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Abstract. The potential of data assimilation for hydrologic
predictions has been demonstrated in many research stud-
ies. Watersheds over which multiple observation types are
available can potentially further benefit from data assimila-
tion by having multiple updated states from which hydro-
logic predictions can be generated. However, the magnitude
and time span of the impact of the assimilation of an observa-
tion varies according not only to its type, but also to the vari-
ables included in the state vector. This study examines the
impact of multivariate synthetic data assimilation using the
ensemble Kalman filter (EnKF) into the spatially distributed
hydrologic model CEQUEAU for the mountainous Nechako
River located in British Columbia, Canada. Synthetic data
include daily snow cover area (SCA), daily measurements
of snow water equivalent (SWE) at three different locations
and daily streamflow data at the watershed outlet. Results
show a large variability of the continuous rank probability
skill score over a wide range of prediction horizons (days
to weeks) depending on the state vector configuration and
the type of observations assimilated. Overall, the variables
most closely linearly linked to the observations are the ones
worth considering adding to the state vector due to the limita-
tions imposed by the EnKF. The performance of the assimila-
tion of basin-wide SCA, which does not have a decent proxy
among potential state variables, does not surpass the open
loop for any of the simulated variables. However, the as-
similation of streamflow offers major improvements steadily
throughout the year, but mainly over the short-term (up to
5 days) forecast horizons, while the impact of the assimila-
tion of SWE gains more importance during the snowmelt pe-
riod over the mid-term (up to 50 days) forecast horizon com-
pared with open loop. The combined assimilation of stream-
flow and SWE performs better than their individual counter-

parts, offering improvements over all forecast horizons con-
sidered and throughout the whole year, including the critical
period of snowmelt. This highlights the potential benefit of
using multivariate data assimilation for streamflow predic-
tions in snow-dominated regions.

1 Introduction

Water resource management for reservoirs located in snow-
dominated regions relies on an accurate portrayal of the snow
water equivalent (SWE) spatial and temporal distribution in
order to make accurate streamflow predictions. Some wa-
ter resources managers make use of ensemble streamflow
prediction (ESP) to plan reservoir operations over various
lengths of time. ESPs have the benefit of integrating weather
forecast uncertainty, either by making use of weather ensem-
ble predictions (de Roo et al., 2003) or by using historical
weather data (Day, 1985) as input in a hydrologic model.
However, ESPs depend heavily on the model’s initial con-
ditions (Franz et al., 2008). Presently, many water resources
managers still use a manual approach to adjust the initial
state of the watershed based on available observations and
the user’s experience (Liu et al., 2012).

Data assimilation (DA) methods, such as the ensemble
Kalman filter (EnKF; Evensen, 2003) can improve the esti-
mation of the initial state of the watershed while also pro-
viding an uncertainty on this initial state (Liu and Gupta,
2007). Several authors have already shown the added value
of DA in snow-dominated watersheds to improve the estima-
tion of the state of the watershed (De Lannoy et al., 2012;
Dechant and Moradkhani, 2011; Nagler et al., 2008; Slater
and Clark, 2006; Andreadis and Lettenmaier, 2006). Some
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studies have also integrated DA in ensemble forecast systems
for relatively short-term (up to 5–10 days) hydrologic fore-
casts (Abaza et al., 2014, 2015; He et al., 2012), but studies
focusing on longer forecast periods are scarce even though
the need exists for water resource managers.

Multivariate DA applications in hydrology are becoming
more frequent, but generally focus on streamflow and soil
moisture (Samuel et al., 2014; Trudel et al., 2014; Lee et
al., 2011), omitting the snow water equivalent. In snow-
dominated watersheds, the key initial states include not only
information about the hydric state, such as soil moisture and
streamflow, but also the snow cover state, such as SWE and
snow cover area (SCA). To the authors’ knowledge, no pub-
lished studies pertain to the combined assimilation of infor-
mation about a watershed’s hydric and snow state. Since the
lasting impact of hydric DA and snow DA can be quite dif-
ferent given the different physical processes driving them, the
simultaneous DA of both types of data could yield improve-
ments over a potentially longer length of time.

However, data assimilation performance depends on vari-
ous factors, such as the choice of variables to be updated by
an observation (hereby referred to as the state vector config-
uration). Abaza et al. (2015) demonstrated this importance
when assimilating streamflow in a hydrologic model. Going
from univariate to multivariate DA increases the number of
degrees of freedom, which increases the complexity of the
matter. The importance of state vector configuration when
using multivariate DA for hydrological modelling has yet to
be investigated.

The study’s main objectives are to (1) investigate the po-
tential impact that multivariate data assimilation of hydric
(streamflow) and snow-related (SWE and SCA) data can
have on short-term (1–5 days) and mid-term (up to 50 days)
streamflow forecast, and (2) to explore how this impact varies
as a function of the state vector configuration.

2 Materials and methods

2.1 Study area description and data

Simulations were conducted in a synthetic setting based on
the Nechako watershed located in British Columbia, Canada
(Fig. 1). The watershed includes a reservoir, which drains
an area of approximately 14 000 km2. The reservoir is man-
aged by Rio Tinto mainly for hydroelectricity production
purposes. The watershed includes part of the Coast Moun-
tains in the west region, such that the difference in eleva-
tion between the highest and lowest point in the watershed
reaches about 1700 m. At this latitude and altitude, most (es-
timated at 53 %) of the precipitation falls as snow.

There are various types of data gathered regularly over the
watershed. First are the seven weather stations managed by
Rio Tinto, three of which measure daily precipitation and
air temperature only (yellow circles). Three others also in-

Figure 1. The Nechako watershed and the locations of weather sta-
tions, snow pillows and a hydrometric station. All of these contain
at least daily weather data. The outlet is considered to be at the spill-
way, located at the blue triangle. The intake is located at the Tahtsa
Intake weather station (westernmost yellow circle).

clude snow pillows (red squares), which measure the snow
water equivalent. The northernmost snow pillow is located
at Mount Wells, the southernmost at Mount Pondosy and
the westernmost at Tahtsa Lake. Maximum seasonal SWE
observations average 615, 853 and 1393 mm for the Mount
Wells, Mount Pondosy and Tahtsa Lake snow pillows re-
spectively. The distribution of snow on the ground follows a
strong east–west gradient such that measurements at Tahtsa
Lake typically yield much more snow than Mount Well and
Mount Pondosy. The northernmost weather station (blue tri-
angle) is located next to the spillway at Skins Lake and also
takes hydrometric measurements. Historical daily water lev-
els can then be converted into natural inflows by also taking
into account spilled and turbined flow. Finally, daily SCA
data derived from the spaceborne sensor MODIS/Terra are
also considered (Hall et al., 2002). Because of its spatial
coverage and relatively high temporal resolution, remotely
sensed snow data from MODIS have proven to be valuable
in a number of hydrologic studies (Bergeron et al., 2014; Roy
et al., 2010; Tang and Lettenmaier, 2010; Andreadis and Let-
tenmaier, 2006; Clark et al., 2006), including one applied to
the Nechako watershed (Marcil et al., 2016).

The meteorological observations gathered over a period of
10 years (from 15 August 1990 to 14 August 2000) were
used as a basis upon which a synthetic experiment (see be-
low) tested the added value of three types of synthetic ob-
servations (streamflow, SWE and SCA) for data assimilation
purposes. The only data sets actually used were the meteo-
rological station data, as well as some streamflow observa-
tions (owned by Rio Tinto) and MODIS/Terra daily L3 snow
cover data (Hall et al., 2002) for the initial model calibra-
tion performed prior to the synthetic experiment presented
in this manuscript. All the observation data were created
synthetically to mimic streamflow, SWE and SCA data that
could be measured or estimated using hydrometric, snow pil-
low and MODIS data, respectively. More details on the cre-
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Figure 2. Diagram of the processes included in CEQUEAU’s pro-
duction function.

ation of synthetic observations and meteorological input in
Sect. 3.1.1 and 3.1.2 respectively.

2.2 Model description

The hydrologic model used was the spatially distributed, con-
ceptual model CEQUEAU (Charbonneau et al., 1977). It is
currently being used by Rio Tinto to model hydrologic pro-
cesses including streamflow at the outlet of the Nechako wa-
tershed, considered to be the spillway where the hydromet-
ric station is also located. All variables are computed at a
daily time step using a set of parameters to calibrate and daily
meteorological input consisting of mean air temperature and
precipitation. The set of parameters used in this study was
the result of a manual calibration performed by Rio Tinto
by comparing the simulated streamflow at the outlet with the
corresponding real streamflow observations. A summary of
the main processes concerning the production and transfer
functions is presented here to facilitate the understanding of
the state variables used in this study.

CEQUEAU divides the watershed into regular square pix-
els called “whole squares” over which the production func-

tion is computed (Fig. 2). The current version of CEQUEAU
uses the snow model presented by the US Army Corps of En-
gineers (1956) to simulate most snow-related processes. The
SWE is actually computed separately for forested and open
areas, which have their own set of parameters, but is aggre-
gated here as a weighted sum according to the proportion of
forested and open areas within each whole squares. The only
variable computed separately (i.e. outside from CEQUEAU)
is SCA, which is computed using a depletion curve (Ander-
son, 1973). The depletion curve used here follows Andreadis
and Lettenmaier (2006), which uses a three parameter beta
distribution:

SCAi = B−1

(
SWEi

min
(
SWEmax, i,SI

) |αSCA,βSCA

)
, (1)

where SCAi is the resulting snow cover area over a whole
square i, SWEi is the simulated snow water equivalent over
the same area, SWEmax, i is the annual maximum snow wa-
ter equivalent from the beginning of the accumulation pe-
riod over the same area, SI represents the value of SWE
above which it is assumed there is always 100 % snow cover
and αSCA and βSCA are shape parameters for the beta distri-
bution itself. The calibration of those three parameters was
conducted using the SCE-UA method (Duan et al., 1992) to
minimize the root mean square difference between simulated
snow cover area and MODIS/Terra daily L3 snow cover data
(Hall et al., 2002) averaged within each whole square within
the Nechako watershed. It is important to note that SCA is
computed as an output only and is therefore not considered
to be a state variable since it has no impact on future simula-
tions if its value is tampered with.

CEQUEAU then uses three conceptual reservoirs to sim-
ulate various hydrologic processes from the available water
resulting from rain or snowmelt. There is an optional lake
reservoir, an upper reservoir (called “soil moisture reservoir”
in this study) and a lower reservoir (called “groundwater
reservoir” in this study).

All in all, the state variables simulated over each whole
square include SWE, a snow ripening index (SRI), a snow
temperature index (STI), the soil moisture level (SML), the
groundwater level (GWL) and the lake water level (LWL)
should there be one. There are 644 whole squares in the case
of the Nechako watershed.

Each whole square is itself divided into “partial squares”
according to the subpixel drainage divide. There are a to-
tal of 1082 partial squares in the case of the Nechako wa-
tershed. Available water from whole squares (whether from
surface runoff or drained from the soil and/or groundwater
reservoirs) is divided into these partial squares according to
the fraction of whole square area drained by partial squares
to form volumes (VOLs). These volumes represent the to-
tal amount of water available for transfer from one partial
square to the next. The actual amount of water transferred
over a given period is called streamflows and is defined as
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follows:

SFj =
1
1t

Mj∑
k

extk ·VOLk, (2)

where SFj is the streamflow at partial square j , Mj is the
number of partial squares directly upstream, extk is a transfer
coefficient and 1t is the time step. VOL is therefore a state
variable, but streamflow, like SCA, is not considered to be a
state variable since it has no impact on future simulations if
its value is tampered with.

2.3 Ensemble Kalman filtering

The EnKF is a data assimilation method developed by
Evensen (1994). It is an approach often used in hydrology,
mainly due to its ability to consider non-linearities in the
model and its relative simplicity to implement. The EnKF is a
sequential method, meaning it relies only on current observa-
tions to update state variables as opposed to non-sequential
approaches such as smoothers (Evensen and van Leeuwen,
2000) and recursive methods (McMillan et al., 2013).

The EnKF propagates an ensemble of model runs based on
a Monte Carlo implementation to represent model errors. The
model covariance matrix (Pb

t ) at a time t is computed from
the state vector (xb

t ) holding the N ensemble members and
their simulated variables; and the ensemble mean of the state
vector (xb

t ) therefore implicitly taking the model dynamics
into consideration:

Pb
t =

1
N − 1

(
xb
t − xb

t

)(
xb
t − xb

t

)>
, (3)

when an observation is available, it is perturbed to form an
ensemble of observations that are used to update each ensem-
ble member. The updating step applies the Kalman gain (Kt ),
which is computed from observation (Rt ) and model covari-
ance matrices as well as an observation operator (Ht ), which
relates the model states to the observation:

Kt = Pb
t H
>
t

(
HtPb

t H
>
t +Rt

)−1
, (4)

The Kalman gain acts as a weighted average between the ob-
servation and state vector to yield a post-filter analysis (xa

t )
computed as such:

xa
t = xb

t +Kt

(
yt −Htx

b
t

)
. (5)

The EnKF has practical and theoretical limitations. First, the
EnKF relies on an ensemble representation of model and ob-
servation errors that are valid in the limit where ensemble
sizes approach infinity. This is not feasible in practice, so a
finite sample is used instead which aims to be sufficiently
large such that sampling errors are negligible while ensuring
that computational power and memory limitations are met.
The method also makes use of model and observation covari-
ance matrices to compute the gain during the updating pro-
cess. These covariance matrices assume a linear relationship
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Figure 3. Flowchart for the production of ensemble streamflow pre-
dictions obtained from various data assimilation scenarios.

between variables. The EnKF also assumes normally dis-
tributed, bias-free and time-independent errors for both the
model and the observations. Since these assumptions are not
always met, which means that optimality is not guaranteed, a
synthetic experiment is recommended to test the applicability
of the method to the specific case being studied.

3 Experimental design

3.1 Synthetic experiment

Synthetic experiments, such as the ones done by Xie and
Zhang (2010) or Weerts and El Serafy (2006), are test beds
used to test the robustness of a data assimilation method or to
tune various hyper-parameters. This is because the true state
is known since it is initially created from true input that is
also known.

For the current study, interpolated meteorological input
and a specific set of parameters were used to run CEQUEAU,
the output of which was considered to be the true state
(step 1) (see Fig. 3). Synthetic observations, which include
daily streamflow, SWE and SCA (step 2), and meteorological
input, which include daily mean air temperature and precipi-
tation (step 3), were then obtained by applying a perturbation
to the true state and true meteorological input respectively.
This means that the observation sets described thus far are
not directly used, but synthetically generated using known
parameters and perturbation. The synthetic observation en-
semble (step 4) and meteorological ensemble (step 5) were
created by further perturbing the synthetic observations and
meteorological input. Ideally, these meteorological and ob-
servation ensemble perturbations should reflect the true er-
rors of the synthetic meteorological input and observations
for an optimal analysis. An ensemble of hydrologic states
(step 6) was then obtained by running CEQUEAU using the
synthetic meteorological ensemble. The EnKF was then ap-
plied using both the model and observation ensembles to pro-
duce an analysis (step 7), which was used as an initial state
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to produce ESP (step 8) using the true meteorological input.
Additional details pertaining to the procedure used in gener-
ating perturbations and ensembles are included in the follow-
ing sections.

3.1.1 Synthetic observation perturbation

Three types of observations were considered; namely stream-
flow, SWE and SCA. These synthetic observations were gen-
erated using a daily time step since their real-world counter-
parts are usually available on a daily basis.

In order to abide by EnKF assumptions, observations er-
rors should ideally have a normal distribution. However, this
is not practical due to the physical limits of the observa-
tions. For example, SWE observations cannot be negative
and adding a normally distributed perturbation to SWE could
result in some values being negative. Raising the negative
values to zero or above would introduce a bias. Therefore,
other distributions that share similarities with a normal dis-
tribution, while ensuring that physical limits are respected,
were used to generate synthetic observations.

Synthetic watershed-wide SCA were created using pertur-
bations that follow a beta distribution since SCA is bounded
between 0 and 1. SCA observations are expressed as yt,j ∼
B−1 (Qt,j |αt,j ,βt,j

)
, where Qt,j is the cumulative proba-

bility of a temporally correlated normal random field with
zero mean and unit variance at time t for observation j ,
and αt,j and βt,j are positively valued shape parameters.
The shape parameters may be expressed in terms of the
mean µt,j and variance σ 2

t,j , but it must follow that σ 2
t,j <

µt,j
(
1−µt,j

)
. The variance was arbitrarily set to σ 2

t,j =

µt,j
(
1−µt,j

)
/50, such that the resulting shape parameters

are αt,j = 49µt,j and βt,j = 49
(
1−µt,j

)
. Examples of beta

distributions for different means using the same definition of
variance as described above are shown in Fig. 4a. The distri-
bution has a null variance and greater deviation from a nor-
mal distribution when the snow covers either 0 or 100 % of
the watershed, as well as a variance at its greatest and resem-
bling most a normal distribution at 50 % SCA. This approach
avoids introducing a systematic bias when assimilating ex-
treme values of SCA. When values are at 0 % (or 100 %),
perturbations can only introduce higher (or lower) values in
order to remain within the physical limits of the observations.
This approach also gives the observations a greater uncer-
tainty during the transition periods when SCA is lower than
100 % and higher than 0 %, which loosely follows the greater
uncertainty attributed to MODIS observations over the same
periods (Hall and Riggs, 2007).

Synthetic streamflow and SWE observations were created
using perturbations that have a lognormal distribution since
both observations are bounded to the left at zero and are theo-
retically unbounded to the right. Observation values yt,j can

be expressed as yt,j ∼ lnN−1
(
Qt,j |µt,j ,σ

2
t,j

)
. The true

state was used for µt,j for both streamflow and SWE, while
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the relative variance σ 2
t,j was set to 20 and 10 % respectively.

The error distributions using these parameters are shown in
Fig. 4b. The exact value of these variances is arbitrary for
feasibility purposes. However, since the conclusions of this
study will likely be used to help set up real-world applica-
tions, the variances chosen should ideally be relatively simi-
lar to the error of their corresponding real observations. Since
these real observation errors are not known, rough estimates
are used.

The use of these distributions is a compromise between
the normal distribution of observations required by the EnKF
and the physical limits of the observations without introduc-
ing a bias.

3.1.2 Meteorological input perturbation

Both the true daily precipitation and temperature values
were perturbed using a gamma distribution, which has the
benefit of generating positive values exclusively. Perturba-
tions were implemented such that the meteorological input
zt,i (precipitation or temperature) at time t over the whole
square i is the result of the inverse gamma function given
the cumulative probability Pt,i of a spatially and tempo-
rally correlated normal random field with zero mean and
unit variance. This can be expressed mathematically as zt,i ∼
0−1 (Pt,i |κt,iθt,i), where κt,i and θt,i are shape and scale
factor respectively. The shape and scale factors can be ex-
pressed in terms of mean µt,i and variance σ 2

t,i , such that
κt,i = µ

2
t,i /σ

2
t,i and θt,i = σ 2

t,i /µt,i . In this study, synthetic
precipitations are generated using the value of the true pre-
cipitation for µt,i and a relative variance of 50 %, such that
σ 2
t,i = 0.5 ·µt,i . Figure 4 shows the resulting error distribu-

tion using these parameters. Similarly, perturbed tempera-
tures use the true temperatures for µt,i and a standard devia-
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tion of 1 ◦C. Within the synthetic study where the feasibility
of the approach is tested, the exact value of these perturba-
tions is arbitrary, so long as it is coherent between scenarios.
The values used were such that the Nash–Sutcliffe efficiency
(Nash and Sutcliffe, 1970) of the simulated streamflow re-
sulting from CEQUEAU using the perturbed meteorologi-
cal input compared with synthetic streamflow was roughly
similar to the performance of the simulated streamflow using
real-world meteorological input compared with real stream-
flow observations.

3.1.3 Ensemble streamflow predictions generation

ESPs were generated using the ensemble of state variables
resulting from the EnKF as initial states, true meteorologi-
cal input and true model parameters. Using the true meteo-
rological input implies that over a sufficiently large forecast
horizon, every DA scenario considered in this study is likely
to converge to the true state, but at different rates. By com-
paring the relative gains in performance over the ensemble
with no data assimilation (open loop), one can then observe
the length of time upon which DA impacts ESPs without hav-
ing erroneous meteorological input affecting the results. This
still generates an ensemble of streamflows since each ensem-
ble member has its own initial states (VOL, SWE, SRI, STI,
SML, GWL, LWL).

ESPs were generated everyday over the entire study period
(10 years) using a forecast horizon spanning 50 days.

3.2 Hyper-parameter tuning

The use of the EnKF requires the tuning of hyper-parameters,
such as model and observation errors, and ensemble size. Im-
proper specification of these hyper-parameters could lead to
filter divergence (Houtekamer and Mitchell, 1998).

3.2.1 Ensemble size

The ensemble size should ideally approach infinity to reduce
the impact of sampling when covariance matrices are com-
puted, but this is not feasible given the limits of computing
power and memory. In practice, the ensemble size is chosen
such that computing time is more reasonable while ensuring
that the sampling error remains small.

Tests were carried out using ensemble sizes of 8, 16, 32,
64 and 128 members. An ensemble size of 64 members was
used for this study. This number was chosen as a function
of the stability between successive runs and computing re-
sources available. It was found to be a reasonable trade-off
between having sufficiently consistent results between sim-
ulations, such that the sampling error would be dwarfed in
comparison with the impact of the actual data assimilation,
without exceeding the computing resources available.

3.2.2 Meteorological ensemble generation

Perturbation factors similar to the ones used to generate syn-
thetic meteorological inputs were used to generate an en-
semble spread. This means that at every time step, meteo-
rological ensemble (z′t,i) were generated using an inverse
gamma function given the cumulative probability P ′t,i of a
spatially and temporally correlated normal random field with
zero mean and unit variance, mathematically expressed as
z′t,i ∼ 0

−1 (P ′t,i |κ ′t,i,θ ′t,i), where the shape factors are de-
fined by κ ′t,i = µ′

2
t,i /σ

′2
t,i and θ ′t,i = σ ′

2
t,i /µ

′
t,i . The prime

symbol is used to distinguish between the ensemble vari-
ables/parameters and the synthetic variables/parameters. Pre-
cipitation was generated using the value of the synthetic pre-
cipitation (zt,i) for µ′t,i and a relative variance of 50 %, such
that σ ′2t,i = 0.5 · zt,i , while temperature ensembles were gen-
erated using synthetic temperatures for µ′t,i and a standard
deviation of 1 ◦C. Using similar perturbation factors between
synthetic and ensemble versions of the meteorological input
reduced the probability of filter divergence cause by a mis-
representation of the model error. Errors from CEQUEAU-
specific parameters were not taken into consideration, such
that the parameter set used for the generation of the true state
were the same for the ensemble generation.

3.2.3 Observation ensemble generation

As with model error representation, the perturbation fac-
tors used to generate an ensemble of observations were
similar to the ones used to generate synthetic observations.
Streamflow and SWE observation ensembles were created
using perturbations that have a lognormal distribution cen-
tered around the synthetic observations zt,j with a rela-
tive variance of 20 and 10 % respectively. Watershed-wide
SCA ensembles were created using a beta distribution cen-
tered around the synthetic observation zt,j with a variance
of σ ′2t,j = zt,j

(
1− zt,j

)
/ 50. Using similar perturbation fac-

tors avoided problems caused by a misrepresentation of the
observation errors.

3.2.4 Covariance localization

The main disadvantage in using a finite sample to compute
covariance matrices is that the resulting covariance matrices
are not exact. This may result in theoretically zero covariance
elements between two theoretically uncorrelated variables to
become small, but non-zero, which may deteriorate the per-
formance of the EnKF.

One way to overcome this dilemma is to use covariance
localization, where covariances are forced to zero between
some variables. One option is the Schur product where a
covariance matrix is multiplied element-wise by a distance-
dependant correlation function (Houtekamer and Mitchell,
2001). However, there are other geophysical characteristics,
such as land cover and elevation, which could be considered
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in the covariance localization. This would further increase
the number of parameters to set and the degree of subjectivity
in setting those parameters when the degrees of dependence
are unknown.

Another approach was used in this study, which is based
on the improvements observed in the state vector. First, the
open loop is executed, as well as a data assimilation scenario
with one observation and the corresponding spatialized state
variable included in the state vector (e.g. 1 snow pillow as-
similated and all modelled SWE included in the state vector).
Then, the two runs are compared with the true state on a spa-
tial basis. In the case of CEQUEAU, these can be whole or
partial squares depending on the variable analyzed. The co-
variance matrix is localized such that the areas that do not
show an improvement for the data assimilation scenario over
the open loop are set to zero. This process is repeated for
each observation.

While this process remains susceptible to the sampling er-
ror from the finite ensemble size, it is a simple approach that
exploits the availability of the true state in a synthetic exper-
iment and limits the state vector size according to observed
improvements.

In this study, only SWE observations have a correspond-
ing state variable, so covariance localization has only been
applied to the SWE variable.

3.2.5 State vector configuration

Though the state vector often comprises only of the variables
corresponding to the observations or those judged to be rel-
evant enough by the user, there are potentially many state
variables that could benefit from the assimilation of available
data if there exists a linear (or approximately linear) relation-
ship between the modelled variables and the observations.

To determine which variable could benefit from being in-
cluded in the state vector, one could execute multiple scenar-
ios where each possible combination is compared with the
true state. However, this could get very laborious even for
a relatively small number of state variables. The current ap-
proach suggests reducing this number by first adding state
variables one at a time. The variables that show a global im-
provement can then be added to the state vector. Assuming
that not all variables are added to the state vector, this re-
duces the number of combinations to try.

3.3 Metrics

Various metrics were used to quantify results. The mean
square skill score (MSSS), based on the mean square error
(MSE), was used to assess the differences between various
data assimilation scenarios and the open loop during the state
vector configuration and covariance localization processes.
The MSE for a variable of interest x is defined as

MSE(x)=
1
N

N∑
t=1

(
xt − xT

t

)2
, (6)

whereN is the number of time steps, xt is the ensemble mean
analysis of the state variable of interest at time t and xT

t is
the corresponding true state. It is often more convenient to
express this score as a unitless skill score:

MSSS(x)= 1−
MSE(x)

MSEref(x)
, (7)

where MSEref(x) is a mean square error of reference; the
open loop in this case. The MSSS is bounded by [−∞,1]
and indicates an improvement as the skill score increases.
Values above zero indicate an improvement over the refer-
ence (open loop) and a value of one indicates a perfect score:
a perfect correspondence between the mean of the analysis
and the true state.

The ensemble forecast performance was assessed using
the continuous rank probability score (CRPS; Hersbach,
2000) and its associated skill score (CRPSS). For this syn-
thetic study, the CRPS is adapted as follows:

CRPS(x,f )=
1
N

N∑
t=1

+∞∫
−∞

(
F
(
x
f
t

)
−F

(
xT
t

))2
dx, (8)

where F
(
x
f
t

)
and F

(
xT
t

)
are the cumulative distribution

function of the ensemble forecast at a horizon f and the true
state, respectively. The CRPS has the same units as the vari-
able of interest and is bounded by [0, +∞]. A lower CRPS
is a better score. As with the MSE and MSSS, it is often con-
venient to express the CRPS in its skill score form:

CRPSS(x,f )= 1−
CRPS(x,f )

CRPSref(x,f )
, (9)

where CRPSref(xf ) is the continuous rank probability score
of the open loop used as a reference in this case. Like the
MSSS, the CRPSS is bounded by [−∞,1], with higher val-
ues indicating a better score. Values above zero indicate an
improvement over the reference and a value of one indicates
a perfect score.

4 Results and discussion

4.1 State vector configuration and covariance
localization

Before investigating the effect of data assimilation on stream-
flow forecasts, a state vector configuration analysis was con-
ducted. This was done in order to find out which variables,
among the seven listed previously (VOL, SWE, SRI, STI,
SML, GWL, LWL), should be included in the state vector
for each type of data assimilated in order to reduce the num-
ber of comparisons to make.

4.1.1 Streamflow data assimilation

First presented are the results from the case where only
streamflow at the outlet was assimilated. Streamflow at the
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Figure 5. Box plot of the mean square skill score for each variable
when assimilating streamflow at the outlet. The open loop is used
as a reference. Outliers are not shown for visibility purposes.

outlet is computed by the model, but it is output only. There-
fore, in order for the assimilation of streamflow to have any
impact on the modelled states, additional variables needed to
be added to the state vector.

Figure 5 shows a box plot of the MSSS computed for each
variable on the whole watershed when they are individually
included in the state vector using the open-loop scenario as a
reference. Values above zero mean there is an improvement
for a particular partial (for volumes) or whole (for other state
variables) square compared with the open loop. The boxes
range between the 25th and 75th percentiles, with a red bar to
show the median, and the whiskers range between the max-
imum and minimum values. Outliers are not shown for vis-
ibility purposes. Results for the case where water VOLs are
included along with the streamflow at the outlet show an im-
proved score for each partial square on the watershed. This is
not entirely surprising given the close relationship between
streamflow and volume. This suggests a necessity to include
VOL in the state vector when assimilating streamflow at the
outlet for streamflow predictions.

Results also show a deterioration of SWE for nearly 75 %
of whole squares on the watershed. Although there is some
improvement for some whole squares, this suggests that in-
cluding SWE in the state vector when assimilating stream-
flow at the outlet is unlikely to be beneficial for streamflow
predictions. Although SWE does have an important impact
on streamflow, there is a time lag between the snowmelt oc-
currence and the increase of streamflow at the outlet. Since
the EnKF assumes linear relationships between variables,
the non-linearity between SWE and streamflow can result
in a non-optimal analysis. In this case, the results are ac-
tually worse than open loop for most whole squares. Clark
et al. (2008) discussed the issue of non-linearities between
streamflow and other variables. To overcome this issue, one
could use either a recursive approach, which allows for ad-
justments of previously simulated variables, or a smoother
approach to DA, which also uses “future” observations to up-
date current state variables. However, this may not be neces-
sary given the positive impact of streamflow DA on VOL, as

well as in a multivariate DA scenario where other variables,
such as SWE in this case, are also assimilated.

As for the SRI and STI, the median sits around 0, which
means there is no improvement for 50 % of the whole
squares. This suggests little change can be obtained in the
analysis by including those variables in the state vector. Sim-
ilar to the case with SWE, there is likely a time lag issue be-
tween streamflow and these variables. However, there is also
a weaker link between these variables such that a change in
SRI or STI is not as strongly linked to an eventual change in
streamflow as much as it is for a change in SWE.

Finally, results for the three conceptual reservoirs SML,
GWL and LWL show an improvement for over half of the
whole squares, with a greater number of whole squares im-
proved for the GWL and slightly above zero median for
SML. This suggests that including these three variables in the
state vector can potentially yield improvements for stream-
flow predictions. Though the relationship between the wa-
ter level in these conceptual reservoirs and streamflow at the
outlet is not exactly linear, mainly due to reservoirs having
multiple orifices (see Fig. 2) and the time lag before wa-
ter reaches the outlet, it may be sufficiently near linear such
that streamflow DA yields an overall improvement for most
whole squares. For example, the median correlation coeffi-
cient of a simple linear regression between each reservoir for
each whole square and the streamflow at the outlet is 0.12,
0.49 and 0.15 for SML, GWL and LWL respectively.

Samuel et al. (2014) and Trudel et al. (2014) found that
updating soil moisture with streamflow observations actu-
ally deteriorated soil moisture simulation compared with real
soil moisture observations. However, there are notable differ-
ences between these studies and the present one. Aside from
the different features of the study area and model structure,
the use of synthetic data instead of real data likely strength-
ens the link between variables and observations. Since syn-
thetic observations are constructed using the same model and
parameters as the model in which the observations are assim-
ilated, there is no difference in scale between observations
and modelled variables, which is often an important source
of error for studies using real data.

Nonetheless, the inclusion of VOL, SML, GWL and LWL
in the state vector were considered during the assimilation
of streamflow at the outlet. The impact of each scenario for
streamflow predictions are compared in Sect. 4.2.1.

4.1.2 SWE data assimilation

The same analysis was performed for SWE data assimila-
tion from synthetic snow pillows. However, unlike stream-
flow, SWE is a state variable such that any changes made
upon it will have repercussions on future simulations. SWE
at the location of the snow pillows should therefore be in-
cluded in the state vector and also potentially whole squares
in the vicinity that are correlated with these locations. A spa-
tial analysis was performed first to determine the spatial ex-
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Figure 6. Distribution of the mean square skill score of SWE over
the watershed when assimilating SWE located at (a) Mount Wells,
(b) Mount Pondosy and (c) Tahtsa Lake. The open loop is used as a
reference. Values below −1 are cut off from the legend.
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Figure 7. Box plot of the mean square skill score for each variable
when assimilating SWE from all three snow pillow locations. The
open loop is used as a reference. Outliers are not shown for visibility
purposes.

tent upon which each snow pillow may affect modelled SWE
in other whole squares.

Figure 6 shows the MSSS of SWE on the spatial level for
the snow pillows located at Mount Wells, Mount Pondosy
and Tahtsa Lake, using the open-loop scenario as a reference.
For each figure, the whole square that shows the most im-
provement is the area where the corresponding snow pillow is
located. Whole squares that show improvements are mainly
located around snow pillows, but the range differs for each
snow pillows. Various areas in remote locations also show
improvements for each snow pillow. As mentioned earlier,
relationship with geophysical factors, such as distance from
snow pillow, elevation and land cover, could be used to ex-
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Figure 8. Box plot of the mean square skill score for each variable
when assimilating basin-wide snow cover area. The open loop is
used as a reference. Outliers are not shown for visibility purposes.

plain this variation, but a simpler approach was used such
that the covariance localization was limited to whole squares
showing improvements only. The covariance elements repre-
senting all the other whole squares were set to zero.

As for the state vector configuration, Fig. 7 shows the
MSSS computed for each variable within the extent of whole
squares, which were positively impacted by SWE DA during
the covariance localization process. The open-loop scenario
was used again as a reference. The results show no signif-
icant improvement for any other variable except for SWE
itself, which yields only positive MSSS values by design.
The lack of overall improvement for water-related variables
(VOL, SML, GWL, LWL) is coherent with the time delay
with changes in SWE. As for the other snow-related vari-
ables (STI, SRI), although there may be a relationship with
SWE, it is non-linear (US Army Corps of Engineers, 1956),
which is further weakened by the distance separating SWE
at a snow pillow from STI or SRI at another location.

Only the inclusion of SWE surrounding a given snow pil-
low in the state vector is considered during the assimilation
of SWE for streamflow predictions in Sect. 4.2.2.

4.1.3 SCA data assimilation

Like streamflow, SCA is not a state variable. It is computed
in parallel with CEQUEAU without having any direct effect
on future simulations. In order to have any impact during the
assimilation process, there must exist a linear or sufficiently
near-linear correlation between SCA and state variables. The
update step should bring improvements to the state variables
if the computed correlation also reflects the true correlation.

Figure 8 shows a box plot of the MSSS computed for each
variable when they are individually included in the state vec-
tor. The open-loop scenario is used as a reference. Results
show that global snow cover data assimilation yields little
or no improvement for all state variables compared to the
open-loop scenario. For most cases, a strong deterioration is
observed, suggesting that the way SCA data are used in this
study is not well adapted for the current assimilation pur-
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Figure 9. Continuous rank probability skill score of the streamflow
ensemble when assimilating streamflow at the outlet. The open loop
is used as a reference. The forecast horizon varies from 1 to 50 days.

poses using the EnKF. Marcil et al. (2016) have shown that
there exists a relationship between the SCA and the percent-
age of cumulated streamflow at the outlet, but it is neither lin-
ear nor is cumulated streamflow a state variable. The EnKF
requirement that relationships between variables be linear
and synchronized severely limits the value of global SCA
data for the current application. This result is coherent with
the findings presented by Clark et al. (2006). Using a model
which incorporates snow cover area as a state variable, such
as the snowmelt runoff model (SRM; Martinec, 1974) or the
Soil and Water Assessment Tool (SWAT; Arnold et al., 1998),
could overcome the issue of non-linearities between vari-
ables, while using recursive or smoother approaches to data
assimilation could help with the time lag issue between ob-
servations and state variables.

Given the absence of overall improvement for all the state
variables, the impact of SCA DA on streamflow predictions
was not considered in this study.

4.2 Streamflow forecasts

Aside from granting insight into the sensitivity of the system
to the state vector configuration, the analysis in the previous
section presented a list of state vector configurations likely
to favour streamflow predictions improvements based on the
improvement of various state variables. This section presents
ensemble streamflow prediction results for each configura-
tion selected for each type of data assimilated.

4.2.1 Streamflow data assimilation

Focusing on the case where only streamflow at the outlet are
assimilated, Fig. 9 presents the CRPSS of predicted stream-
flow at the outlet over a forecast horizon of 50 days using
the open loop as a reference. Only the state vector configu-
rations that showed some improvements in the state vector
configuration analysis section are shown.

First, high values of CRPSS for short-term forecasts can
be observed for the case where only volumes are included in

the state vector (blue curve). The CRPSS subsides asymptoti-
cally to zero over time, which shows assimilating streamflow
to update volumes improves streamflow predictions com-
pared to the open loop only for a few days, after which
the impact of streamflow assimilation becomes insignificant.
The duration of the impact depends on the residence time of
the water stored in the model’s partial squares (VOL). A rel-
atively short-lived impact would mean a relatively short resi-
dence time. The high initial impact is not surprising given the
nearly linear relationship between streamflows and volumes.
Assimilation of streamflow observations generate a globally
positive update on volumes, as seen in Fig. 5, which in turn
strongly affects simulated streamflows.

Second, adding each of the three water reservoirs individ-
ually to the volumes yields different results. Even though
lake water levels showed improvements over the majority
of whole squares, the impact on streamflow predictions (red
curve) is marginal compared to the case where only vol-
umes are included in the state vector. This is because the
weights attributed to lakes in CEQUEAU are very low for
most whole squares. Only about 0.5 % of the entire water-
shed is modelled using the conceptual lake reservoir and its
parameters, unlike the soil moisture and groundwater reser-
voirs, which are present in every whole square. Adding SML
(green curve) or GWL (magenta curve) instead of LWL not
only increases the initial CRPSS, but also slows the decrease
over time. This is consistent with the improvements observed
for the updated water levels for over half of the whole squares
compared with the open-loop case, which translate as added
improvements over the case where only volumes are included
in the state vector. The slower decrease over time is also
coherent with the increase in time it takes for water in the
reservoirs to reach the outlet compared with water already
in the routing system. The groundwater reservoir is shown
to have an initially similar, but longer-lasting positive impact
than the soil moisture reservoir. The soil moisture reservoir
controls mainly the fast-flowing surface runoff, the amount
of evapotranspiration leaving the system and the amount of
water infiltrating into the groundwater reservoir. The ground-
water reservoir has a numerically unlimited capacity, with no
way out for the water except through evapotranspiration and
the outlets that feed the routing system, making its impact
on streamflows last longer than the relatively ephemeral soil
moisture reservoir.

Finally, the scenario where all four variables are added to
the state vector is analyzed (orange curve). The difference
noted with the other curves is mainly caused by the simulta-
neous inclusion of SML and GWL, since all the other curves
already have VOL included, while LWL was already shown
to have very little impact on streamflow at the outlet. Com-
paring the fully combined case with the VOL+GWL case,
although the initial improvement is similar between the two,
with the former slightly above, the latter has a slower de-
crease over time. This suggests that the addition of SML in-
terferes with the GWL update. As seen for the state vector
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configuration analysis (Fig. 5), the assimilation of stream-
flow at the outlet had a positive impact on a greater number
of whole squares for the GWL than the SML. Here, the in-
creased number of deteriorated SML, which infiltrates into
the groundwater reservoirs, hinders the GWL updates such
that the results show some deterioration compared with the
VOL+GWL case, even though it is still an improvement over
the VOL only updates.

These results have some similarities and differences with
other studies. For example, Abaza et al. (2015) assimilated
streamflow at the outlet using the EnKF to update two state
variables (soil moisture in the intermediate and deep lay-
ers of the hydrological model used in their study) using a
time step of 3 h. The resulting gain in CRPS was high for
the first time step and decreased quickly as a function of
the forecast horizon such that mainly the first 24 h benefited
from the data assimilation. Chen et al. (2013) found simi-
lar results with multiple performance criteria when assimi-
lating streamflow using a variant of the EnKF (the ensem-
ble square root filter) to update various state variables repre-
sented by conceptual reservoirs. The observed improvement
duration was even shorter, lasting less than 12 h during flash
flood events. The difference in impact duration is likely re-
lated to the different water retention time in each watershed.
These studies were conducted on much smaller watersheds
(all less than 800 km2) than the Nechako watershed (around
14 000 km2), further highlighting that the performance of as-
similation techniques is related to watershed characteristics.

4.2.2 SWE data assimilation

Following the same method as with streamflow, this section
focuses on the case where only SWE from snow pillows
were assimilated. Since the state vector configuration anal-
ysis showed only improvements for the SWE variable, it was
the only variable added to the state vector for streamflow
forecast. However, since there are three observations avail-
able, Fig. 10 presents the CRPSS of predicted streamflow at
the outlet when assimilating SWE from each snow pillow in-
dividually and collectively.

An interesting result is that the impact of each snow pil-
low on streamflow predictions varies greatly. The impact of
the snow pillows located at Mount Wells (green curve) and
Mount Pondosy (blue curve) are dwarfed in comparison with
the impact of the snow pillow located at Tahtsa Lake (ma-
genta curve). This is coherent with results from Marcil et
al. (2016) over the same watershed. The lower impact of
the Mount Pondosy snow pillow is explained by the rela-
tively small region of influence observed in Fig. 6b. As for
Mount Well, even though it has the largest area of influence
(Fig. 6a), it is also the snow pillow affecting the regions with
the lowest altitudes and also the least amount of maximum
SWE. Although the region affected by the Mount Wells snow
pillow contains a mean annual maximum SWE of 410 mm, it
is 40 % less than for the region affected by the Tahtsa Lake
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Figure 10. Continuous rank probability skill score of the stream-
flow ensemble when assimilating SWE from all three snow pillow
locations. The open loop is used as a reference. The forecast horizon
varies from 1 to 50 days.
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Figure 11. Continuous rank probability skill score of the streamflow
ensemble when assimilating streamflow at the outlet and SWE from
all three snow pillow locations. The open loop is used as a reference.
The forecast horizon varies from 1 to 50 days. Lack of parentheses
indicates that the variable is affected by both types of observations.

snow pillow, which contains a mean annual maximum SWE
of 682 mm.

Nonetheless, assimilating all three snow pillows yields
better results for mid-term streamflow forecasts (Fig. 10, red
curve). Even though the Tahtsa Lake snow pillow carries the
most importance, the other snow pillows have a positive ef-
fect on regions that are not reached by the Tahtsa Lake snow
pillow area of effect. The assimilation of all three snow pil-
lows does yield short-term forecasts improvements, but a bet-
ter score is reached over time. This is because the impact of
SWE over streamflow at the outlet occurs during snowmelt,
which can occur at a much later date than when SWE obser-
vations are assimilated. Although the curve gives the impres-
sion of a monotonous increase over time, this is only due to
the limit imposed on the forecast horizon. At a further hori-
zon, the curve should eventually peak and decrease asymp-
totically to zero since there is no accumulation of snow from
year to year. Over time, the simulation should eventually be-
come indistinguishable from the open-loop scenario.
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Table 1. Overview of multivariate DA scenarios.

Streamflow DA updates SWE DA updates:
Method VOL + GWL? SWE? VOL + GWL? SWE?

VG-S yes no no yes
VG2-S yes no yes yes
VG-S2 yes yes no yes
VG2-S2 yes yes yes yes

Franz et al. (2014) also assessed the impact of SWE data
assimilation on ensemble predictions, but using real obser-
vations. Their results showed little improvement of forecast
performance through SWE data assimilation, but they high-
lighted the role of a possible bias in the observations, as well
as the difference in scale between the point-scale observa-
tions and the basin average SWE simulated by the model. In
this synthetic experiment, no bias was specified on observa-
tions and there is no difference in scale between modelled
and observed SWE, which could explain the differences ob-
served between the two studies. Biased observations and me-
teorological input were purposely omitted in this study, but
may be added in future works to test the robustness of the
approach.

4.2.3 Combined streamflow and SWE data assimilation

The focus now shifts to the case where streamflow at the
outlet are simultaneously assimilated along with SWE from
the three snow pillows. The state vector configuration, which
provided the best results from the streamflow data assimila-
tion case, is used (VOL+GWL) along with the best config-
uration from SWE data assimilation (SWE only). Although
these configurations worked best with their respective data
assimilation case, they could behave differently when both
streamflow and SWE are assimilated together.

Table 1 presents four configurations for the combined as-
similation of streamflow and SWE observations. These con-
figurations differ in the overlap of their effect during the up-
date phase such that some configurations allow both observa-
tions to simultaneously update the same variable, while oth-
ers do not.

The performance of these configurations on the CRPSS
for predicted streamflow at the outlet is presented in Fig. 11.
While all four configurations perform in a very similar way
for short-term streamflow predictions, the group forms two
pairs that differ in that the blue-magenta group allows SWE
observations to update modelled streamflow, while the green-
red pair does not. Although allowing SWE data assimilation
to update VOL and GWL changes very little, a drop in per-
formance occurs if streamflow assimilation updates modelled
SWE. This is coherent with the state vector configuration
analysis performed in the previous section (Figs. 5 and 7),
where SWE data assimilation is shown to have a weak im-
pact on VOL and a median MSSS around 0 for GWL, while
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Figure 12. Continuous rank probability score for short-term fore-
casts (average of forecast horizons 1 through 5 days) of various data
assimilation scenarios as a function of the month of the year.
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Figure 13. Continuous rank probability score for mid-term fore-
casts (average of forecast horizons 25 through 50 days) of various
data assimilation scenarios as a function of the month of the year.

streamflow assimilation deteriorated around 75 % of SWE
whole squares when they were included in the state vector.

Overall, the simultaneous assimilation of streamflow and
observed SWE yields important improvements over the en-
tire forecast horizon analyzed, with the streamflow data
assimilation improving mainly short-term streamflow fore-
casts and SWE data assimilation improving mainly mid-term
streamflow forecasts. CRPSS values for combined assimila-
tion of both streamflow and SWE observations were supe-
rior to CRPSS values for individual assimilation of stream-
flow or SWE over all forecast horizons, with the exception of
forecast horizons higher than 45 days, where CRPSS values
for SWE DA are slightly higher. This reveals that the up-
dated VOL and GWL by streamflow data assimilation may
be very beneficial for short-term forecasts; furthermore, they
do not further improve the mid-term forecasts when com-
bined with SWE data assimilation in comparison with the
scenario where only SWE data are assimilated.

Moreover, the assimilation of each data type (streamflow
and SWE) differs not only by their impact over the forecast
horizon, but also over the time of the year. Figures 12 and 13
show the monthly CRPS for the open loop (black curve), the
streamflow data assimilation including VOL and GWL (blue
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curve), the SWE data assimilation of all snow pillows (red
curve) and the simultaneous, but separated, streamflow and
SWE data assimilation (VG-S; green curve) for short-term
(average of horizon from 1 to 5 days) and mid-term (aver-
age of horizon from 25 to 50 days) streamflow forecasts. The
CRPS is shown for the open loop to show the performance
change over the time of the year and the period when im-
provement is most needed. Recall that the CRPS ranges from
zero to infinity, with zero being a perfect forecast. The period
from May to July, which corresponds to the melt period, is
therefore the period when the CRPS is the highest for short-
and mid-term forecasts are the most problematic. The scores
for mid-term forecasts are lower than for short-term forecasts
because the true weather is used as input for forecasts such
that the open loop slowly converges to the true states over
time.

Assimilating streamflow results in an improved score over
the entire year for short-term forecasts, although little gain
is obtained for mid-term forecasts. This steady improvement
is to be expected since streamflow here is always non-zero
and observations are available all-year round. On the other
hand, the impact of the assimilation SWE from snow pillows
is limited mainly to the melt period for both short-term and
mid-term forecasts. However, this period corresponds to the
problematic period when most gain can be obtained. The as-
similation of SWE provides a better score than the assimi-
lation of streamflow for the same period and improves go-
ing from short-term to mid-term forecasts. SWE assimilation
complements streamflow assimilation as observed from the
performance of the simultaneous assimilation, which yields
both the steady improvements over the year and the impor-
tant gain during the snowmelt period.

5 Conclusion

This study investigated the impact that multivariate data as-
similation can have on streamflow forecasts using the CE-
QUEAU hydrologic model applied over the Nechako water-
shed in a synthetic experiment. The study also showed the
importance of the state vector configuration on streamflow
forecasts when using the EnKF.

Streamflow data assimilation was found to improve short-
term streamflow forecast considerably. However, the impact
dissipated relatively rapidly as a function of the forecast hori-
zon, which was slowed by adding groundwater conceptual
reservoir levels to the state vector. Improvements were ob-
served for all months of the year: low-flow and high-flow
periods alike.

On the other hand, the assimilation of snow water equiva-
lent data from synthetic snow pillow data yielded streamflow
forecast improvements mainly during the snowmelt period.
Although the period lasts approximately 3 months, the im-
pact was found to be greater than streamflow data assimila-
tion over the same period. It was also noted that assimilat-

ing each snow pillow data individually yielded different re-
sults, with various radii of influence, such that the improve-
ment from assimilating all three snow pillows simultaneously
covered most of the watershed and yielded streamflow fore-
casts which outperformed forecasts from any single snow pil-
low data assimilation. Over the forecast horizon, the peak of
improvement was greater than or equal to the 50-day limit
over which forecasts were simulated, which contrasts with
the short-lived impact of streamflow data assimilation.

Given their complementarity, streamflow and snow wa-
ter equivalent data were assimilated simultaneously. The re-
sulting streamflow forecast inherited the strengths from both
types of data, having a strong, positive impact for both short-
term and mid-term forecasts. Improvements were obtained
for all periods of the year, but mainly during the snowmelt
period, which is normally the most problematic.

The assimilation of basin-wide snow cover area failed to
improve the simulation of any state variable. The most prob-
able factor was determined to be the absence of snow cover
area as a state variable or a proxy with a sufficiently linear
relationship with SCA. Suggestions to improve the method
to accommodate for snow cover area are to use a model that
incorporates snow cover area as a state variable and/or to use
a data assimilation approach, which takes into account a time
lag between observations and state variables.

The results obtained are conditional to some assump-
tions and limitations. First, all results depend on the gen-
eral method and parameters used in creating the synthetic
framework. Since this is a synthetic experiment, it is as-
sumed that a real experiment would behave similarly to a
simulation using CEQUEAU with a specific set of parame-
ters and inputs. Second, the potential impact of data assimila-
tion on streamflow forecasts observed depended on using the
true weather inputs. Using real weather inputs may decrease
this impact. Third, it is assumed that the error representations
for the model inputs and the observations are known. In this
study, they have been generated using specific distributions
and variances to compromise between the need for normal
distributions and the need to remain within the physical lim-
its of the variables without introducing a bias. Finally, the
impact of errors from the model parameters is assumed to
be negligible, such that the set of parameters was not altered
from the true simulation’s set of parameters.

The assumptions and limitations listed reveal several chal-
lenges posed by the assimilation of multiple types of obser-
vations for streamflow forecasting purposes. Future work in-
cludes investigating into the performance of multivariate data
assimilation in the presence of biases and unknown errors, as
well as the economic impact of streamflow forecasts gener-
ated with multivariate data assimilation on real management
practices.
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6 Data availability

The synthetic meteorological input and observations used
in this study are available at https://dx.doi.org/10.6084/m9.
figshare.4057653.v1.
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