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1 Definition of drought indices

This section provides an overview of the selected drought indices, which were
shortly presented in Section 2.6.

1.1 Standardized precipitation index (SPI)

SPI (McKee et al., 1993; Svoboda et al., 2012) is a widely-used drought index
(Zargar et al., 2011). To compute this index, precipitation data is first fitted to a
probability distribution. We use a gamma distribution with the shape parameter α

and the scale parameter β (Wu et al., 2005). The fitted parameters α̂ and β̂ are
then used to find the cumulative probability G(P) of the precipitation amount P
(Edwards, 1997):

G(P) =
∫ P

0
g(x)dx =

1

β̂ α̂ Γ(α̂)

∫ P

0
xα̂−1e

−x
β̂ dx (1)

where Γ is the gamma function or Γ(α) =
∫

∞

0 xα−1e−xdx. The probability of null
precipitation q is estimated by dividing the number of dry months by the length of
the monthly time series. It is accounted for by:

H(P) = q+(1−q)G(P) (2)

To compute the value of SPI, an equiprobability transformation is made from the
cumulative probability H(P), i.e., H(P) is transferred to a standard normal random
variable with a mean of zero and a variance of unity:

SPI = Φ
−1(H(P)) (3)

where Φ is the standard normal cumulative distribution function. SPI takes monthly
precipitation as input and can be computed at various time scales, from 1 month to
24 months. In this study, we use a 12-months time scale. An SPI-value smaller than
-1 indicates a dry period, and an SPI-value larger than +1 a wet period (Svoboda
et al., 2012).

1.2 Standardized precipitation evapotranspiration index (SPEI)

SPEI (Vicente-Serrano et al., 2009) has been developed to account for the impact
of potential evapotranspiration on droughts, especially in a changing climate. Its
computation is similar to SPI. For SPEI, the difference between precipitation and
potential evapotranspiration, rather than only precipitation, is used in the index
computation. This time series is fitted to a probability distribution as described
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for SPI. A log-logistic distribution (e.g., Ashkar and Mahdi, 2006) is used here,
following Vicente-Serrano et al. (2009). The sensitivity of SPEI to potential evap-
otranspiration is higher than other drought indices (Vicente-Serrano et al., 2015),
such as PDSI or RDI (defined in Sect. 1.5 and 1.6).

1.3 Rainfall anomaly index (RAI)

RAI can be used to analyze dry or wet periods. When used to study droughts, RAI
(e.g., Keyantash and Dracup, 2002) represents a ranking of yearly precipitation,
compared to the most negative precipitation anomalies recorded. It is defined as
follows:

RAI =−3
P− P̄
Ē− P̄

(4)

where P is the annual precipitation, P̄ the mean annual precipitation and Ē is the
precipitation average of the ten driest years. Negative values of RAI indicate dry
periods.

1.4 Effective drought index (EDI)

In contrast to the other drought indices, EDI (Byun and Wilhite, 1999) is com-
puted using daily precipitation to better take into account the effect of precipitation
variability on droughts. The effective precipitation EP is calculated first:

EP =
i

∑
n=1

∑
n
d=1 Pd

n
(5)

where i is the summation period and Pd is the precipitation of d days before the end
of the period i. We choose i = 365 days in our application, i.e., annual averages.
EP is then normalized to calculate the EDI:

EDI =
EP−EP

σEP
(6)

where EP is the mean of the effective precipitation (EP) and σEP its standard de-
viation.

1.5 Palmer drought severity index (PDSI) and Palmer hydrological
drought index (PHDI)

PDSI was developed by Palmer (1965) to better consider the role of evapotranspi-
ration on droughts and to ”measure the cumulative departure of moisture supply”
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during dry periods. This index is composed of a simplified water balance of a
basic two-layer soil model which is then compared to a reference water balance
time series. It is a dimensionless number, usually ranging between -4 and +4, with
negative values indicating dry periods (Keyantash and Dracup, 2002). It is widely
used, especially in the United States, but it is relatively involved to calculate (Ja-
cobi et al., 2013). In addition, it assumes a homogeneous soil type and the time
window considered by the index varies depending on the weather.

PHDI (Palmer, 1965) is a variation of the previous index which has been devel-
oped to better represent hydrological droughts. To achieve this, PHDI applies the
same simplified soil model as PDSI, but stricter criteria are used to define the limits
of the wet and dry periods. This results in an index which reacts more gradually
than the original Palmer index (Keyantash and Dracup, 2002).

In this study, we use the Matlab tool developed by Jacobi et al. (2013) to cal-
culate PDSI and PHDI.

1.6 Reconnaissance drought index (RDI)

The RDI (Tsakiris and Vangelis, 2005) is based on the FAO aridity index αi, de-
fined as:

αi =
∑

12
j=1 Pji

∑
12
j=1 PETji

(7)

where Pji is the monthly precipitation of the year i and PETji is the monthly poten-
tial evapotranspiration. The standardized RDI is computed as followed (Tsakiris
and Vangelis, 2005):

RDI =
ln(αi)− ln(αi)

σln(αi)
(8)

where σln(αi) is the standard deviation of the natural logarithm of the aridity index
and ln(αi) its mean.

2 Computation of potential evapotranspiration

In this section, we give more precision concerning our computation of potential
evapotranspiration (ET0), sometimes referred to as reference evapotranspiration.

ET0, which is used in the calculation of SPEI, PDSI, PHDI, and RDI is esti-
mated using the FAO Penman-Monteith equation (Allen et al., 1998), defined as
follows:
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ET0 =
0.408∆(Rn−G)+ γ

900
T+273 u2(es− ea)

∆+ γ(1+0.34u2)
(9)

where Rn is the net radiation at the crop surface [MJ m−2 day−1], T represents the
mean daily air temperature [◦C], u2 indicates the wind speed at two meters above
ground [m s−1], (es− ea) symbolizes the saturation vapor pressure deficit [kPa], ∆

is the slope of the vapor pressure curve [kPa ◦ C−1], γ depicts the psychrometric
constant [kPa ◦ C−1], and G represents the soil heat flux density [MJ m−2 day−1],
assumed to be zero in our analysis.

Some indices, for example PDSI, are often computed using simpler expressions
for potential evapotranspiration that are based only on temperature, such as the
Thornthwaite equation (Jacobi et al., 2013). However, we compute all indices with
identical ET0 to avoid an undue influence on the performance of the drought indices
by the choice of ET0.

The hydrological model, described in Sect. 2.3 of the method section, also
uses daily inputs of reference evapotranspiration as estimated by the FAO Penman-
Monteith equation (Allen et al., 1998). ET0 is then multiplied by a time-varying
crop coefficient to account for the different crop types and their spatial distribution
in the catchment. Hence, the final model input is the spatially-explicit daily crop
evapotranspiration under standard conditions (ETc), corresponding to the maxi-
mum evapotranspiration of each crop without water limitation. The crop coeffi-
cients are taken from Allen et al. (1998). Although ETc is used to simulate hy-
drological impacts, it is not used in the computation of drought indices. Here, we
use ET0 in all calculations. This is consistent with the approaches used in other
studies. We want to mimic the typical utilization of drought indices, which are
usually computed directly from meteorological data (e.g., Zarch et al., 2015). To
test the impact of our assumption, we repeated the analysis presented in this paper
using ETc instead of ET0 (results not shown) and found very similar correlations
and relationships between drought indices and hydrological variables.

The potential evapotranspiration used by the hydrological model and in the
computation of drought indices is calculated from the outputs of a weather genera-
tor (Sect. 2.4 of the method section). To validate the outputs of the weather gener-
ator (Sect. 3.2), time series of potential evapotranspiration are prepared, based on
measured time series. More precisely, we use 23 years of precipitation and temper-
ature (1988-2011) measured at the meteorological station of Ejea de los Caballeros
(Sect. 2.2). Time series of radiation, wind, and relative humidity are also needed to
calculate ET0. However, these variables are only measured for the last 9 years. For
the 14 years with missing data, ET0 is calculated using the daily mean radiation,
wind, and relative humidity averaged over the last 9 years and on the actual mea-
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surement of temperature. Differences between the usual calculation of ET0 and the
calculation based on averaged radiation, relative humidity, and wind are small. The
Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) between the ET0 using the full
data set and the ET0 based on averaged data is above 0.85 for the 9 last years.

3 Detailed comparison of the correlation coefficients

We analyze here the dependency between the different drought indices, listed in the
main publication, and the corresponding simulated mean annual discharge, water
deficit, and hydraulics heads. For this purpose, we use the Pearson’s linear corre-
lation coefficient r between the drought indices and the hydrological variables:

r =
cov(DI,x)

σDIσx
(10)

where cov is the covariance, DI is the value of the drought index and x is the
hydrological variable under consideration. The range of r is -1 to +1, where +1
indicates a perfect positive correlation, -1 is a perfect negative correlation, and a
value of zero signifies no correlation.

We conduct the same analysis for present and future climates, and for the dif-
ferent irrigation scenarios. Irrigation and climate scenarios are described in the
main publication. The results are summarized in Figure 1 and are subsequently
discussed. It is important to note that the correlation coefficients only test whether
a linear relationship between two sets exists, regardless of the coefficients of the
corresponding linear regression (see Section 7 of the publication).

3.1 Comparison for present climate conditions

For the present climate, discharge and water deficit are reasonably well correlated
with drought indices (|r| > 0.5, Figure 1, left column). For hydraulic heads, the
correlation coefficient is generally poor (between 0.2 and 0.5, not shown in Figure
1). Hydraulic heads respond slower to drought than discharge and water deficit.
Therefore, a lag-time between drought index and hydraulic head response can be
expected. This was confirmed by a cross-correlation analysis, which shows a de-
layed response in some of the wells (e.g., PO8), but no evidence of time-lags in
others (e.g., PO10). Correlation coefficients between hydraulic heads and drought
indices in Figure 1 incorporate these time-lags, i.e., the correlation coefficients
shown are the maximum correlation coefficients between hydraulic heads and the
drought indices of 1-16 months before. Because the responses of the aquifer to the
meteorological conditions are non-linear, the reasons for these differences between
the wells are difficult to explain. Observation wells situated in the highest part of
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the aquifer (e.g., PO8) are generally more sensitive to drought because the fluctua-
tions of the water table are larger in this part of the catchment. In the lower part of
the catchment, dry periods are not sufficient to significantly lower the water table
because of the large water storage.

Between the different drought indices, RAI, RDI, and SPEI exhibit the largest
correlation with discharge and water deficit. For these indices, the correlation co-
efficient varies between r = 0.76 and r = 0.82 for annual discharge and r = -0.78
and r = -0.81 for water deficit (Figure 1, panels a and c). Indices EDI and PDSI
show the smallest correlation (between 0.41 and 0.59 for discharge). PDSI was
developed for the climate of the Great Plains in USA (Zargar et al., 2011) and,
as our study concentrates on Mediterranean climate, a lower correlation for this
index can be expected. In our study, the added information of daily variability of
precipitation, as considered by the EDI index, did not improve the quality of the
prediction. The relatively low correlation between EDI and discharge is probably
a consequence of the different weights given to the precipitation data. Equation
1.4 shows that the precipitation at the end of the yearly time series is given more
weight than the precipitation at the start of the time series. This choice reduces
the correlation with annual mean discharge and yearly water deficit. Correlation of
drought indices with hydraulic heads in a particular observation well is similar for
all indices, even if large differences were computed between the wells.

Overall, our results for the current climate (Figure 1, left column) are in agree-
ment with earlier studies. For example, Vicente-Serrano et al. (2012) compared
the correlation between standardized stream flow at monthly time scale (which is
an estimation of average discharge) and 6 drought indices, including SPI, SPEI,
PDSI, and PHDI. Similar to our results, SPEI showed the best correlation with dis-
charge. SPI had a lower correlation than SPEI, but the difference was relatively
small in both studies. In our case, the correlation coefficient of SPI with mean an-
nual discharge is 0.68, while the correlation with SPEI is 0.83 in the non-irrigated
case.

In general, simpler indices based on precipitation only, e.g., SPI or RAI, ex-
hibit similar or larger correlation with the studied hydrological variables than in-
dices that include ET0 (Figure 1, panels a and c). For example, SPEI has the
largest correlation with annual discharge in present climate (r = 0.81, average of
both land-use scenarios), but RAI exhibits a very similar correlation (r = 0.80).
This results is consistent with findings of previous studies (e.g., Keyantash and
Dracup, 2002). Indices based only on precipitation also correlate well with wa-
ter deficit because precipitation correlates strongly with water deficit (r =−0.75),
and, hence, also with drought indices based only on precipitation (Figure 1, panel
c). However, the correlation between the changes of precipitation and water deficit
in different climates is low. For example, the water deficit increases in the hydro-
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logical simulations driven by the future time series of meteorological inputs from
all considered climate models, but the annual mean precipitation increases in some
climate models and decreases in others. This situation might be problematic for
accurate climate-change impact predictions.

3.2 Comparison between present and future climates

The correlation coefficients between drought indices and hydrological variables in
future climate are computed for each climate scenario (defined by the different re-
gional climate models) and then averaged over the scenarios. The results differ
widely between the regional climate models. In the most severe case, the correla-
tion coefficient between discharge and EDI is 0.18 using the ETHZ model, while a
value of 0.55 is attained using the MPI model (Figure 1, panel b). This difference
between the climate scenarios is nevertheless lower when the drought index cor-
relates well with the hydrological variable. For example, the maximal difference
between the correlation coefficient r for the four climate scenarios is 0.2 for the
three best indices (RAI, RDI, and SPEI) and discharge.

The correlation coefficients between the drought indices and the hydrological
variables for present and future climates are quite similar (Figure 1, left and right
columns). The average difference between the present and future correlation coef-
ficients of discharge and drought indices is only 0.02 (average of the four climate
scenarios). Moreover, the drought indices which correlate best with discharge in
present climate (RAI, SPEI, and RDI, 0.76 <= r <= 0.82) show also the best cor-
relation with future discharge (0.73 <= r <= 0.84). In addition, for water deficit,
the indices which correlate well in present climate do so in future climate. The cor-
relation coefficients of hydraulic heads and drought indices are similar in present
and future climates, too.

3.3 Comparison between different land-uses in present and future cli-
mates

The correlation of drought indices and hydrological variables is similar for the
different irrigation scenarios (Figure 1). Drought indices which correlate best in
scenarios with irrigation (PIRR, FUTIRR) correlate similarly well in the scenario
without irrigation (NOIRR).

Drought indices correlate slightly better with discharge in the scenario without
irrigation compared to scenarios that include irrigation (average difference in cor-
relation: 0.04 in present climate, 0.03 in future climate). This result is nevertheless
consistent for all indices in present and future climates. This can easily be ex-
plained as the drought indices consider only precipitation as water input, whereas
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discharge is of course affected by irrigation water.
For water deficit, no consistent differences in the correlation coefficient be-

tween the two irrigation scenarios are observed in the present climate (Figure 1,
panel c). In future climate, the correlation between drought indices and water
deficit is slightly larger in the scenario without irrigation (Figure 1, panel d). The
difference is small (on average: 0.08), but consistent for all indices. As stated
above, irrigation is an additional source of water not accounted for in the drought
indices. Irrigation influences actual evapotranspiration and its influence increases
in future climate because of the warmer conditions. Hence, the drought indices
correlate less with water deficit when irrigation is present and the decrease in cor-
relation is more pronounced in the future.

For hydraulic heads, the influence of the irrigation scenarios depends on the
location of the wells. Observation wells situated at higher surface elevation (e.g.,
PO8) do not show large differences in the correlation coefficient between the ir-
rigated and non-irrigated scenarios (average difference: 0.04 in present climate).
However, hydraulic heads in the wells in the lowest part of the catchment (e.g.,
PO10) show larger differences in the correlation coefficient (average difference:
0.12). As the majority of cultivated fields are situated in the lower parts of the
catchment, most of the irrigation is applied in this area, resulting in a larger im-
pact of irrigation on the hydraulic heads in this zone. PO8 correlates better with
the drought indices when irrigation is present (Figure 1, panels e and f). PO10
shows the opposite behavior (Figure 1, panels g and h). Indeed, irrigation has
different impacts on the correlation coefficients for hydraulic heads: Firstly, as in
the discharge case, correlation coefficients between hydraulic head and drought in-
dices are smaller when irrigation is present because irrigation is an additional water
source which is not directly considered. Secondly, irrigation raises the water table,
resulting in an increased impact of climate on hydraulic heads (von Gunten et al.,
2015) and so in a larger correlation with drought indices. The relative importance
of these effects depends on the position and depth of the observation well.
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López-Moreno, J. I. (2015). Contribution of precipitation and reference evapo-
transpiration to drought indices under different climates. J. Hydrol., 526:42–54.
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Figure 1: Correlation coefficients r between the drought indices (DI) and the hydro-
logical variables (discharge, water deficit, and hydraulic heads). In future climate
(right column), the plotted bars are the average of the outputs of the four regional
climate models. See Table 2 of the publication for information about the climate
models.
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