Coughlan de Perez et al., 2016). However, the
system cannot provide acceptable forecasts with a lead time
greater than 48 h, regardless of which possibility threshold
is selected. This finding limits the use of the system when
the lead time is greater than 48 h. The system integrates
TAPEX data to obtain forecasted typhoon tracks and rain-
fall amounts. However, for some local convections, such as
afternoon thunderstorms, the current 5 km spatial resolution
of TAPEX might not be sufficient to resolve these weather
phenomena as well as it does for much larger-scale weather
systems, such as typhoons. These small-scale weather sys-
tems pose another limitation to the use of this system.

5 Conclusions

This study proposed an early inundation warning system that
integrates ensemble rainfall forecasts and rainfall thresholds.
Five rainfall thresholds with different durations were applied.
Seven typhoon events during the period 2013–2015 and real
inundation alert records from the WRA were used to eval-
uate the performance of the system. Five performance mea-
sures and a period of 18 h (3 dtg’s) before and after a typhoon
made landfall were considered. The system applied ensemble
rainfall forecasts and provided probabilistic forecasts. There-
fore, six different probability thresholds were considered to
trigger the issuance of inundation alerts and calculate vari-
ous performance scores. An appropriate probability thresh-
old helps decision makers take fewer actions in vain. The re-
sults showed that a lower probability threshold had a higher
POD score, which is associated with a higher inundation alert
detection rate. The downside of a lower probability threshold
is a higher FAR score. If the FAR is above 0.5, the system is
considered impractical (Coughlan de Perez et al., 2016). Al-
though the system performed better before a typhoon made
landfall, particularly in terms of TSs, it was still unable to
identify the most useful probability threshold for identifying
when emergency responders should take various actions. Nu-
merical weather predictions were the dominant input influ-
encing the forecast results. The system’s performance varied
according to the different typhoons tested. In other words, the
system cannot maintain a constant level of performance due
the temporal and spatial uncertainties in the numerical rain-
fall forecasts. Taiwan’s steep terrain also poses a challenge
to the vortex initialization in numerical weather prediction
models and contributes to the uncertainty inherent in the rain-
fall forecasts. In conclusion, the findings of this study suggest
that a better forecast is usually produced (1) when the fore-
casted typhoon tracks are consistent with the observed tracks
and (2) before a typhoon makes landfall.

Finally, the authors developed a data assimilation tech-
nique that combined real-time observed and forecasted rain-
fall to decrease the uncertainty of numerical weather pre-
dictions and to improve 24 h inundation forecasts. The re-
sults showed that the FAR scores decreased when the prob-
ability threshold increased. All FAR scores were below 0.5
or less when the probability threshold was 30 % or above.
This technique improved the appeal of the early warning sys-
tem and generated more valuable forecasts that allowed de-
cision makers to take fewer actions in vain. To further de-
crease the uncertainty of numerical weather predictions and
improve the performance of inundation forecasts, advanced
techniques, such as radar observations and associated data
assimilation systems, could be considered in the future. A
greater number of extreme weather events are likely in the
future due to global climate change. These extreme events
will bring high-intensity rainfalls over very short time spans.
Radar observations efficiently improve very short-range rain-
fall forecasts, which are essential for accurate inundation
forecasts. Rainfall thresholds need to be updated to meet the
present flood capacity, such as when a new storm sewage
system is put in place. After all, decision makers use fore-
casted rainfall and threshold-based early warning systems for
a high-level overview of flood risk only. Given its advantage
of an extended lead time and rapid estimation process, the
model presented here is beneficial for emergency deployment
to prepare large areas in advance of flooding. For small-area
forecasts during a disaster, a complex physics-based model
is recommended to replace the threshold-based model and
provide detailed information.

6 Data availability

The TAPEX’s rainfall forecast data were provided by the Tai-
wan Typhoon and Flood Research Institute (TTFRI, 2016).
The government’s law prohibits the data to be freely dis-
tributed. An application is needed before receiving the raw
data. The rainfall thresholds for all townships were identified
by the Water Resources Agency in Taiwan (WRA, 2016).
National Science and Technology Center for Disaster Reduc-
tion in Taiwan provided the historical flood warnings of var-
ious typhoons (NCDR, 2016).
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Appendix A: List of abbreviations

ACC accuracy
bias bias score
CAP Common Alerting Protocol
CCU Chinese Culture University
CWB Central Weather Bureau
DEMs digital elevation models
dtg date–time group
dur durations
GFS Global Forecast System
EFAS European Flood Alert System
FAR false alarm ratio
FFG flash-flood guidance
h hour
km2 square kilometer
LST local standard time
m meter
mm millimeter
NCDR National Science and Technology Center for Disaster Reduction
NCEP National Centers for Environment Prediction
NCHC National Center for High-Performance Computing
NCU National Central University
NTNU National Taiwan Normal University
NTU National Taiwan University
NWP numerical weather prediction
NWS US National Weather Service
POD probability of detection
QPFs quantitative precipitation forecasts
SR success ratio
TAPEX TAiwan cooperative Precipitation Ensemble forecast eXperiment
TS threat score
TTFRI Taiwan Typhoon and Flood Research Institute
WRA Water Resources Agency, Ministry of Economic Affairs
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