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Abstract. This study considers the assimilation problem of
subsurface contaminants at the port of Rotterdam in the
Netherlands. It involves the estimation of solute concentra-
tions and biodegradation rates of four different chlorinated
solvents. We focus on assessing the efficiency of an adap-
tive hybrid ensemble Kalman filter and optimal interpola-
tion (EnKF-OI) and the exact second-order sampling formu-
lation (EnKFESOS) for mitigating the undersampling of the
estimation and observation errors covariances, respectively.
A multi-dimensional and multi-species reactive transport
model is coupled to simulate the migration of contaminants
within a Pleistocene aquifer layer located around 25 m below
mean sea level. The biodegradation chain of chlorinated hy-
drocarbons starting from tetrachloroethene and ending with
vinyl chloride is modeled under anaerobic environmental
conditions for 5 decades. Yearly pseudo-concentration data
are used to condition the forecast concentration and degra-
dation rates in the presence of model and observational er-
rors. Assimilation results demonstrate the robustness of the
hybrid EnKF-OI, for accurately calibrating the uncertain
biodegradation rates. When implemented serially, the adap-
tive hybrid EnKF-OI scheme efficiently adjusts the weights
of the involved covariances for each individual measurement.
The EnKFESOS is shown to maintain the parameter ensem-
ble spread much better leading to more robust estimates of
the states and parameters. On average, a well tuned hybrid
EnKF-OI and the EnKFESOS respectively suggest around
48 and 21 % improved concentration estimates, as well as

around 70 and 23 % improved anaerobic degradation rates,
over the standard EnKF. Incorporating large uncertainties in
the flow model degrades the accuracy of the estimates of all
schemes. Given that the performance of the hybrid EnKF-OI
depends on the quality of the background statistics, satisfac-
tory results were obtained only when the uncertainty imposed
on the background information is relatively moderate.

1 Introduction

Subsurface contamination has received significant attention
in the last few decades. Consequent cleanup costs have in-
creased the awareness of environmental issues related to con-
taminated fields (Appelo and Postma, 1994; Drécourt et al.,
2006). Historically, it was believed that subsurface contam-
ination could be remediated to natural background contami-
nation levels by digging in the soil and pumping out the con-
taminated groundwater. However, it was not too long before
it was discovered that there were simply too many contam-
inated areas to completely remediate. In addition, all avail-
able cleaning technologies, including source removal, are
economically not viable to fully resolve the problem (Cun-
ningham and Berti, 1993; Starr and Cherry, 1994; Todd and
Mays, 2005).
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Governmental authorities are now considering another ap-
proach to remediation based on management of industrial
groundwater contamination at regional scales. The idea is
simply to prevent groundwater contamination from causing
negative effects on humans or ecology, and to control any
undesired spreading beyond the boundary of the contami-
nated site. In the European Water Framework Directive, an
option was offered allowing groundwater aquifers to remain
contaminated when remediation is too costly and when an
adequate monitoring system of the contaminated area is set
up (Chave, 2001; Mostert, 2003; Hering et al., 2010). This
procedure relies mostly on natural attenuation of contami-
nant plumes without the need for a direct human intervention.
This is often possible given that the size and concentration of
dissolved contaminants are frequently subjected to consider-
able decline due to natural as well as, eventually, human in-
duced biodegradation processes. The challenge is then to pre-
dict in a cost-effective way what type and when contaminants
may cause a risk, so monitoring and, if needed, remediation
may be undertaken to prevent any unacceptable spreading be-
yond specific planes of compliance. One efficient way to im-
plement such a monitoring system at a regional scale is to use
prediction models with monitoring data and combine them
using advanced data assimilation techniques (McLaughlin,
2002; Reichle et al., 2002).

Various numerical groundwater contaminant models have
been developed in the literature (e.g., Freeze and Cherry,
1979; Pollock, 1994; Dawson et al., 2004; Sun and Wheeler,
2006; Bear and Cheng, 2010). The idea behind forming such
models is to simulate and predict the dynamic fluxes and
energies, defined as state variables (e.g. groundwater pres-
sure, contaminant concentration), as accurately as possible
based on some selected parameters (e.g., porosity, permeabil-
ity, sorption) that describe the subsurface geometry, fluid and
rock properties, and surface–subsurface interactions (Morad-
khani et al., 2005).

Groundwater contaminant models can be subject to sev-
eral sources of uncertainties due to poorly known parame-
ters, inputs and boundary conditions. For instance, we of-
ten know very little about the time at which contamination
started, the amount of contaminant mass present in a pure
phase source zone, the location of the pure phase and the
rate at which biodegradation is taking place (Franssen and
Kinzelbach, 2009; Gharamti et al., 2013). Other uncertain
aspects are the heterogeneity of the parameters, such as the
hydraulic conductivity, groundwater recharge and the redox
state of the groundwater. Therefore, model predictions of
where and when a contaminant crosses a plane of compli-
ance, with what concentration and how long it takes before a
pure phase source zone dries up can be quite uncertain.

One way to reduce uncertainty in model predictions and
parameters is to assimilate data into the model. Data assimi-
lation (DA) methods follow a Bayesian formulation by com-
bining prior information of a dynamical system with avail-
able measurements to obtain an analysis of the system state

and parameters (Hoteit et al., 2012; Gharamti et al., 2014a).
Sequential DA techniques, such as the ensemble Kalman fil-
ter (EnKF), assimilate the data as they become available. The
EnKF (Burgers et al., 1998; Evensen, 2003) is a popular DA
method in hydrology, operating in consequent forecast and
analysis steps. During the forecast, an ensemble of state real-
izations is run forward in time using the dynamical model. At
the time of the update, a linear Kalman filter (KF) type anal-
ysis (Kalman, 1960; Gharamti et al., 2011) is applied to the
ensemble members. The EnKF is relatively simple to imple-
ment, requiring only forward integrations of the dynamical
and observational models. The EnKF has been proven use-
ful in various subsurface hydrology applications (e.g., Chen
and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008;
Zhou et al., 2011; Li et al., 2012; Crestani et al., 2013; Panz-
eri et al., 2013; Gharamti and Hoteit, 2014). The parame-
ters most often calibrated are those characterizing the flow
and the general transport of the contaminants, such as per-
meability and porosity. Very few applications have tackled
the estimation problem of reactive modeling parameters us-
ing sequential DA techniques. Bailey et al. (2013) used the
EnKF to estimate spatially variable selenium and nitrate re-
action rates in near-surface agricultural soil profiles. In an-
other study, Bailey et al. (2012) used the ensemble smoother
to infer the denitrification rate constants from synthetic ob-
servations of nitrate concentrations.

It is now widely recognized that the performance of the
EnKF strongly depends on the ensemble size; a large enough
ensemble is required to obtain good performances. Gharamti
et al. (2014b) proposed an efficient hybrid EnKF assimila-
tion scheme for state and parameters estimation, in which the
predicted EnKF statistics are complemented with predefined
static background covariance in order to mitigate for filter
inbreeding and undersampling (Hamill and Snyder, 2000).
The hybrid filter was applied to a small-scale synthetic re-
active transport model and was found computationally effi-
cient, providing reliable estimates using fairly small ensem-
bles (50 members). In this study, we test the hybrid EnKF
with a realistic large-scale contaminant model and further
extend its formulation to allow for serial processing of the
observations during the analysis step. For this, the objective
function involved in the adaptive scheme is designed in such
a way that the weighting between the background and the fil-
ter flow-dependent statistics is adjusted for each assimilated
observation. Such an updating strategy could be more conve-
nient given that observations from different sources and loca-
tions carry varying degrees of information to the system. This
generalizes the adaptive scheme of Gharamti et al. (2014b),
allowing for the weighting between the ensemble and the
background covariances to change not only between differ-
ent assimilation times but also for different observations at
any update step.

The stochastic EnKF assimilates perturbed observations
during the analysis step in order to (asymptotically) match
the second moment of the KF (Burgers et al., 1998). This
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often introduces noise, which may become significant when
the rank of the observational error covariance is larger than
the ensemble size (Nerger et al., 2005). Ensemble square
root filters, such as the ensemble transform Kalman filter
(ETKF; Bishop et al., 2001), the singular evolutive inter-
polated Kalman filter (SEIK; Pham, 2001; Hoteit et al.,
2002) and the deterministic ensemble Kalman filter (DEnKF;
Sakov and Oke, 2008) do not require observations pertur-
bations. Yet, the stochastic EnKF tends to “re-Gaussianize”
the ensemble distribution, which improves the stability of
the filter, unlike other deterministic schemes that follow the
shape of the background distribution (Lawson and Hansen,
2004). In a recent study, Hoteit et al. (2015) proposed a se-
rial EnKF algorithm to mitigate the observation sampling
errors in the EnKF. The algorithm, referred to as EnKF
with exact second-order observation perturbation sampling
(EnKFESOS), is straightforward to implement in any exist-
ing serial EnKF code, requiring only removing a single rank
from the sample forecast covariance matrix to exactly match
the first two moments of the KF. Compared to the EnKF and
the deterministic filters, the EnKFESOS was shown to pro-
vide a more accurate estimates of the state of a 40-variable
Lorenz-96 model. Here, we consider the EnKFESOS in a real-
istic large-scale system and further study the impact of mit-
igating the observation undersampling errors in the EnKF’s
analysis not only on the state but also on the parameters es-
timates. This is the first study addressing the application of
the EnKFESOS scheme for parameter estimation. The idea is
to investigate whether accounting for observation sampling
errors can lead to a better tuning of the unknown parameters
or not.

We focus on two aspects that are known to limit the effi-
ciency of the EnKF, namely, the undersampling of the fore-
cast errors in the forecast step and the observation errors in
the analysis step. We consider an industrial groundwater con-
tamination problem at the port of Rotterdam in the Nether-
lands. Many areas at the port site are contaminated due to
various industrial activities. Contamination with chlorinated
hydrocarbons (CH) have been detected at the port area. Re-
ductive dechlorination process of four hazardous CH com-
ponents, namely, tetrachloroethene (PCE), trichloroethene
(TCE), 1,2-dichloroethene (DCE) and vinyl chloride (VC),
is believed to be one of the main reactive processes taking
place at the port site. We simulate this process using a cou-
pled three-dimensional (3-D) flow–transport–reaction (3-D-
FTR) model for a single plume. The contaminant data col-
lected in 2012 by the municipality of Rotterdam is used for
initializing the contaminant migration, which propagates to
surface and deep aquifer layers (≈ 50 m below sea level). We
use “synthetic” CH concentration data on a yearly basis, for
a total of 50 years, to calibrate four biodegradation rates of
the reaction chain. To the best of our knowledge, this is the
first study in which biodegradation parameters of a reductive
dechlorination process are estimated in a real-world system
using a sequential DA procedure. Hydraulic parameters of

the groundwater-flow model are not incorporated in the as-
similation system as part of the unknown parameters. They
are estimated in an offline procedure using borehole data and
a probabilistic approach given the associated geologic litho-
facies. On top of the biodegradation, the concentrations of
the components are also constrained using the EnKF, the hy-
brid EnKF and the EnKFESOS schemes. Sensitivity analyses
are performed to study the efficiency and the accuracy of the
assimilation schemes under different experimental settings.
The filtering schemes are evaluated based on the accuracy
of the estimated solute concentrations, the handling of the
posterior distributions of the biodegradation rates, and com-
putational complexity.

The rest of this paper is organized as follows. Section 2
presents the ensemble filtering schemes. Section 3 describes
the large-scale subsurface reactive transport model and its
numerical implementation. Section 4 presents the assimila-
tion setup and the experimental scenarios. Results of the as-
similation experiments are presented and analyzed in Sect. 5.
Conclusions and further discussion are given in Sect. 6.

2 The data assimilation framework

The aim of DA is to combine measured observations and
a dynamical model in order to compute the best possible
estimates of the past, current and future states of the sys-
tem, together with estimates of the associated uncertainties
(Nichols, 2010). We follow the standard discrete nonlinear
dynamical system:

xk+1 =Mk (xk,2k)+ ηk+1, (1)

where xk ∈ RNx denotes a state vector of Nx variables at
time tk , 2k ∈ RN2 is the vector of model parameters, Mk:
RNx → RNx is the nonlinear operator that propagates the
model state from tk to tk+1. ηk+1 ∈ RNx is a model error ac-
counting for model uncertainties, commonly assumed to fol-
low a Gaussian distribution N (0,Qk+1). The measurements
obey the following observational system:

yk+1 =Hk+1 (xk+1)+ εk+1, (2)

where yk+1 ∈ RNy is a vector of Ny observations at time
tk+1, Hk+1: RNy → RNx is an observational map including
grid interpolations, and could be nonlinear. The observation
errors εk+1 ∈ RNy are assumed Gaussian with zero mean and
covariance Rk+1. We also assume independent model and
observation errors.

Following the Bayesian filtering problem, the objective is
to evaluate the joint probability density function (pdf), i.e.,
p
(
xk,2k

∣∣y0:k
)
, of the system state xk and the parameters

2k given all available observations y0:k . The observations,
y0:k , are used to update the model forecast. The updated
estimate is then used to compute a future prediction. Like-
wise, the estimation problem can be also tackled using vari-
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ational approaches that involve minimization of a cost func-
tion (Dimet and Talagrand, 1986; Courtier et al., 1994; Hoteit
et al., 2005; Altaf et al., 2013). Variational DA techniques,
such as 3DVar and 4DVar, are widely used in geoscience ap-
plications. These methods look for an optimal state trajectory
that best fits observational data over a time window, but do
not offer an efficient framework for quantifying uncertain-
ties in the solution. In this study, we will only consider the
sequential Bayesian filtering problem.

2.1 The ensemble Kalman filter for state-parameter
estimation

The computation of p
(
xk,2k

∣∣y0:k
)

is not feasible in real
applications owing to the nonlinear character of the model
and observation operators in addition to the very large di-
mension of the subsurface flow and transport system. The
EnKF is an efficient Monte Carlo method that computes an
approximation of the joint pdf, using the first two moments,
at reasonable computational requirements. The EnKF repre-
sents the distribution of the system using a collection of state
vectors, called ensemble. Generally, the true pdf of the sys-
tem might not be accessible through this Monte Carlo ap-
proximation given the finite ensemble size. We follow the
state-parameter augmentation procedure (Annan et al., 2005)
and denote by ψ the jointly concatenated state and parame-
ters vector. The parameters are time invariant so that their
time-propagation function is simply the identity operator.

To illustrate, starting at time tk−1 from an analy-
sis ensemble,

{
ψ

a,i
k−1: xa,i

k−1,2
a,i
k−1

}Ne
i=1, which represents

p(ψk−1
∣∣y0:k−1 ), the EnKF propagates the dynamical model

(1) to compute the forecast ensemble at the time of the next
available observation, tk . Incoming measurements are then
used to update the joint ensemble. The EnKF algorithm is
summarized below.

– Forecast step: the analysis members are integrated for-
ward in time to obtain the forecast ensemble from which
we estimate the following:

ψ̂
f
k =

[
x̂

f,i
k

2̂
f,i
k

]
=

1
Ne


Ne∑
i=1
M
(
x

a,i
k−1,2

a,i
k−1

)
Ne∑
i=1
2

a,i
k−1


≡

1
Ne

Ne∑
i=1

ψ
f,i
k , (3)

P̂f
k =

[
P̂f
xx P̂f

xθ

P̂f
θx P̂f

θθ

]
≡

1
Ne− 1

Ne∑
i=1

(
ψ

f,i
k − ψ̂

f
k

)(
ψ

f,i
k − ψ̂

f
k

)T
. (4)

The joint sample covariance P̂f
k , as shown in Eq. (4),

consists of the sample state covariance P̂f
xx , the state-

parameter cross-correlation P̂f
θx and the sample param-

eter covariance P̂f
θθ matrices. The joint state-parameter

forecast estimate (mean) is denoted by ψ̂
f
k . The com-

plexity of the forecast step grows with the ensemble
size. If one supposes that CM is the cost for integrating
the model to the next observation time, the computa-
tional requirement of the forecast step is NNeCM, where
N is the final simulation time (Gharamti et al., 2014a).
The superscripts a, f and i denote the analysis, forecast
and ensemble number, respectively.

– Analysis step: when the observation yk becomes avail-
able, the joint forecast members ψ f,i

k are updated using
the Kalman-update step; i.e.

ψ
a,i
k = ψ

f,i
k +K

(
yk + ε

i
k − H̃kψ

f,i
k

)
, (5)

where K= P̂f
kH̃

T
k

(
H̃kP̂f

kH̃
T
k +Rk

)−1
is the Kalman

gain and the analysis state is

ψ̂
a
k =

1
Ne

Ne∑
i=1

ψ
a,i
k ≡ ψ̂

f
k +K

(
yk + ε̂k − H̃kψ̂

f
k

)
,

with ε̂k =
1
Ne

Ne∑
i=1

εik. (6)

by εik , are sampled from a Gaussian distribution of
zero mean and covariance Rk . The observational op-
erator H̃k =

[
Hk , O

]
, acting on the augmented state-

parameter vector, is assumed linear for simplicity, and
the matrix O is a zero matrix. Computationally, the up-
date step in hydrological applications is usually less de-
manding than the forecast step, with a complexity of
NNeNyNx +NN

2
e (Nx +N2). The observations used

in the update Eq. (5) are processed in one single batch.
In our implementation, we will consider the serial EnKF
update formulation in which the observations are assim-
ilated one at a time. The reason for this will become
clear in Sect. 2.3.

2.1.1 EnKF limitations

The performance of the EnKF strongly depends on the accu-
racy of the forecast error covariance matrix P̂f. The errors in
P̂f are essentially due to (1) model errors and the use of small
ensemble sizes, and (2) propagation of errors in the sample
covariance matrix P̂a at the previous step. The Gaussian as-
sumption of the system’s distribution is also a limiting fac-
tor but this was proven to be less problematic (Hoteit et al.,
2008). The Gaussianity of the estimates often breaks when
the parameters are also included as part of the state vector
during assimilation (e.g., Liu et al., 2016).

The main advantage of the ensemble approximation
(Eqs. 3 and 4) is that it does not involve any linearization and
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allows one to represent the first two moments of the states
and parameters by an ensemble of vectors (Evensen, 2003).
The use of large ensembles is practically not possible and
thus the sample covariance P̂f

k may not well approximate the
KF forecast covariance, Pf

k . As such, the joint forecast pdf of
the system’s state and parameters at any time tk is only par-
tially sampled, which means that there exists a null subspace
in the error space that is not covered by the ensemble (Song
et al., 2010; Mandel et al., 2011). To mitigate this, we will
use a hybrid formulation of the forecast state and parame-
ter statistics before performing the EnKF update (e.g., Wang
et al., 2007). Further details are given in Sect. 2.2.

The limited ensemble size may also introduce noise in the
update step of the EnKF when the rank of the observation
error covariance is large (Hoteit et al., 2015). This is because
the number of observation perturbations may not be enough
to sample the observation error covariance matrix, Rk . In ad-
dition, spurious correlations between the observation and the
forecast perturbations may also introduce noise in the EnKF
update (e.g., Bowler et al., 2013; Hoteit et al., 2015). To il-
lustrate, the EnKF analysis assumes zero cross-correlations
between the observation perturbations and the forecast en-
semble; i.e.

Ne∑
i=1

εik

(
ψ

f,i
k − ψ̂

f
k

)T
= 0. (7)

This can be easily seen by subtracting Eq. (5) from Eq. (6).
After arranging the terms and using Eq. (4), one obtains

1=
(
I−KH̃k

) 1
Ne− 1

Ne∑
i=1

(
ψ

f,i
k − ψ̂

f
k

)
εik
TKT

+K
1

Ne− 1

Ne∑
i=1

εik

(
ψ

f,i
k − ψ̂

f
k

)T (
I−KH̃k

)T
, (8)

P̂a
k =

(
I−KH̃k

)
P̂f
k

(
I−KH̃k

)T
+KRkKT

+1, (9)

where 1 is the sampling error term, not accounted for in
the EnKF. Consequently, the ensemble analysis covariance
matches the optimal KF covariance, Pa

k , only when the obser-
vational sampling errors and the cross-correlation terms in1
are indeed zero. This can be numerically achieved by assim-
ilating the observations serially using the EnKF with exact
second-order perturbations sampling, EnKFESOS, as will be
discussed in more detail in Sect. 2.3.

2.2 The hybrid EnKF

The hybrid EnKF and optimal interpolation (EnKF-OI)
scheme was introduced as a way to mitigate for small en-
semble sizes and model deficiencies in the EnKF (Hamill
and Snyder, 2000). Using small ensembles results in rank
deficient forecast covariance matrices, which strongly limit
the fit to the observations (Song et al., 2010). Neglecting
model errors might further produce small ensemble spread,

and consequently unrealistic confidence in the forecast (Song
et al., 2013). The standard solution for rank deficiency or
covariance underestimation is to apply inflation and local-
ization. Inflation artificially inflates the spread of the ensem-
ble around the mean state (Hamill et al., 2001; Hoteit et al.,
2002). It is also a simple way to account for neglected model
errors (Pham et al., 1998). Covariance localization elimi-
nates spurious correlations by a Schur product multiplication
of the under-sampled covariance matrix with a function of
local support (Houtekamer and Mitchell, 2001; Sakov and
Bertino, 2011). Inflation and localization, although efficient
and widely used (especially in atmosphere and ocean appli-
cation), are generally model dependent and require impor-
tant tuning efforts. They further do not introduce any new
directions to diversify the ensemble, limiting the filter up-
date to a small-dimensional ensemble subspace (Song et al.,
2010, 2013). Moreover, global model parameters are not lo-
cal quantities and therefore localization techniques might not
be as straightforward (Devegowda et al., 2007). In addition,
the parameters are dynamically constant quantities (static in
time), and thus large ensembles are usually needed to well
approximate the parameter distributions (Hendricks Franssen
and Kinzelbach, 2008; Zhou et al., 2012).

The hybrid approach estimates the EnKF’s forecast er-
ror covariance by a weighted sum of the ensemble covari-
ance and a stationary covariance matrix, typically used in a
variational or an optimal interpolation (OI) assimilation sys-
tem. More specifically, the background state-state and state-
parameter covariances are estimated as:

P̃Hybrid
xx = αP̂EnKF

xx + (1−α)Pb
xx, (10a)

P̃Hybrid
θx = βP̂EnKF

θx + (1−β)Pb
θx, (10b)

where P̂EnKF
xx and P̂EnKF

θx are the sample covariance and cross-
correlation matrices of the EnKF ensemble, respectively. The
background covariances are denoted by Pb

xx and Pb
θx , respec-

tively. Indeed, it was shown by Hamill and Snyder (2000)
that this additional stationary background covariance may
help represent part of the ensemble’s null space that is not de-
scribed by the limited ensemble. This procedure is based on
physically reliable statistics, although flow independent, un-
like inflation and localization (Wang et al., 2009). The scalar
quantities α and β are weighting factors, taking values be-
tween 0 and 1.

2.2.1 Practical implementation

The static background covariance, Pb
xx , is often built on the

basis of a long inventory of forecast errors (Wang et al.,
2009). It is usually assumed to be of low-rank, rx , and can be
factorized into spectral modes using proper orthogonal de-
composition (POD) as follows;

Pb
xx = S�ST = S�

1
2

(
S�

1
2

)T
= Ŝ̂ST , (11)
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where S is a matrix of spectral coefficients, � carries in-
formation about the associated spectral variances and �

1
2 is

its Cholesky decomposition of �. The background perturba-
tion matrix, Ŝ, has rx columns, with rx much smaller than
the number of state variables. The background state and pa-
rameter cross-covariance, Pb

θx , can also be approximated by
a low-rank, rθ , matrix using singular value decomposition
(SVD) if the number of parameters is not equal to the num-
ber of state variables (and thus the matrix Pb

θx is not square).
This decomposition is useful in practice in order to reduce
computational burden and memory storage. Accordingly, the
complexity of the analysis step (referred to as Oa) in the hy-
brid EnKF-OI scheme becomes

Oa
EnKF−OI =NNeNyNx +NN

2
e (Nx +N2)

+NNe (Nxrx +N2rθ ) ,

=Oa
EnKF+NNe (Nxrx +N2rθ ) . (12)

Given that rx and rθ are usually small in subsurface flow and
transport problems (Gharamti et al., 2014b), the complexity
of the analysis step of the hybrid EnKF-OI is only marginally
larger than that of the EnKF. The complexity of the forecast
step of the EnKF and the hybrid EnKF-OI is the same when
both are implemented with the same ensemble size.

The weighting factors α and β need to be specified in
Eqs. (10a) and (10b). Careful tuning of α and β is very im-
portant (Hamill and Snyder, 2000). The simplest way is to
select them based on trial and error but this can be computa-
tionally very intensive. A more efficient approach was intro-
duced by Gharamti et al. (2014b) and consists of optimizing
a 1-D objective function at every update step of the states and
the parameters. Based on Kalman’s update formulation, as-
similating observations causes the uncertainties in the prior
estimates to shrink. Thus, using the Kullback–Leibler (KL)
divergence (Kullback and Leibler, 1951), one can choose the
α and β that maximize the information gains at the analy-
sis time tk . In this study, we opt to assimilate the observa-
tions serially and thus one can adaptively compute optimal
weighting factors as follows:

argmax
α
F(α)= argmax

α
tr
[
P̃f
xx − P̃a

xx

]
,

= argmax
α

tr
[

P̃f
xxHT

(
HkP̃f

xxHT
k +Rk

)−1

HkP̃f
xx

]
,

single observation
≡ argmax

α

1
d

Nx∑
m=1

(
c[m]xx

)2
, (13)

where tr [·] denotes the trace of a matrix and d

is a scalar quantity equivalent to observation variance(
HkP̃f

xxHT
k +Rk

)
when assimilating one observation. c[m]xx is

the mth forecast variance-component corresponding to one
observed variable. Similarly, one can define the objective

function for the parameters’ weighting factor as follows:

argmax
β
G(β)= argmax

β
tr
[
P̃f
θθ − P̃a

θθ

]
,

single observation
≡ argmax

β

1
d

N2∑
m=1

(
c
[m]
θx

)2
, (14)

where c[m]θx is the forecast cross-correlation component be-
tween themth parameter and one observed variable. Such KL
criterion describes the information gain from each individual
observation as it reflects the difference between the prior and
the posterior distributions. The interesting point here is that
for each observation, different weights would be assigned to
the background and the ensemble statistics. The maximiza-
tion problems in Eqs. (13) and (14) are 1-D and bounded,
yielding minimal forecast variance after the update. In terms
of implementation, we perform the optimization, over the in-
terval [0,1], using a computationally efficient scheme com-
bining both golden-section search and repeated parabolic in-
terpolation (Forsythe et al., 1977).

2.3 Exact second-order observation perturbations
sampling

The sampling error from neglecting the cross-correlation
terms in Eq. (9) in the EnKF analysis is generally not glob-
ally small. It is often composed of a large number of elements
that can add up after successive assimilation steps (Hoteit
et al., 2015). This may degrade the filter’s accuracy and in-
creases the underestimation of the analysis error covariance
(Whitaker and Hamill, 2002). Furthermore, such sampling
errors can propagate to subsequent steps, eventually deterio-
rating the performance of the filter.

In a mathematical sense, for the condition in Eq. (7) to
hold, the rank of the forecast perturbation matrix

9f
k =

[
ψ

f,1
k − ψ̂

f
k,ψ

f,2
k − ψ̂

f
k, . . .,ψ

f,Ne
k − ψ̂

f
k

]
(15)

plus the rank of Rk must not exceed Ne− 1, which is essen-
tially the rank of 9f

k (Pham, 2001). Obviously, this is not
possible given thatNy+Ne−1 is always greater thanNe−1.
Yet, if we suppose that 9f

k has a rank Ne− 2, then when Rk
is scalar, it is possible to draw the observation perturbations
εik such that the EnKF analysis first and second moments are
exactly the same as those computed using the KF. Accord-
ingly, Hoteit et al. (2015) proposed to remove one rank from
9f
k using an SVD decomposition:

ψ
f,i
k ← ψ

f,i
k −

(
9f
kwk

)
wik, (16)

where wk is the normalized right singular vector of 9f
k as-

sociated with the smallest nonzero singular value. The ith

component of wk is denoted by wik and the symbol←means
“replaced by”. Then, assimilating the observations serially
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Figure 1. Schematic representation of the port of Rotterdam area with three main geologic layers: (i) Holocene clay and peat layer with
sandy deposits (≈ 20 m thick), (ii) Pleistocene layer with coarse sand (≈ 10 m thick) and (iii) Pleistocene clay layer (≈ 30 m thick). POC1,
POC2 and POC3 refer to different planes of compliance at the port site.

and simply choosing εik =
√
(Ne− 1)Rkwik would guarantee

zero cross-correlations between the modified forecast pertur-
bations and the observation perturbations. The algorithm, re-
ferred to as EnKFESOS, involves a recursive update for wk
after each update (Hoteit et al., 2015). The serial analysis
procedure of the EnKFESOS is summarized in the algorithm
below:

– While j ≤Ny do

1: ẑk =H[j ]k ψ̂k

2: z[j ],ik =H[j ]k ψ̂
a,i
k

3: K[j ] =
∑Ne
i=1

(
ψ

f,i
k − ψ̂

f
k

)(
z
[j ],i
k − ẑk

)
[∑Ne

i=1

(
z
[j ],i
k − ẑk

)
+ (Ne− 1)R[j,j ]k

]−1

4: For i in [1,2, . . .,Ne] do

– ψ
a,i
k ← ψ

a,i
k +

K[j ]
(
y
[j ]
k + s

√
(Ne− 1)R[j,j ]k wik − z

[j ],i
k

)
5: EndFor

6: ψ̂
a
k←

1
Ne

∑Ne
i=1ψ

a,i
k

7: For i in [1,2, . . .,Ne] do

– wik← s

√
(Ne− 1)R[j,j ]k wik −

(
z
[j ],i
k − ẑk

)
[∑Ne

i=1

(
z
[j ],i
k − ẑk

)2
+ (Ne− 1)R[j,j ]k

]− 1
2

8: EndFor

– EndWhile

where s is an independent plus or minus sign. The super-
script [j ] denotes the j th element and row of the given vector
and matrix, respectively. The superscript [j,j ] denotes the
element in row and column j of the associated matrix. Note
that unlike the EnKF, the observation perturbations cannot be
Gaussian because of the constraint they satisfy in Eq. (7). In
the experiments of Hoteit et al. (2015), these were shown to
be almost Gaussian. In terms of complexity, the EnKFESOS
algorithm has almost the same computational cost as that of
the serial EnKF. Additional cost is required for iteratively up-
dating the vectorwk and performing an SVD on9k to reduce
its rank by one. Both operations are computationally almost
negligible compared to the cost of integrating the subsurface
model.
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3 The subsurface model and assimilation experiments

3.1 The port of Rotterdam and geology of the area

The port of Rotterdam is located in the Netherlands between
the city of Rotterdam and the North Sea. It is the largest port
of Europe covering an area of 105 km2 and stretching over a
distance of 40 km. The original geology of the area consists
of a top Holocene layer of approximately 20 m thick (Fig. 1).
It is composed of clay and peat with local sandy channel
deposits, but in the most western part, it becomes sandier.
Under the Holocene layer, there is a Pleistocene aquifer of
coarse sand of approximately 10 m thick. Below lays a Pleis-
tocene clay layer of approximately 30 m thick and a second
aquifer of approximately 140 m thick. The second aquifer is
saline for most of the port areas, whereas the first aquifer
is partly saline in the western section only. On top of the
Holocene sediments, an anthropogenic layer of fine sand was
added up to a level of 4 m (eastern part) to 6 m (western part)
above the mean sea level. Moreover, locally a dense network
of sand filled vertical drains was used in the upper part of the
Holocene clay in order to speed up the settling of the clay. A
large part of the industrial port area is surrounded by surface
water, some of which continue to the bottom of the Holocene
layer.

At the port site, more than 600 companies perform various
activities such as the trans-shipment of containers (coal, oil,
gas, etc), storage of oils and chemicals, building/repairing
ships and oil/gas rigs, distribution and transport inland and
disposal/treatment of chemical wastes. As a result of the
long-term presence of these industrial activities, the soil and
groundwater have become contaminated. This contamina-
tion is substantial, complex, and not limited to one partic-
ular site but affects the groundwater systems at a regional
scale (Marsman et al., 2006; Ter Meer et al., 2007). Part of
the contaminants are non-mobile such as heavy metals in-
cluding Arsenic, cadmium, copper, mercury, lead and zinc.
Other mobile contaminants are mineral oils, volatile aromat-
ics, chlorinated solvents and pesticides.

3.2 Coupled 3-D subsurface model

3.2.1 Organic contaminants

Well monitoring and lab analysis have concluded that
groundwater at the port area is contaminated, at different
depth, with varying levels of pollutants (Marsman et al.,
2006). One of the major contaminants are chlorinated hy-
drocarbons that had entered the subsurface as dense non-
aqueous phase liquids (DNAPLs) and often have source
zones of stagnant pure phases at considerable depth. Numer-
ous industrial companies at the port manufacture or work
with these organic molecules. Here, we simulate the degrada-
tion chain of four CH components, namely, PCE (a.k.a per-
chloroethene), TCE, DCE and VC. We use plume data from

a real site, but for confidentiality reasons we do not show the
exact location of the site. The horizontal area of the domain
is equal to 1.5 km2, extending 1 km in the transverse direc-
tion and 1.5 km in the longitudinal direction (Fig. 2). Degra-
dation of the components happen, under anaerobic environ-
mental conditions, when chlorine elements are subsequently
replaced by hydrogen (Vogel and McCarty, 1985; Clement
et al., 2000; Tobiszewski and Namieśnik, 2012). Chlorinated
hydrocarbons can pose a serious threat to human health and
the environmental (Ojajärvi et al., 2001; Lee et al., 2002,
2003).

3.2.2 Flow–transport–reaction model (FTR model)

The subsurface model consists of three major components,
namely, flow, transport and reactions. First, the groundwater
flow (assumed steady) is solved on a rectangular domain us-
ing MODFLOW (Harbaugh, 2005). The steady groundwater-
flow assumption is valid at the current port location. Tem-
poral variations, such as tidal influences and yearly fluctu-
ations of precipitation and evapotranspiration are expected
to happen, but on a small scale. Essentially, tidal influences
and yearly fluctuations of precipitation and evapotranspira-
tion are expected to be minor as the near-surface ground-
water levels are controlled by the drainage levels of the
drainage systems in the port area (3–4 m above sea level,
a.s.l.). The deeper groundwater levels are predominantly in-
fluenced by surface water levels in the polders area (man-
aged levels around or below sea level) and the large surface
waters (approximately sea level). Temporal variations due to
density-driven flow are also neglected as we would expect
only minor changes in the most lower part of the model do-
main on the timescale of 50 years. MT3DMS (modular three-
dimensional multi-species transport model) is used to solve
the advection-dispersion-based transport of the components
(Zheng and Wang, 1999), in which the degradation process of
the components is added based on the module within the 3-D
multi-species reactive package: RT3-D (Clement, 1997). The
softwares are integrated in a sophisticated Fortran-based tool
(with graphical interface) called iMOD (Vermeulen et al.,
2013). In differential form, the fate and transport of the com-
ponents is modeled following(
φ+ ρbk

`
) ∂C`
∂t
+ λφC` =∇ ·

(
φD∇C`

)
−∇ ·

(
νC`

)
+ qsC

`
s + rC, (17)

where φ is porosity, ρb is the bulk density of the soil, k is
the distribution (sorption) coefficient, C is the solute con-
centration, λ is first-order reaction rate, D consists of hydro-
dynamic dispersion and molecular diffusion, ν denotes the
Darcy velocity, qs is the volumetric source/sink flow rate, Cs
is the source/sink flux concentration and rC refers to the re-
action rates. The superscript ` corresponds to the component
number taking values between 1 and 4 in this study. Along
with the basic groundwater flow and transport equations as
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Figure 2. (a) Initial configuration and geometry of the study area,
located at the port of Rotterdam. The blue part is the domain area
(1.5 km2) of each layer and the yellow region is the plume of chlo-
rinated hydrocarbon contaminants located in layer 60 at a depth of
22.5 m below the mean sea level. The green triangles indicate the
measurement locations collected from layers 30, 50, 70 and 90;
(b) 2-D spatial configuration of sorption (distribution coefficient)
for trichloroethene (TCE) averaged over the first 10 layers of the
domain.

well as using the reaction operator-split strategy (Clement
et al., 1998), the biological reaction kinetics are assembled
as a set of ordinary differential equations as follows:

∂CPCE

∂t
=−

KPCPCE

RP
, (18a)

∂CTCE

∂t
=−

1
RT

(
KT ·CTCE− ST/P ·KP ·CPCE

)
, (18b)

∂CDCE

∂t
=−

1
RD

(
KD ·CDCE− SD/T ·KT ·CTCE

)
, (18c)

∂CVC

∂t
=−

1
RV

(
KV ·CVC− SV/D ·KD ·CDCE

)
, (18d)

where CPCE, CTCE, CDCE and CVC are the concentrations of
the components, KP , KT , KD and KV are first-order anaer-
obic degradation rate constants, ST/P ,SD/T and SV/D are
stoichiometric yield values, and RP , RT , RD and RV are re-
tardation factors. Linear sorption conditions are assumed for
all components.

The model domain as indicated by the blue region of
Fig. 2a is discretized horizontally into grid cells of 20× 30
from 50×50 m. In the vertical direction, we consider 120 lay-
ers for each 0.5 m of thickness. The discretization is based on
the geological voxel model GeoTOP (Stafleu et al., 2011a).
The top layer starts at 7.5 m a.s.l., whereas the lowest layer
is located at around 52.5 m below sea level. Based on dif-
ferent simulations conducted as part of this study, the migra-
tion of the contaminants was found to be limited to a certain
depth. We thus assume that only layers 21–100 are active.
Figure 2a also shows the contaminant source (in yellow) con-
sisting of four CH components with uniform concentration
values. The plume data were obtained in January 2012 from

a depth of 22.5 m below mean sea level (model layer 60),
in which CPCE = 1083.0, CTCE = 238.0, CDCE = 633.0 and
CVC = 833.0 µg l−1. This contaminant plume is considered
as the initial condition of the transport simulations in this
study. Furthermore, the PCE plume is used as a continuous
contamination source and was included in the source/sink
mixing (SSM) package of the MT3DMS simulator. Up to
this date, other time series and well-contaminant data are
not accessible due to confidentiality imposed by local com-
panies. Modeling parameters required for running the cou-
pled FTR model, such as porosity and hydraulic conductiv-
ity, are estimated in an offline procedure. To illustrate, the hy-
draulic conductivity is provided as a 3-D field in the database
GeoTOP. The GeoTOP for the province of South Holland
is constructed using 46 000 borehole data (Busschers et al.,
2010). Using the borehole data, the most probable lithos-
tratigraphy and lithofacies have been estimated in each voxel
of 100×100×0.5 m. The GeoTOP further uses relations be-
tween the lithostratigraphical units and the lithofacies with
parameters, such as hydraulic conductivity, porosity and or-
ganic carbon content, in order to provide these parameters on
the voxel scale. Further details about the GeoTOP method-
ology in addition to application to another province can be
found in Stafleu et al. (2011b). Table 1 outlines the mean
value (averaged over all layers) for some of these parame-
ters. We further show in Fig. 2b the spatial map of the dis-
tribution coefficient of TCE averaged over the top 10 layers.
The map shows larger sorption degrees in the northeast part
of the domain. This gradually decreases towards the southern
region.

3.3 Assimilation experiments

3.3.1 Reference run and pseudo-observations

In the scope of twin experiments, we first conduct a reference
model run using some “true” (reference) parameters and ini-
tial condition. Next, we impose different uncertainties on the
model and the initial conditions, and we assimilate pseudo-
observations extracted from the reference run to recover the
“true” trajectory of the model. The goal is to estimate the
concentration of chlorinated hydrocarbons (i.e., state vari-
ables) and their associated degradation rates (i.e., parame-
ters):

x =
[
CTPCE,C

T
TCE,C

T
DCE,C

T
VC

]T
, (19a)

2= [KP ,KT ,KD,KV ]T . (19b)

Based on the model’s configuration, the dimension of the
state is Nx = 288 000 and the parameters N2 = 4. The ref-
erence values of the anaerobic degradation rates are obtained
through field and laboratory testing (Suarez and Rifai, 1999)
and are given as KP = 0.068, KT = 0.086, KD = 0.004 and
KV = 0.153 per day. We perform the reference run for a 50-
year period using these rates along with the parameters of
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Table 1. Different modeling parameters for the coupled flow–transport–reaction model. The values given for 3-D parametric fields, such as
bulk density and distribution coefficients, are the mean values from the entire 121 layers.

Symbol Parameter description Value (unit)

φ Porosity 0.30
ρb Bulk density 1167 (kg m−3)
kPCE Distribution coefficient of PCE 0.0012 (m3 kg−1)
kTCE Distribution coefficient of TCE 0.0015 (m3 kg−1)
kDCE Distribution coefficient of DCE 0.0014 (m3 kg−1)
kVC Distribution coefficient of VC 0.0010 (m3 kg−1)
κL Longitudinal dispersivity 0.5 (m)
κ̇T/κL Ratio of horizontal transverse dispersivity to longitudinal dispersivity 0.1
κ̈T/κL Ratio of vertical transverse dispersivity to longitudinal dispersivity 0.1
δm Molecular diffusion 10−10 (m2 s−1)

Table 1 and the initial conditions, x0, as defined above. We
plot the resulting hydraulic head field at four different layers
(i.e., 30, 50, 70 and 90) in Fig. 3. The maps clearly show the
southward and downward flow direction of the groundwater.
The hydraulic head varies between 1.5 m in the center of the
domain and drops to around −1 m in the southern part. The
top layers, on average, have larger hydraulic heads than the
deeper ones. Overall, the flow configuration indicates that the
contaminant plume would follow the behavior of the ground-
water and predominantly moves vertically downwards and
laterally in the southwards direction.

Based on this steady flow, we then simulated the reference
transport of PCE, TCE, DCE and VC. The time step of the
transport-reaction simulator was about 11 days. To visualize
the migration process, in Fig. 4 we plot the contaminant evo-
lution of PCE, TCE, DCE and VC in layers 40, 60, 80 and
100 after 50 years, respectively. As shown, the contaminant
plume, which is originally present in layer 60, has moved into
deeper Pleistocene layers. After 50 years, the maximum con-
centration of DCE in layer 80 reaches 650 µg l−1. Careful as-
sessment of the transport process shows that the four plumes
have reached the last active layer in the second aquifer; i.e.,
layer 100. This is mostly due to the continuous PCE contam-
ination source located in layer 60. Contaminant concentra-
tions in the top Holocene layers are much smaller. Laterally,
the contaminant plume is seen to expand from its initial lo-
cation to a distance of 1.3 km southwards.

From the reference run, we collect pseudo-observations of
the concentration to use them later for assimilation. Obser-
vations are assumed available for all components from lay-
ers 30, 50, 70 and 90. From each of these four layers, 10
data points are collected and thus a total of Ny = 160. Note
that Ny is much smaller than the number of state variables,
Nx . This is usually the case in subsurface hydrology applica-
tions, given the significant and expensive cost incurred for
preparing, drilling and completing wells. The observation
points are uniformly distributed throughout the domain as
denoted by green triangles in Fig. 2a. We assume that these
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Figure 3. Groundwater (GW) hydraulic head configuration from
four different active layers in the domain. The largest water head
is located in the center of the domain and is equal to 1.5 m. The
water head deceases in the southern part of the domain. The flow is
computed using MODFLOW and plotted using iMOD’s graphical
interface utility.

160 measurements are available for assimilation on a yearly
basis. We also place a control well in layer 70 around the
center of the domain, particularly at the local coordinates
x = 450 and y = 600 m, to monitor the concentration evo-
lution in time. We further assume that these observations are
noisy, in order to mimic realistic settings. We thus perturb
them with a Gaussian noise of mean 0 and standard devia-
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Figure 4. Contaminant plume after 50 years for PCE, TCE, DCE
and VC in layers 40, 60, 80 and 100, respectively. Vertically, the
contaminant plume tends to move downwards towards the Pleis-
tocene clay layers and the second aquifer. In the lateral direction,
displacement of the plume occurs southwards.

tion equal to 15 % of the total observation mean (averaged
over the entire 50 years). During assimilation, the updated
concentration values are monitored to make sure that they
are non-negative. Cell values that fall out of this constraint
are set to zero to obtain a physically meaningful solution (Li
et al., 2012; Gharamti et al., 2013).

3.4 Initial ensemble and background statistics

To initialize the filters, we perform an unconditional 50-year
simulation run (referred to as free run) starting from the mean
concentration of the reference model run. Thus, at time t = 0
the concentration of the four CH components is not only
present in layer 60, but also spread-out in all layers. In this
free model run, we use around 30 % larger degradation rates
than the reference values. The concentration of the compo-
nents was saved each 6 months. Next, we randomly select a
set of Ne concentration snapshots from the free run outputs
to form the state ensemble. This prior (initial) ensemble is
quite far from the truth and further exhibits a relatively small
spread. This is chosen for the purpose of testing the robust-
ness of the assimilation schemes to challenge initial uncer-
tainties. The initial parameter ensemble is sampled assuming

Figure 5. A sketch illustrating the procedure followed to construct
the background statistics, Pb

xx and Pb
θx ; 3-month forecasts are per-

formed starting from different initial conditions, x0,1,...,N , and dif-
ferent degradations rate parameters, 20,1,2,...,N , where N = 200
steps summing up to 50 years. The background state covariance,
Pb
xx , and state-parameter cross-correlations, Pb

θx , are then con-
structed using the first leading modes only.

a Gaussian distribution with mean equal to the reference rate
values and variance of 40 %. The initial ensemble may be ob-
tained in many different ways. One possible technique would
typically involve deriving the initial concentration fields by
simulating a warm-up period with historical data until the
assimilation of measurements starts at a certain time t0 (e.g.,
after a monitoring network was installed).

The background error statistics required for the hybrid
EnKF-OI scheme are parameterized as follows. We form a
set of 200 degradation realizations, as described above, and
use these to perform 3-month forecasts starting from a series
of initial concentrations distributed at 3-month intervals over
a 50-year period, as outlined in Fig. 5. To illustrate, start-
ing from the mean concentration of the reference run, one
realization of the degradation rates 20 is used to obtain a 3-
month forecast of the concentration x1. Then, using x1 and
21, the 3-D-FTR model is integrated forward to obtain x2
concentration after 6 months. We continue this process un-
til the end of the 50-year period. Then, we collect the pre-
dicted contaminant states for all components and augment
them with the corresponding degradation rates in a joint ma-
trix form. POD and SVD are then performed on the aug-
mented concentration–degradation forecast perturbations to
summarize the correlations by a small number of orthogo-
nal patterns (Hoteit et al., 2002; Skachko et al., 2009; Altaf
et al., 2013). Consequently, the parameterization of the back-
ground covariance matrix, Pb

xx , is achieved using the leading
10 POD modes (i.e., rx = 10) of this ensemble, which cap-
ture more than 98 % of the total variance. Concerning the
background cross-correlations, we use the first 10 singular
vectors (thus, rθ = 10) to parameterize Pb

θx matrix. To visu-
alize these correlations, we plot in Fig. 6, as an illustration,
the spatial correlation between the rate at which PCE is de-
grading and the concentration of the ending product of the
chain, VC. Clearly, the VC concentration in layer 60 ex-
hibits the largest correlation values because of the continu-
ous source term. Furthermore, since the groundwater flow is
stronger in the downwards direction, as well as the contam-
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inant migration, the cross-correlations in deeper layers are
larger than those of the shallow layers. The background Pb

θx

seem to vanish in the upper parts of the Holocene clay and
peat layers. A consistent behavior is observed for the remain-
ing three degradation rates, in which the largest correlations
are those associated with CPCE and smallest with CTCE. PCE
has the highest correlation because of the continuous source
zone of PCE. Any removal of PCE due to biodegradation
in the source zone is directly replenished in the next time
step, and therefore KP determines the total load of chlori-
nated hydrocarbons in the system. On the other hand, TCE
has the lowest correlation because its value is high and that
makes the parameter relatively insensitive to the amount of
biodegradation taking place as compared to the other degra-
dation rate constants.

State and parameter estimates of the EnKF, hybrid EnKF-
OI and EnKFESOS schemes are evaluated using two metrics,
namely, mean squared error (MSE) and average ensemble
spread (AES):

MSE=N−1
x N−1

e

Ne∑
j=1

Nx∑
i=1

(
xej,i − x

t
i

)2
, (20a)

AES=N−1
x N−1

e

Ne∑
j=1

Nx∑
i=1

∣∣∣∣xej,i − x̂e
i

∣∣∣∣, (20b)

where xti is the true value of the variable at location i, xej,i is
the forecast ensemble value and x̂e

i is the corresponding en-
semble mean. MSE measures the distance from the estimate
to the truth and AES measures the spread or the uncertainty
of the estimates (Hendricks Franssen and Kinzelbach, 2008).

4 Results and discussion

In this section, we present and compare assimilation results
with the Rotterdam port’s 3-D-FTR model using the stan-
dard EnKF, the hybrid EnKF-OI and the EnKFESOS schemes.
The observations are assimilated serially in all three schemes.
Concentration and degradation rate estimates of the filters
are compared in terms of accuracy and spread. Concentration
data are assimilated every year for a total of 50 assimilation
cycles. The ensemble size, Ne, is set to 48 in which batches
of four members are run in parallel using Fortran’s OpenMP
library.

4.1 The hybrid EnKF-OI vs. the EnKF

4.1.1 Adjusting concentration statistics

To initiate the assimilation experiments, we first run the
EnKF and the hybrid EnKF-OI, implemented using only
state background statistics, i.e., using Eq. (10a) and β =

1. We carry out 10 different experiments by changing the
weighting factor α, for each individual run, between 0 and
1 in increments of 0.1. To visualize the resulting estimates,

Figure 6. Individual cross-correlation terms of the background ma-
trix Pb

θx associated with PCE biodegradation rate and VC concen-
tration. The correlations are shown for all layers, assuming that
the cells from each layer have been stretched in one vertical line
(y axis). The largest correlation is present in layer 60 where the con-
taminant source is located. Biodegradation in shallow layers is not
as strong as in deep layers because of the downwards groundwater-
flow direction.

we plot the average MSE of the contaminant concentrations,
averaged over the four components and in time, as seen in
Fig. 7. As shown in the left panel of Fig. 7, the most accurate
concentration estimates are obtained using α = 0.7. This in-
dicates that out of the total forecast error variance, the best
reconstruction of the reference contaminant solution is ob-
tained when 30 % of this variance is traced from the back-
ground statistics. Increasing or decreasing this background
contribution (i.e., 30 %) results in less accurate contaminant
estimates. We also note that the least accurate estimates are
those obtained when 90 % of the ensemble statistics are built
based on the static background error covariance. On average,
we found that when α takes values between 0.4 and 0.9, the
hybrid EnKF-OI is 16 % more accurate than the EnKF.

We also study the effect of changing α on the result-
ing parameters’ estimates. In Fig. 7b, we plot the aver-
age MSE of each individual degradation rate obtained us-
ing the EnKF and nine different hybrid EnKF-OIs using α =
0.1,0.2, . . .,0.9. We notice that the most influenced biodegra-
dation rates are those associated with TCE and VC. In fact,
KT and KV are the least identifiable parameters and there-
fore a small difference in the estimation algorithm (i.e., hy-
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brid EnKF-OI and the EnKF) may lead to different estimates.
In contrast, KP and KD are less sensitive to the weighting
factor α. In accordance with the estimates of the contami-
nant concentrations, the best match for KT is obtained us-
ing α = 0.7. This is not the case for the other parameters, in
which α = 0.3, 1 and 0.8, which resulted in the best fit to
the reference degradation rates of VC, PCE and DCE, re-
spectively. On average, KT and KV estimates are 13 and
35 % more accurate than those of the EnKF, respectively.
The key point is that complementing the state statistics, us-
ing a weighted error covariance as in Eq. (10a), does not only
contribute to a better retrieval of the concentration but also
helps adjusting the cross-correlations with the uncertain pa-
rameters. This is essentially the case when biodegradation
is taking place at a higher rate, as in KT and KV , and thus
the more information fed through observations, the better the
state-parameter cross-correlations would be.

To better understand the performance of the hybrid EnKF-
OI scheme, we further study how the uncertainties of these
degradation rates are maintained in time. For this, we plot
in Fig. 7c the overall ensemble spread of the four degrada-
tion rates obtained using the EnKF and the hybrid EnKF-OI
(all tested α’s). As shown, the EnKF’s spread around these
four parameters is quickly reduced after the first 2 or 3 years.
This rapid reduction of the ensemble spread, which is due to
the relatively small ensemble size and large initial uncertain-
ties, limits the ability of the filter to impose larger corrections
in the future, eventually degrading the accuracy of the esti-
mated parameters. In contrast, the hybrid EnKF-OI maintains
larger uncertainties in time for different weighting factor val-
ues. Therefore, as α decreases from 1 to 0.1 the performance
approaches that of the EnKF. For instance, after the second
year, the ensemble spread of the EnKF reaches 0.03 while it
remains larger in the hybrid EnKF-OI (α = 0.3,0.5,0.7) and
equal to 0.09, 0.07 and 0.045, respectively. This allows the
hybrid scheme to better exploit the concentration information
from observations. This can be confirmed by noticing that the
spread of the hybrid filter continues to decrease after 25 years
of assimilation, unlike the EnKF that does not show signs of
more corrections. All in all, selecting α = 0.7 seems to main-
tain enough spread for both components’ concentration and
degradation rates and leads to the most accurate estimates,
on average. For the sake of comparison, we refer hereafter to
this scenario as EnKF-OIα=0.7.

4.1.2 Adjusting concentration and parameter statistics

In the following set of experiments, we fix α to 0.7 and fo-
cus on changing the weighting factor between the EnKF and
background state and parameter cross-correlations; i.e., β.
As in the previous section, we conduct nine experiments in
which we change β between 0.1 and 0.9. Note that the larger
β is, the closer the performance is to EnKF-OIα=0.7. To ana-
lyze the results, we plot in Fig. 8 the average MSE and AES
of the chlorinated hydrocarbon concentrations. Compared

to the previous runs that hybridize the state only, including
background cross-correlations information slightly increases
the spread around the ensemble mean of concentration, as
observed for 0.1 < β < 0.3. In terms of accuracy, varying
β between 0.1 and 0.6 yields more accurate concentration
estimates for all components. To illustrate, when β = 0.1 the
average improvements over the EnKF and the EnKF-OIα=0.7
are around 50 and 32 %, respectively. This vigorous perfor-
mance suggests that using only 10 % of the “flow-dependent”
parameters’ ensemble to characterize the pdf of the system
is enough to outperform the EnKF. In essence, the back-
ground state and parameter cross-correlations seem to carry
sufficient description of how the degradation rates and the
concentration of each of the components are related. Conse-
quently, only a small portion (i.e., 10 %) of the online param-
eters’ ensemble is required to obtain an accurate biodegrada-
tion picture, while the rest of the information could come
from the prescribed static background statistics. This could
be due to the time-independent nature of the propagation
step describing the evolution of the degradation rates, thereby
manifesting a minimal dependence on the flow-dependent
ensemble. This observation comes in accordance with the
steady-state Kalman filter (El Serafy and Mynett, 2008) that
assumes time-invariant error covariance matrix as long as ac-
curate spatial correlations are used within the Kalman gain.
Our experimental results suggest that the best parameter’s
hybrid covariance matrix is very close to a steady-state one.
However, this is only for the parameters and this was not the
case for the state as discussed in Sect. 4.1.1. Following the
notation introduced earlier, we refer to this scenario, here-
after, as EnKF-OIβ = 0.1

α= 0.7
To have a better insight in the suggested performance, we

plot in Fig. 9 the evolution of the concentration ensemble
members for all components in time. For a fair comparison,
we also plot the associated reference solution, the EnKF’s
and the EnKF-OIα=0.7’s ensemble members. As explained in
Sect. 3.4, the initial ensemble spread is clearly far from the
truth. When data are assimilated into the system, all schemes
tend to move closer to the truth. By the end of the 50-year pe-
riod, both EnKF and EnKF-OIα=0.7 underestimate the con-
centration of DCE and VC and end up with quite small en-
semble spread. The EnKF-OIβ = 0.1

α= 0.7, on the other hand, leads
to the best performance, well matching the reference solu-
tion for all components. Moreover, this hybrid scheme is
shown to better preserve the ensemble spread around the
true final concentrations. In terms of the estimated degrada-
tion rates, we plot in Fig. 10 the temporal change of MSE
for each individual degradation rate as they result from the
EnKF-OIβ=1.0

α=0.1...0.9 (top panels) and EnKF-OIβ = 0.1...0.9
α= 0.7 (bot-

tom panels). For all rates, the EnKF-OIβ = 0.1...0.9
α= 0.7 performs

much better during the first 10 years, especially for KP and
KT . Averaging in time and over all cases, EnKF-OIβ = 0.1...0.9

α= 0.7
is 33, 17, 33 and 15 % more accurate for retrieving KP , KT ,
KD and KV , respectively. From these results, one can see
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Figure 7. (a) Average mean square errors (MSE) of contaminant concentrations obtained using the EnKF and the hybrid EnKF-OI using
α = 0.1,0.2, . . .,0.9. (b) Average MSE for PCE, TCE, DCE and VC biodegradation rates obtained using the EnKF and the hybrid EnKF-
OI for different weight factor (α) values. (c) Time series change of average ensemble spread (AES) resulting from the EnKF and hybrid
EnKF-OI using 48 members in which α = 0.1,0.2,. . . , 0.9.

that the accuracy of the degradation rates tends to improve in
time, except for KD that is shown to degrade for small α and
large β values. To interpret this behavior, one should recall
that KD (and also KV ) can only be estimated correctly as
long as the concentration of the source component (CDCE in
this case) is accurately recovered. Before reaching this, the
estimates of KD are compensated for errors in KP and KT .

Next, instead of manually changing the weighting factors
α and β, we follow Eqs. (13) and (14) and conduct a 1-D
optimization problem prior to assimilating the observations
serially. The idea is to get the maximum reduction in the
prior uncertainties for both the concentration and the degra-
dation rates as a way to “optimally” exploit the information
in the assimilated observations. Therefore, different weights
can be assigned to the background and the ensemble statis-
tics. Based on this, we plot in Fig. 11 the resulting optimal
α values at every assimilation cycle and for each observa-
tion. Recall that there is a total of 160 observations, such that
each contaminant component is observed at 40 different loca-
tions. To better interpret the plot, we arrange these observa-
tion indices as follows: from top to bottom of the left y axis:
PCE – 1→ 40, TCE – 41→ 80, DCE – 81→ 120 and VC:
121→ 160. As can be seen from the plot, the adaptive hy-
brid EnKF-OI algorithm selects either 0, and thus Eq. (10a)
is purely based on Pb

xx , or 1 so that only the ensemble co-
variance, P̂EnKF

xx , is included. When assimilating PCE, TCE
and VC concentrations, the adaptive scheme tends to use
the background covariance (i.e., α = 0) for almost the first
25 years. Beyond this, the filter statistics are only based on

the ensemble flow-dependent information (i.e., α = 1). This
is not surprising given the large initial uncertainties imposed
on the contaminant concentrations. Once the statistics are ad-
justed towards the truth, the filter relies more on the corre-
lations of the flow-dependent ensemble statistics. This per-
formance changes when assimilating DCE observations in
the sense that the filter builds its forecast error covariance
mostly using static background statistics and less using the
flow-dependent ensemble. This is in agreement with the re-
sults and conclusion drawn from Fig. 10 in which the back-
ground information of DCE are more useful than the ensem-
ble statistics. Averaging over the entire optimal values of α,
we obtain a global α∗ = 0.64, which is quite close to the 0.7
value that resulted in the best performance in Sect. 4.1.1. In
terms of the adaptive β values, we found that maximizing
the difference between the prior and the posterior param-
eters’ covariance, P̃θθ , may not always be helpful. This is
because doing such maximization can quickly diminish the
ensemble spread, eventually paralyzing the filter’s analysis.
In fact, minimizing the difference1 yielded more accurate
degradation rates. To analyze this, we plot on the same figure
the time-evolution of MSE of concentration when (1) max-

1Minimizing the difference between the prior and the posterior
covariances does not mean that the filter does not apply any cor-
rection. Since the Kalman analysis equation always minimizes the
variance, the adaptive algorithm now acts in a way such that only the
lowest minimization possible is retrieved. Unlike standard Kalman
filtering, this procedure moves at a slower pace towards the true
trajectory.
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imizing the information gain for both state and parameters,
(2) minimizing the information gain for both and (3) maxi-
mizing the state’s and minimizing the parameters’ informa-
tion gain. As seen from the three curves, the best perfor-
mance is obtained when the information gain for concen-
tration is maximized and the associated parameter’s one is
minimized. Compared to maximizing the information gain
of both states and parameters, this mixed scheme now yields
37 % more accurate contaminant concentrations.

Motivated by this robust performance, we argue here that
processing the observations serially in the adaptive hybrid
scheme allows for a more efficient exploitation of the infor-
mation content of the observations, as compared to the batch
processing in the original algorithm proposed by Gharamti
et al. (2014b). To prove our point, we plot in Fig. 12 the
relative improvements suggested by the serial and the batch
adaptive hybrid EnKF-OIs over the standard EnKF scheme.
We also show the evolution of the value of α in time, as es-
timated by both filters. The relative improvements (RIs) are
given in terms of MSE and averaged over all estimated con-
centration variables and degradation coefficients. The α val-
ues shown for the serial EnKF-OI are obtained by averaging
over the entire 160 observations (i.e., each value corresponds
to the mean of the columns shown in Fig. 11). As can be
seen, the batch scheme imposes more weight on the static
background covariance over the entire 50-year assimilation
period. During the first 15 years, for instance, the optimal α
values obtained using the batch and the serial schemes are
0.1 and 0.35, respectively. Therefore, given the large uncer-
tainty in the initial ensemble, the batch scheme is shown to
contribute to larger improvements over the EnKF estimates.
However, this behavior changes after 15 years, beyond which
the serial algorithm starts outperforming the associated batch
EnKF-OI once the ensemble-based statistics have been prop-
erly adjusted. Towards the end of the assimilation, the perfor-
mances of both schemes become comparable (RI' 0.7), with
a subtle advantage to the serial EnKF-OI. Overall, the mean
RI suggested by the batch and the serial hybrid schemes over

the EnKF is 0.52 and 0.57, respectively. Processing the ob-
servations serially leads to a more smooth selection of the
weights between the ensemble and the static background co-
variance. In the batch scheme, the optimization is relatively
more erratic, exhibiting stronger variations over time. From
an algorithmic point of view, optimizing the parameters α
and β in a serial formulation is computationally more effi-
cient and does not involve any matrix inversion, in contrast
with the batch processing that requires the inversion of the
matrix

(
HkPf

kH
T
k +Rk

)
for every iteration of the optimiza-

tion procedure.

4.2 The EnKFESOS vs. the EnKF

In the previous section, all approaches and experimental re-
sults were intended to mitigate for the rank deficiency and
the under-sampling of the ensemble’s sample forecast error
covariance. In the following experiment, we attempt to deal
with the undersampling of the observation errors by imple-
menting the EnKFESOS algorithm presented in Sect. 2.3. We
first note that the distribution of the new observation per-
turbations show reasonable deviations from the prescribed
Gaussian errors in the original EnKF algorithm, as has been
noticed by Hoteit et al. (2015). To assess the performance of
the EnKFESOS against the EnKF, we study at a closer glance
the contaminant maps after 50 years as estimated by the en-
semble means from both schemes. Thus, we plot in Fig. 13
the normalized errors for the components TCE and DCE at
layers 70 and 80, respectively. These error maps are obtained
by subtracting the ensemble mean concentration from the ref-
erence and then normalizing the result by the average of the
reference solution. One common feature in these maps is the
clear underestimation of TCE and DCE in the northern part
of the domain. This is because the initial reference concen-
tration is quite different from the one assigned to the initial
ensemble using the free run setup as outlined in Sect. 3.4.
In time, both filtering schemes try to push the contaminant
plume, which has already moved towards the southern re-
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Figure 11. The colored image shows, according to the left y axis,
the adaptive change in α values for each individual observation.
The observation index (1, . . .,160) is sorted such that the first 40 in-
dices correspond to PCE measurements, the second 40 correspond
to TCE, third 40 correspond to DCE and finally VC takes the last 40
indices. The yellow color indicates that no background covariance
matrices have been used and the blue color suggests that only en-
semble “flow-dependent” statistics are involved. The curves demon-
strate the change in MSE, according to the right y axis, in time when
maximizing the information gain (cyan), minimizing the informa-
tion gain (red) and maximizing the formation for concentration and
minimizing it for degradation rates (green).

gion, upwards to match the truth. Moreover, as demonstrated
in layer 70 and unlike the EnKFESOS, the EnKF overesti-
mates the TCE concentration in the center of the domain,
which further continues to move southwards. In layer 80 (i.e.,
5 m deeper), the EnKF tends to underestimate the concentra-
tion of DCE especially in the southern part of the domain.
On the other hand, a slight overestimation of this DCE con-
centration towards the center is suggested by the EnKFESOS.
In general, and assessing similar patterns at other layers, the
EnKFESOS exhibits higher accuracy in retrieving the contam-
inant concentration than the EnKF. This provides further ev-
idence that ignoring the observation sampling errors within
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Figure 12. Left y axis: relative improvements (RIs) of the batch
(i.e., observations processed all at once) and the serial (i.e, observa-
tions processed one at a time) adaptive EnKF-OIs over the stan-
dard EnKF scheme. RI is evaluated in time as follows: RI(t)=
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. Right y axis: time series for the opti-

mized α values resulting from the batch and the serial (optimal α’s
from all observations are averaged) EnKF-OI.

the EnKF can indeed deteriorate the quality of the state esti-
mates.

To study the impact of the EnKFESOS on the estimates of
the parameters, we examine the evolution of the approximate
distribution of TCE degradation rate in time. We compare
the resulting pdf’s with those obtained using the EnKF after
5, 15, 30 and 45 years. On top of the pdf’s, we also mon-
itor the temporal evolution of KT AES in Fig. 14. Starting
from rather flat and uncertain pdf’s of KT , both EnKF and
EnKFESOS correct the members of TCE degradation rate to-
wards the truth, which is 0.086 per day. Notice that within the
first 15 years, the pdf’s seem to move in the wrong direction,
away from the truth. This is due to the large concentrations
at time 0, and thus the filter increases the degradation rates to
fit the reference contaminant concentration. Beyond that and
once the concentration is adjusted, the parameters from both
filtering schemes begin moving closer toward the true degra-
dation rate. However, the EnKF is seen to move faster to-
wards the truth and further diminishes the uncertainty around
KT quite rapidly. Consequently, the resulting pdf of KT af-
ter 45 years looks like a Kronecker delta function. This is,
roughly speaking, not a very healthy assimilation system as
the parameter updates become insignificant over the rest of
the assimilation window. In contrast, the degradation rate ob-
tained using EnKFESOS moves at a slower pace towards the
true rate maintaining a large enough spread to fit the incom-
ing observations. Compared to the EnKF, the AES suggested
by the EnKFESOS, as shown on the left y axis, is almost 40
to 50 % higher. As a matter of fact, this performance is more
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Figure 13. Top panels: TCE concentration and error maps in layer 70 obtained using the reference run (first column), the EnKF (second
column) and the EnKFESOS (third column). Bottom panels: same as top panels but for the concentration of DCE.
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trustworthy than that of the EnKF, indicating the essential
need to account for observation sampling errors at the time
of the analysis. Hoteit et al. (2015) found that the ensemble
spread of the EnKFESOS is larger than that of the EnKF for
state estimation. In here, we experienced a similar, yet more
pronounced behavior for the estimates of the parameters.

As a way to provide an overall assessment, we compare
the best estimates obtained using all schemes considered ear-
lier, i.e., the EnKF, the EnKF-OIβ = 0.1

α= 0.7 and the EnKFESOS.

The EnKF was found the least accurate. Accounting for ob-
servation sampling errors yields around 21 and 23 % more
accurate state and parameters estimates, respectively. Tack-
ling the rank deficiency of the EnKF results in 48 and 70 %
more accurate state and parameters estimates, respectively.
Accordingly, addressing the issues of observation sampling
errors and rank deficient forecast ensemble matrices seems
to be crucial and can highly improve the accuracy of the es-
timates. From our experimental results and for this particular
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Figure 15. (a) Cross-correlation terms of the background matrix Pb
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The correlations in blue are constructed after perturbing the hydraulic conductivity and porosity of the forecast model. The largest correla-
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)
suggested for all degradation parameters. The improvements suggested by the adaptive EnKF-

OI over EnKFESOS are shown for both perfect and perturbed (using σm) flow scenarios.

setting, resolving the rank deficiency issue appears to have
the largest impact on the final estimates of the filter.

4.3 Incorporating uncertainties in the hydraulic
parameters

In Sect. 4.1 and 4.2, the static background covariance matri-
ces were derived on the basis of perfectly known hydraulic
parameters. In this section, we test the impact of incorporat-
ing uncertainties in the groundwater-flow model on the per-
formance of both the hybrid EnKF-OI and the EnKFESOS
schemes. Generally, such procedure is expected to alter the
precise description that the hybrid scheme utilizes to re-
late the biodegradation rates and the components’ concen-
trations. To this end, the GeoTOP software package, de-
scribed in Sect. 3.2.2, is used to obtain 48 different realiza-
tions for hydraulic conductivity and porosity. The realiza-
tions are built assuming Gaussian distributed hydraulic pa-
rameters with mean equal to the 3-D fields used in the ref-
erence model run (Sect. 3.2.2) and standard deviation pa-
rameterized in two different scenarios. We use σm = 10 %
of the mean in the first scenario (moderate uncertainty) and
σh = 30 % of the mean value in the second scenario (high un-
certainty). The reason for this choice is to provide a realistic
assessment of the filters under varying modeling uncertainty.

Before testing the performance of the hybrid EnKF-OI
and the EnKFESOS, we first construct the background covari-
ances, i.e., Pb

xx and Pb
θx , using a similar procedure to the one

presented in Sect. 3.4 but based on perturbed conductivity
and porosity realizations (here, σm is used). To interpret the
influence of this modeling uncertainty, we plot in Fig. 15a
the averaged cross-correlations ofKP rate with all four com-
ponents. We observe that the dominant correlation patterns
are similar to those obtained earlier using perfect flow con-
ditions, especially in the shallow aquifer layers. In deeper
layers, there are noticeable differences in the correlations of
KP and CTCE. In addition, the magnitude of the new back-
ground correlations is considerably smaller. For instance, the
estimated correlation value between KP and CDCE after im-
posing uncertainty on the hydraulic parameters has shrunk
by 60 %. The fact that the major spatial patterns of the back-
ground correlations were preserved and their magnitude was
influenced the most is related to the nature of the perturbed
hydraulic parameters. Generally, porosity and conductivity
affect the speed and the movement of groundwater in the
aquifer and thus the degradation process would be expected
to either slow down or accelerate. Compared to the previ-
ous parameterization, in this scenario 15 POD modes were
required to capture around 97 % of the total variance.
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With moderate uncertainty, both the hybrid EnKF-OI (α >
0.3) and the EnKFESOS outperform the EnKF and recover
reasonable estimates of the degradation parameters. How-
ever, compared to the ones obtained under perfect flow con-
ditions, these were slightly less accurate. The largest gain, in
terms of MSE, suggested by the EnKF-OI state estimates, is
obtained with α = 0.7 and is equal to 22 %. The EnKFESOS
is a performant with an average gain of 20 %. Switching to
the high uncertainty scenario (i.e., using σh), all three as-
similation schemes failed to retrieve reliable estimates of the
concentration and biodegradation. To illustrate, we show in
Fig. 15b the temporal evolution of MSE obtained using the
EnKF and EnKF-OIβ=1.0

α=0.3,...,0.8 with perfect and perturbed
hydraulic parameters. The performance as shown starts de-
grading after 15 years, eventually leading to inaccurate con-
centration estimates and unreliable parameters. This sug-
gests that quantifying the large uncertainty of the flow model
alongside the reaction parameters, using any of the three
schemes, might be necessary in such a challenging setup.
On the other hand, under moderate uncertainty we compare
the performance of the assimilation schemes to the ones ob-
tained assuming perfect flow. For this, we plot in Fig. 15c
the average gain (MSE difference), suggested by the adaptive
hybrid scheme over EnKFESOS estimates of the degradation
rates. The adaptive hybrid EnKF-OI remains more accurate
even after perturbing the hydraulic parameters. However, the
proposed accuracy is roughly halved for all parameters. This
is indeed related to the less reliable static background co-
variances, which are now subjected to uncertainties in the
groundwater-flow dynamics.

5 Conclusions

In this study, we examined and investigated the hybrid en-
semble Kalman filter (EnKF-OI) and the second-order ob-
servation perturbations sampling (EnKFESOS) schemes to es-
timate contaminant concentration and biodegradation rates
of chlorinated hydrocarbons at the port of Rotterdam. We
simulated the migration problem of a single plume consist-
ing of tetrachloroethene (PCE), trichloroethene (TCE), cis-
1,2-dichloroethene (DCE) and vinyl chloride (VC). Concen-
tration data were used for yearly assimilation over a pe-
riod of 50 years. The hybrid scheme complements the flow-
dependent sample ensemble covariance of the EnKF with
a prescribed static background covariance from an OI sys-
tem to mitigate the undersampling of the ensembles and ne-
glected model errors. The exact second-order sampling of the
observation perturbations modifies the observation perturba-
tions and assimilates the data one after the other, thus resolv-
ing the undersampling of the observation noise in the EnKF
analysis. Challenging assimilation scenarios using a rela-
tively small ensemble (Ne = 48) were presented, in which
observations were processed serially. The key findings of this
study and future research directions are summarized below:

1. Both the hybrid EnKF-OI and the EnKFESOS success-
fully provide accurate concentration and degradation
rate estimates. On average, a tuned hybrid EnKF-OI
(using α = 0.7 and β = 0.1) suggests 48 and 70 %
more accurate state and parameters estimates than those
obtained using the EnKF. On the other hand, the
EnKFESOS’s state and parameters estimates are 21 and
23 % more accurate, respectively. In addition, the two
schemes are easy to implement and computationally ef-
ficient requiring only a minimal change to an existing
EnKF code.

2. Both filtering schemes demonstrated a better handling
of the ensemble spread, for both states and parameters,
avoiding collapse or false (unrealistic) confidence in the
estimates, which enables better fit to the observations.

3. The hybrid scheme requires some effort to tune two
weighting factors that adjust the background statistics
for both state and parameters. The serial adaptive ver-
sion of this scheme, which relies on maximizing the
information gain between the forecast and analysis for
each individual observation point, seems promising.
From the experiments, we found that maximizing the
information gain could however possibly deplete the un-
certainty within the ensemble quite rapidly. Yet, this ob-
servation may vary between systems depending on the
degree and the rate of uncertainty growth. One possible
solution that we tested is to minimize the information
gain, and thus decrease the update impact when fitting
the observations. Further, one could also build the ob-
jective function in such a way that only a portion of the
information gain is maximized. For instance, an exam-
ple would be to enforce the ratio between the trace of
the analysis and the forecast covariance matrices to be
greater than 30 % meaning that at least 60 % of the en-
semble uncertainty is preserved.

4. Failing to account for observation undersampling errors
in the standard EnKF can impact not only the quality
of the states but also, more importantly, the estimates
of the parameters. In our experiments, the degradation
rates obtained after assimilating the observations using
the EnKFESOS scheme were more accurate, more reli-
able and more realistic.

5. Imposing large uncertainties on the hydraulic parame-
ters of the flow model degrades the performance of all
filtering schemes. Given that the performance of the hy-
brid EnKF-OI depends on the quality of the static back-
ground statistics, satisfactory results were obtained only
when the uncertainty imposed on the background infor-
mation is relatively moderate. The EnKFESOS further
outperformed the standard EnKF with moderate flow
uncertainty conditions.
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6. Careful tuning of the hybrid EnKF-OI yields the best es-
timates of the concentration and the degradation rates as
compared to the EnKF and the EnKFESOS. This mani-
fests the importance of complementing the EnKF pa-
rameter cross-correlations with static ones.

Building a unified EnKF scheme, which tackles both the un-
dersampling of the forecast covariance and the observation
sampling errors simultaneously is an interesting line of re-
search that we will consider in our future work. Further po-
tential research includes generalizing the current assimilation
system to allow for estimating various subsurface aquifer pa-
rameters (including spatial heterogeneity), boundary condi-
tions and model structural errors.

6 Data availability

All data and codes used in this study can be obtained by
emailing the first author (MG) at: gharamti@ucar.edu. More
detailed and historical contaminant datasets are only acces-
sible through the municipality of Rotterdam in the Nether-
lands.
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