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Abstract. Statistical seasonal forecasts of 3-month stream-
flow totals are released in Australia by the Bureau of Mete-
orology and updated on a monthly basis. The forecasts are
often released in the second week of the forecast period, due
to the onerous forecast production process. The current ser-
vice relies on models built using data for complete calen-
dar months, meaning the forecast production process can-
not begin until the first day of the forecast period. Some-
how, the bureau needs to transition to a service that pro-
vides forecasts before the beginning of the forecast period;
timelier forecast release will become critical as sub-seasonal
(monthly) forecasts are developed. Increasing the forecast
lead time to one month ahead is not considered a viable op-
tion for Australian catchments that typically lack any pre-
dictability associated with snowmelt. The bureau’s forecasts
are built around Bayesian joint probability models that have
antecedent streamflow, rainfall and climate indices as pre-
dictors. In this study, we adapt the modelling approach so
that forecasts have any number of days of lead time. Daily
streamflow and sea surface temperatures are used to develop
predictors based on 28-day sliding windows. Forecasts are
produced for 23 forecast locations with 0–14- and 21-day
lead time. The forecasts are assessed in terms of continu-
ous ranked probability score (CRPS) skill score and relia-
bility metrics. CRPS skill scores, on average, reduce mono-
tonically with increase in days of lead time, although both
positive and negative differences are observed. Considering
only skilful forecast locations, CRPS skill scores at 7-day
lead time are reduced on average by 4 percentage points,
with differences largely contained within+5 to−15 percent-
age points. A flexible forecasting system that allows for any

number of days of lead time could benefit Australian sea-
sonal streamflow forecast users by allowing more time for
forecasts to be disseminated, comprehended and made use of
prior to the commencement of a forecast season. The system
would allow for forecasts to be updated if necessary.

1 Introduction

The Australian Bureau of Meteorology (the bureau) operates
a statistical seasonal streamflow forecasting service to assist
water management agencies in making informed decisions
about water management strategies in the season ahead. The
forecasts provide probability distributions of the total vol-
ume of streamflow over the next 3-month period. The fore-
casts are used by a variety of groups, including federal, state
and local governments and their agencies, such as water man-
agement authorities, agriculture and water management sec-
tors, private businesses, the general public and local commu-
nities. The forecasts help reduce the uncertainty in seasonal
flow volumes to be expected and therefore provide users with
more certainty in decision making. For example, water au-
thorities use forecasts to assist decisions on water alloca-
tion and water restrictions, manage river operations, sched-
ule environmental watering, develop water transfer strategy
and provide water order advice. They also use forecasts to
guide future storage levels, help decide on releases, produce
water allocation outlooks to inform water markets and man-
age risks at construction sites along rivers. State government
agencies use forecasts to make decisions about environmen-
tal monitoring of streams, schedule irrigation, assess flood
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potential, and determine agency resourcing and public mes-
saging.

The forecasts are currently updated once per month. How-
ever, the forecasts are frequently not released until the sec-
ond week of the forecast season because the forecast pro-
duction process is overly time-consuming. Feedback from a
user survey showed many users would prefer the forecasts to
be issued earlier in the month, which would fit in better with
their reporting schedules and operational timelines. The need
to have forecasts issued earlier becomes more pronounced
when issuing a 1-month forecast rather than a 3-month fore-
cast.

The first step in the forecast process is to gather predictor
data and perform quality control. Once the predictor data are
assured to be of good quality, forecasts and forecast products
are generated. The forecasts subsequently need to be checked
for modelling errors and inconsistences. Once all the forecast
products are ready, key messages and other communication
products are developed. Once the communication strategy is
in place, the forecasts are released. The bureau now issues
forecasts for over 200 locations, and so, understandably, the
forecast production process is a time-consuming one.

Currently, the statistical forecasting models rely on pre-
dictor data observed up to the day prior to the first day of the
forecast period. For example, a forecast for the austral spring
(September–October–November) requires observed data up
to (and including) 31 August. The forecasts effectively have
no lead time, and so the forecast lead time can be consid-
ered to be 0 days. Suppose predictor data were available im-
mediately on the first day of the forecast period; then fore-
casts could be generated on the first day of the forecast pe-
riod. Even in this case, the forecast release would occur sev-
eral days into the forecast season, after forecast products and
communication messages were created. In reality, by the time
the forecasts are released, the forecasts typically have a lag
time of at least 7 days.

The lag time in forecast release diminishes the value of
the forecasts. Ideally, the forecasts would be in the hands
of decision makers well ahead of the forecast season. Fur-
thermore, the lag time in forecast release is likely to become
more prominent in the short term because the bureau plans
to release sub-seasonal (i.e. monthly) streamflow forecasts
by 2017. It is therefore important to investigate ways to issue
the forecasts earlier and to quantitatively analyse how fore-
cast accuracy and reliability are affected.

The bureau’s current forecasting system is built around the
Bayesian joint probability (BJP) modelling approach (Wang
and Robertson, 2011; Wang et al., 2009). Although other sta-
tistical methods have been previously investigated for sea-
sonal streamflow forecasting in Australia (e.g. Westra et al.,
2008; Piechota et al., 2001, 1998; Chiew and Siriwardena,
2005), the BJP approach was initially adopted for opera-
tions owing to its wide potential applicability to perennial
and ephemeral catchments, in cases of pervasive missing data
and/or pervasive zero flows and in situations where multiple

sources of predictability were identified. BJP models make
use of two types of predictors: predictors representing initial
catchment conditions and predictors representing the climate
state. The predictors are selected following a rigorous pre-
dictor selection process (Robertson and Wang, 2012). Initial
catchment condition predictors, which act as a soil-moisture
proxy, include streamflow totals over the preceding 1, 2 or
3 months. Predictors representing the climate conditions are
monthly climate indices lagged up to 3 months (Schepen et
al., 2012; Kirono et al., 2010) and include indices represent-
ing the El Niño–Southern Oscillation, variability in the In-
dian Ocean and variability in the southern polar circulation.

Predictors in the BJP modelling approach vary by sea-
son and by catchment. Therefore in operational forecast pro-
duction, it is necessary to prepare a wide range of predic-
tor data from a variety of data sources. Since the Water
Act (2007) was introduced in Australia, the Bureau of Mete-
orology is authorised to collect streamflow data from gauge
owners. Streamflow data are therefore easily obtained for
most gauges; however, the data come in a multitude of for-
mats and need to be processed by data managers prior to
being made available to forecasters. Usually, daily stream-
flow data for each of the forecast locations is available with
a few days’ lag. Climate data are sourced from the Bureau
of Meteorology and the United States National Oceanic and
Atmospheric Administration (NOAA). NOAA Extended re-
constructed Sea surface temperature (ERSST; Huang et al.,
2015) monthly sea surface temperature (SST) grids are used
for calculation of climate indices such as Niño3.4 and the In-
dian Ocean Dipole (IOD) mode index. The ERSST data set
for the previous month is normally available by the fourth
day of the month. Other indices, such as the Antarctic Os-
cillation index (AAO) (Mo, 2000) representing the Southern
Annular Mode, can take up to a week to become available.
The Bureau of Meteorology updates Southern Oscillation in-
dex (SOI) values relatively swiftly, normally within a couple
of days.

As just described, an up to 7-day delay in the forecast pro-
duction process can be attributed to delay in acquiring predic-
tor data. Much of the problem lies in the reliance on data for
complete calendar months. An immediate and obvious res-
olution to the problem is to produce forecasts with 1-month
lead time. Forecasts with 1-month lead time are certainly fea-
sible in a statistical framework and are operationally useful
in many parts of the world where snowmelt is a major source
of seasonal streamflow predictability, e.g. the western United
States (e.g. Pagano et al., 2004) and the Three Gorges sys-
tem in China (Xu et al., 2007). However, increasing the fore-
cast lead time for Australian catchments beyond one month
is undesirable because the primary source of skill is initial
catchment conditions and catchments have limited memory
or short response times.

An alternative approach to get forecasts to users in good
time is to make use of daily streamflow and climate data to
generate predictors and forecasts with any number of days
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Table 1. Catchment information for the 23 forecast locations.

Catchment Short Long name State Area Lon Lat
no. ID (km2)

G8140161 GAT Green Ant Creek at Tipperary NT 416 131.1 −13.7
922101B CNC Coen River above Coen Racecourse QLD 170 143.2 −13.9
110003A BRP Barron River above Picnic Crossing QLD 239 145.5 −17.3
116006B HRA Herbert River above Abergowrie QLD 7486 145.9 −18.5
120002 BRS Burdekin River above Sellheim QLD 36230 146.4 −20
143303A STP Stanley River above Peachester QLD 102 152.8 −26.8
203005 RCW Richmond River above Wiangaree QLD 712 153 −28.5
419005 NMN Namoi River above North Cuerindi QLD 2532 150.8 −30.7
206014 WLC Wollomombi River above Coninside NSW 377 152 −30.5
208005 NWR Nowendoc River above Rocks Crossing NSW 1893 152.1 −31.8
412066 ABH Abercrombie River above Hadley No. 2 NSW 1631 149.6 −34.1
410024 GDW Goodradigbee River above Wee Jasper NSW 990 148.7 −35.2
410057 GBL Goobarragandra River above Lacmalac NSW 668 148.4 −35.3
410730 CTG Cotter River above Gingera NSW 130 148.8 −35.6
401012 MRB Murray River above Biggara NSW 1257 148.1 −36.3
401203 MTH Mitta Mitta River above Hinnomunjie VIC 1518 147.6 −37
405219 GBD Goulburn River above Dohertys VIC 700 146.1 −37.3
223202 TMS Tambo River above Swifts Creek VIC 899 147.7 −37.3
14213 BSF Black River at South Forest TAS 3191 145.3 −40.9
473 DVC Davey River above D/S Crossing Rv TAS 698 146 −43.1
A5050517 NPP North Para River at Penrice SA 121 139.1 −34.5
613002 HRD Harvey River above Dingo Road WA 148 116 −33.1
616013 HRN Helena River at Ngangaguringuring WA 316 116.4 −31.9

of lead time. Although it could be presumed that skill will
tend to be reduced as lead time increases, it is not known
to what degree skill will be impacted. The optimal forecast
lead time (in days) not only corresponds to the most skilful
forecast that can be released prior to the beginning of the
forecast period but also needs to allow for forecast reliabil-
ity, forecast preparation and communication time, and giving
enough time for users to ingest streamflow forecasts into their
models ahead of the forecast season.

In this study, we develop BJP models to produce forecasts
with up to 21-day lead time for 23 catchments across Aus-
tralia and seek to demonstrate that it is possible to release op-
erational forecasts ahead of the commencement of the fore-
cast target season. We investigate the availability of daily cli-
mate data and establish necessary modifications to the pre-
dictor choices and length of record used to establish the mod-
els. Cross-validation forecasting experiments are conducted
to evaluate the quality of forecasts. The skilfulness of fore-
casts are compared for 0–14- and 21-day lead time. The re-
sults give an estimate of how forecast skill changes with in-
creasing forecast lead time. Subsequently, the optimal lead
time is determined, based on considerations of forecast skill,
data availability and forecast preparation time.

The remainder of the paper is organised as follows. Sec-
tion 2 describes the study forecast catchments as well as
streamflow and climate data. Section 3 details the study
methods, including information about the BJP modelling ap-

proach and forecast verification. Section 4 presents the re-
sults. Section 5 discusses the results. Section 6 concludes the
paper.

2 Catchments and data

2.1 Catchments

Twenty-three forecast locations are selected for this study,
including forecast locations in all states: Queensland, New
South Wales, Victoria, Tasmania, South Australia, and West-
ern Australia, plus the Northern Territory. Flows at the fore-
cast locations are a mixture of perennial, ephemeral and in-
termittent flows. Table 1 summarises information about the
forecast locations, including long catchment name, short ID,
state (in the jurisdictional sense), upstream catchment area,
and approximate centroid latitude and longitude. The catch-
ments range in size from 102 to 36 230 km2. Furthermore, the
forecast locations are plotted on a map of Australia in Fig. 1,
which also indicates whether the catchment is in a temperate,
subtropical or tropical climate zone.

2.2 Streamflow data

Daily streamflow data for the period 1982–2012 are sourced
from the Bureau of Meteorology for all 23 forecast locations.
The bureau sources the data from the respective data owners
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Figure 1. The 23 forecast locations and their climate zones. The locations are current Bureau of Meteorology seasonal streamflow forecast
locations.

and performs quality control. Daily streamflow data records
often contain missing values, for example, due to the failure
of gauging equipment. The bureau partially infills missing
data records. Records for all forecast locations are infilled by
linear interpolation if the number of missing days is equal to
or less than 3 days. For some forecast locations, records are
infilled by linear regression with nearby forecast locations if
the number of missing days is equal to or less than 14 days.

In this study, the daily streamflow data are aggregated to
28-day totals for use as predictors and 3-month totals (al-
ways beginning on the first day of the month) for use as pre-
dictands. Many of the data records still contain missing data
after the infilling process; however the proportion of missing
data is never greater than 10 %.

2.3 Climate data

The bureau’s current BJP seasonal streamflow forecasting
models rely on predictors, including surface and subsur-
face ocean temperatures, the SOI and AAO. The predictors
are identified through a rigorous predictor selection process
(Robertson and Wang, 2012). In this study, we adopt the cli-
mate predictors used by the bureau in their operational mod-
els with some changes. The biggest change is that we re-
strict the set of climate predictors to SST predictors, substi-
tuting an ENSO SST index wherever the climate predictor
in the bureau’s operational model is subsurface ocean tem-
peratures or SOI. SST climate predictors representing ENSO
and the Indian Ocean state are likely to be stable across a pe-
riod of several weeks and are known to have strong lagged
relationships with Australian rainfall up to 3 months ahead

(Schepen et al., 2012). Therefore, the predictors are likely
to remain valid predictors as forecast lead time is increased
by a few weeks. On the other hand, it is less certain that the
AAO, representing the Southern Annular Mode, will remain
a valid climate predictor as lead time is increased since it has
a weak lagging relationship with Australian seasonal rainfall
(Schepen et al., 2012). In cases where AAO is a climate pre-
dictor in the bureau’s operational model, no climate predictor
is used in this study.

Daily SST data are obtained from the NOAA 1 / 4◦

daily Optimum Interpolation Sea Surface Temperature (daily
OISST) (Reynolds et al., 2007). Full years of data are avail-
able from 1982 onwards. The daily OISST is constructed
by combining data from satellites, ships, buoys, probes and
ocean-dwelling robots. Interpolation fills in missing gaps
and ensures a complete historical record with no missing
data. Compared to monthly ERSST records, which go back
to 1854, the daily OISST record is relatively short, but it is
necessary for generating timelier forecasts. To obtain SST
climate predictors, we calculate 28-day average sea surface
temperatures relative to 1982–2010 climatology. Area aver-
aging is used to obtain the set of climate predictors: Niño3.4,
Niño3, Niño4, the El Niño Modoki index (Ashok et al.,
2007), the Indian Ocean Dipole (Saji et al., 1999) and the In-
donesian index (Verdon and Franks, 2005). Figure 2 demon-
strates that the monthly Niño3.4 values calculated from daily
OISST and NOAA’s monthly ERSSTv4 product are almost
identical for the period 1982–2011 with R2

= 0.98.
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Figure 2. Scatter plot demonstrating the strong relationship be-
tween monthly Niño3.4 anomalies calculated from monthly ERSST
v4 data and daily OISST v2 data.

3 Methods

3.1 BJP forecasting models

Forecasting models are set up using the BJP modelling ap-
proach (Wang and Robertson, 2011; Wang et al., 2009). Sep-
arate forecasting models are established for each forecast lo-
cation (23 locations), season (12 3-month seasons from the
start of each month) and for 0–14- and 21-day lead time (16
lead times).

The BJP forecasting models make use of two types of
predictors: predictors representing initial catchment condi-
tions and predictors representing the climate state. For all
models, the initial catchment condition predictor is fixed to
the previous 28 days’ total flow volume. This predictor will
not be optimum for all forecast locations; however, it is a
pragmatic choice that is likely to represent the overall catch-
ment wetness reasonably well. Additionally, it gives a consis-
tent model set-up without needing to undertake initial catch-
ment condition predictor selection. SST climate predictors
are adapted from the bureau’s current operational forecasting
models as described in Sect. 2.3. The same climate predic-
tors are applied at all lead times to ensure a consistent model
set-up.

The full mathematical formulation of the BJP modelling
approach is presented in Wang et al. (2009) and Wang and
Robertson (2011). Here, we note some key features of the
BJP modelling approach. The BJP models are able to ef-
fectively handle missing and non-concurrent records. The
BJP models are based upon the multivariate normal distri-
bution after allowing for data transformation using either
the log-sinh (Wang et al., 2012) or Yeo–Johnson (Yeo and
Johnson, 2000) transformations. If a set of variables fol-
lows a multivariate normal distribution, then a subset of

those variables also follows a multivariate normal distribu-
tion. Thus the many instances of missing data in streamflow
records, as described in Sect. 2.2, are easily handled. Sev-
eral of the forecast locations experience ephemeral and in-
termittent flows, which can result in a probability mass for
zero flows. This problem is handled in the BJP modelling
approach by treating zero flows as censored data, meaning
that the observations of zero flow are treated as being of
unknown precise value equal to or below zero. Uncertainty
in the model parameters due to the short data records is
handled by inferring parameters using Markov chain Monte
Carlo methods (MCMC). Probabilistic (ensemble) forecasts
are produced using conditional multivariate normal distribu-
tion equations. When predictor–predictand relationships are
weak, the BJP modelling approach is designed to produce
reliable forecasts that approximate climatology (i.e. the fre-
quency distribution of historically observed streamflow).

Some aspects of the BJP implementation used in this study
vary compared with those published in Wang et al. (2009)
and Wang and Robertson (2011). We use fixed transfor-
mation parameters together with simplified parameter repa-
rameterisations for more straightforward numerical inference
(Zhao et al., 2016). The changes reflect our experience in
achieving more robust and efficient BJP modelling.

3.2 Verification

In this study, we assess the performance of forecasts for the
period from JFM 1982 to DJF 2011–2012. A separate BJP
model is established for each season, forecast location, and
lead time. Across different years, the model parameter in-
ference and forecast process are cross-validated using leave-
five-years-out cross-validation. For each historical forecast
event to be tested, the data points for the year to be forecast
plus the subsequent 4 years are left out. The leave-five-years-
out procedure is designed to account for strong persistence in
streamflows, potentially over many years.

Forecasts from the BJP modelling approach are probabilis-
tic. The continuous ranked probability score (CRPS; Mathe-
son and Winkler, 1976) is used to assess full forecast prob-
ability distributions, therefore involving forecast ensemble
spread as well as forecast accuracy. The CRPS for a given
forecast and observation is defined as

CRPS=
∫ [

F(y)−H (y− yobs)
]2dy, (1)

where y is the forecast variable; yobs is the observed value;
F (.) is the forecast cumulative distribution function (CDF);
and H (.) is the Heaviside step function, which equals 0 if
y <yobs and equals 1 otherwise. Model forecasts are com-
pared to reference forecasts by calculating skill scores:

CRPS skill score=
CRPSref−CRPS

CRPSref
× 100(%), (2)

where the overbar indicates averaging across a set of events.
A climatology forecast is used as the reference in this study,
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although one may choose to use other reference forecasts.
The CRPS skill score is positively oriented (whereas CRPS
is negatively oriented). As a percentage, a maximum score
of 100 is indicative of perfect forecasts. A score of 0 indicates
no overall improvement compared to the reference forecast.
A negative score indicates poor-quality forecasts in the sense
that a naïve climatology forecast is more skilful. CRPS skill
scores are calculated for each catchment and season.

Reliability refers to the statistical agreement of forecast
probabilities with observed relative frequencies of events,
which can be checked using probability integral trans-
forms (PITs). At each lead time, the PIT values are calcu-
lated from the BJP-generated ensemble forecasts for every
forecast event, forecast location and season, and pooled in
the analysis. The PIT represents the non-exceedance proba-
bility of observed streamflow obtained from the CDF of en-
semble forecast. If the ensemble spread is appropriate and the
forecasts are free of bias, then observations will be contained
within the forecast ensemble spread. Reliable forecasts are
evidenced by PIT values that follow a uniform distribution
between 0 and 1.

Sharpness refers to the concentration of the ensemble
members and is a property of the forecast only. Forecast
sharpness is desirable provided the forecast is reliable. A
common measure of sharpness is the width or, more perti-
nently, the relative width of a forecast quantile range. Com-
parisons between forecasts can be made by comparing av-
erage widths or using a sharpness box plot (Gneiting et al.,
2007). In our study, we compare the quantile range widths
of forecasts with a lead time of 1–21 days with the quantile
range widths of forecasts with a 0-day lead time. Averages
are taken for each catchment and season.

4 Results

4.1 Reliability

We first assess the reliability of the forecasts for the different
lead times. Histograms of PIT values are constructed for each
lead time from 0 to 14 days (Fig. 3). For each lead time, the
PIT histograms follow a similar distribution: approximately
uniform but not perfectly so. There are a couple of reasons
why the PIT histograms are not perfectly uniform. First, it is
very difficult to model the shape of the forecast distributions
perfectly, particularly under cross-validation. Second, a prior
distribution over the data transformation parameters is influ-
ential in preventing very skewed distributions when there are
limited data or many instances of zero flows. Thus, the model
attempts to reliably reflect uncertainty but cannot tightly fit
the shape of the data in all cases.

On the whole, the PIT values suggest that the forecasts
capture the range of observations sufficiently well, and there
is no strong evidence of bias. Therefore, the spread of the
ensembles is deemed to be appropriate. However, note that
the shape of the PIT histograms suggests that an alternative

distribution, for example a fat-tailed distribution, may be able
to fit the tails of high-flow events better. The PIT histograms
exhibit a similar shape for all lead times, meaning that the
forecasts are similarly reliable across all lead times.

4.2 Accuracy skill

We now assess the accuracy skill of the forecasts for the dif-
ferent lead times. To assess forecast accuracy, we calculate
CRPS for each forecast location, season and lead time. It is
possible to decompose the CRPS into components reflect-
ing accuracy and reliability. Results in the previous section
demonstrate that the forecasts are similarly reliable across all
times. Therefore differences in the CRPS will mainly reflect
differences in forecast accuracy. CRPS scores are in the orig-
inal units of the data, and therefore it is difficult to compare
across forecast locations and seasons. CRPS skill scores, as
defined in Eq. (2), however, measure the percentage reduc-
tion in error relative to a reference forecast, and therefore it
is easier to compare relative skill levels across forecast lo-
cations, seasons and lead times. Hereafter, we consider only
CRPS skill scores with modelled leave-five-years-out clima-
tological distributions as reference forecasts unless otherwise
specified.

CRPS skill scores for forecasts with 0-day lead time are
plotted in Fig. 4. Forecast locations form rows, and target
seasons form columns. The CRPS skill scores vary highly
between forecast locations and seasons, due to variations in
catchment memory and climate predictability. The sources
of predictability are not the main concern here though. Here,
the aim is to analyse the changes in forecasting skill with
increasing lead time. As an example, forecasts with 7-day
lead time are plotted in Fig. 5. By visual comparison, skill
is overall reduced; however there are individual cases where
skill increases. Instances of positive CRPS skill score differ-
ences are conceivable given the small sample size (30 years)
and associated uncertainty in the skill score. The patterns of
skill across forecast locations and seasons are largely consis-
tent at 0- and 7-day lead time. Overall, increasing the fore-
cast lead time to 7 days does not appear to significantly de-
crease forecasting skill. To investigate further, CRPS skill
scores for 7-day-lead-time forecasts are calculated with the
0-day-lead-time forecasts as the reference rather than clima-
tology (Fig. 6). The median CRPS skill score (considering
all catchments and seasons) is −1.8. Catchment by catch-
ment, the median CRPS skill score across all seasons ranges
from −5.1 to 0.8, indicating that CRPS scores typically in-
crease by less than about 5 %, although larger increases in
errors are observed in individual catchments and seasons.

Figure 7 illustrates for lead times of 0, 7, and 14 days the
proportion of cases (catchments and seasons) where CRPS
skill score thresholds are exceeded. CRPS skill scores be-
tween −5 and 5 are considered unskilful, below −5 is con-
sidered negative skill, and above 5 is considered skilful. The
proportion of cases where certain CRPS skill score thresh-

Hydrol. Earth Syst. Sci., 20, 4117–4128, 2016 www.hydrol-earth-syst-sci.net/20/4117/2016/



A. Schepen et al.: Optimising seasonal streamflow forecast lead time for operational decision making 4123

Figure 3. PIT histograms of seasonal streamflow forecasts for lead times ranging from 0 to 14 days (the x axis of the plot represents PIT
value, and the y axis normalised frequency). The blue dotted line marks the expected frequency.

olds are exceeded decreases as the lead time increases. A
CRPS skill score of −5 is exceeded in approximately 95,
94, and 92 % of cases for 0-, 7-, and 14-day lead time re-
spectively, indicating only a small proportion of cases ex-
hibit skill worse than climatology. The small difference in ex-
ceedance probabilities with increasing lead time is consistent
with the knowledge that the BJP modelling approach should
produce forecasts approximating climatology in the absence
of any real forecasting skill. Under stringent leave-five-years-
out cross-validation, instances of negative skill can occur for
various reasons related to aridity, poor catchment memory,
extreme events and data problems. A CRPS skill score of 5
is exceeded in approximately 66, 59, and 57 % of cases for
0-, 7-, and 14-day lead time respectively. The larger differ-
ence in exceedance probabilities suggests that the number of
days of lead time is important for skilful forecast locations
and catchments.

To evaluate the change in forecast skill for each 1-day
increase in lead time, we calculate the difference between
CRPS skill scores for 1–14- and 21-day lead times with
CRPS skill scores at lead time 0. For each lead time, the skill
score differences for all forecast locations and seasons are
pooled. Simplified box plots of the CRPS skill score differ-
ences for each lead time are plotted (Fig. 8). In each plot,
the boxes represent the [0.25, 0.75] and [0.10, 0.90] quantile
ranges, with the median marked by the line crossing the box.
Outliers are ignored. The median of the box plots indicates a
clear monotonic trend, demonstrating that, on average, skill
decreases as every 1-day forecast lead time increases. How-
ever, for individual forecast locations and seasons, the pattern
of changes in skill is more variable. In some cases, the CRPS
skill score can decrease by up to 18 percentage points (pp)
as lead time increases up to 14 days. However, CRPS skill
scores can increase by up to 10 pp as lead time increases up
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Figure 4. CRPS skill scores for each catchment and target season at 0-day lead time. Skill scores are relative to climatology. Leave-five-
years-out cross-validation is applied for the period 1982–2011.

Figure 5. CRPS skill scores for each catchment and target season at 7-day lead time. Skill scores are relative to climatology. Leave-five-
years-out cross-validation is applied for the period 1982–2011.
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Figure 6. CRPS skill scores for each catchment and target season at 7-day lead time. Skill scores are relative to 0-day-lead-time forecasts.

Figure 7. Proportion of cases exceeding CRPS skill score thresh-
olds for lead times of 0, 7, and 14 days. For each lead time, the
CRPS skill scores for each forecast location and season have been
pooled. The grey shaded region indicates neutral skill (±5).

to 14 days. The trend of decreasing CRPS skill scores con-
tinues to 21-day lead time.

From Figs. 4 and 5, it is evident that many forecast loca-
tions and seasons have low skill. We now partition the catch-
ment and seasons into two groups based on CRPS skill scores
at 0-day lead time. If the CRPS skill score for a catchment
and season at 0-day lead time is > 5, the case is assigned
to the skilful group. Otherwise, the case is assigned to the
unskilful group. Figure 9 plots the change in forecast skill

for each 1-day increase in lead time, considering only skil-
ful cases. The reduction in skill is more marked for skilful
cases compared with all cases. Figure 10 plots the change in
forecast skill for each 1-day increase in lead time, consider-
ing only unskilful cases. The average reduction in CRPS skill
scores is near 0, with variation mainly within ±5 pp. The re-
sults in Fig. 9 (considering only skilful cases) are arguably
the most important for analysing reductions in skill because
the bureau issues climatology forecasts when hindcast skill
is poor. From Fig. 9, at 7-day lead time the mean reduction
in CRPS skill scores is about 4 pp, whereas at 14-day lead
time it is about 6 pp. At 21 days the reduction in CRPS skill
scores averages 7.5 pp, with few cases associated with skill
improvements.

4.3 Forecast sharpness

Forecast sharpness is a property of the forecasts only and re-
lates to the narrowness of the forecast ensemble spread. That
is, a forecast with a narrower spread is sharper than a fore-
cast with a wider spread. We assess how forecast sharpness
changes as forecast lead time is increased. For each fore-
cast event, the [0.1, 0.9] quantile range of 1–21-day-lead-
time forecasts is divided by the [0.1, 0.9] quantile range for
the 0-day-lead-time forecast. An average is then calculated
for each catchment and season, which is termed the average
relative width (ARW). Simplified box plots of the ARW for
each lead time are plotted (Fig. 11). In each plot, the boxes
represent the [0.25, 0.75] and [0.05, 0.95] quantile ranges of
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Figure 8. Box plots of CRPS skill score differences between forecasts at 1–21-day lead time and lead time 0. The boxes capture the median
and the [0.25, 0.75] and [0.05, 0.95] quantile ranges. For each lead time, the CRPS skill score differences for every forecast location and
season have been pooled. n is the number of cases per box plot (23 locations× 12 seasons= 276 cases).

Figure 9. As for Fig. 8 except considering only cases where the 0-day-lead-time forecast is skilful (CRPS skill score > 5).

Figure 10. As for Fig. 8 except considering only cases where the 0-day-lead-time forecast is not skilful (CRPS skill score <= 5).

ARW, with the median marked by the line crossing the box.
Sharpness is seen to decrease gradually as forecast lead time
is increased. At 7-day lead time, the forecasts are typically
only marginally wider than at 0-day lead time, with the me-
dian ARW being approximately 1.02. However, the forecasts
can be considerably wider in some cases, with the values of
ARW up to 1.2 quite possible in some catchments and sea-
sons. At 21-day lead time the median ARW increases to 1.08.

5 Discussion

The results demonstrate that forecasts are similarly reliable
for all lead times from 0 to 14 days. Hence, from the per-

spective of reliability, any forecast lead time is similarly op-
timal. Forecasts released with 7- or 14-day lead time will be
similarly reliable to forecasts released with 0-day lead time.
Therefore, considerations for optimal forecast lead time do
not need to be based on reliability.

The results demonstrate that mean skill, averaged across
all forecast locations and seasons, decreases monotonically
for lead times from 0 to 14 days and the trend continues
to 21-day lead time. However, the reduction in skill ought
to be distinguished for skilful catchments, since the skill for
difficult-to-model catchments with poor skill remains largely
unchanged and the bureau’s forecasts are forced to a cli-
matological distribution when skill is very low or negative.
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Figure 11. Box plots of the average relative width of the [0.1, 0.9] forecast quantile range of forecasts at 1–21-day lead time. The relativity
is to forecasts at lead time 0. The average relative width is calculated for each forecast location and season. Cases where a forecast quantile
range is 0 are omitted.

From the perspective of accuracy skill, the monotonicity of
decreasing skill scores with lead time suggests that the opti-
mum forecast lead time is the shortest lead time that allows
for other factors, including the number of days required for
forecast preparation, dissemination, comprehension and ap-
plication.

As discussed in the Introduction, the bureau currently is-
sues forecasts at least 7 days into the forecast season. Thus
7 days can be regarded as the current time needed for forecast
preparation and dissemination. Much of the delay in prepar-
ing the current operational forecasts is attributable to delays
in obtaining various climate data sets and quality streamflow
data. The approach taken in this study of relying solely on
daily SST data for climate predictors significantly reduces
the burden in preparing climate indices. Preliminary daily
OISST data sets are available within 1 day, although they
are subject to revision for up to 14 days. Thus the necessary
climate indices can theoretically be ready for inclusion in
forecasting models within 1–2 days. As discussed in the In-
troduction, quality-controlled streamflow data can take up to
3 days to enter the bureau’s forecasting database. It is there-
fore expected that the minimum predictor data preparation
time is 3 days.

Forecast and communication strategy production is a pro-
cess that takes 1–2 days. Thus for the bureau to consider
releasing forecasts prior to the beginning of the target sea-
son, it would be a safe choice to prepare forecasts with 7-day
lead time. Compared with forecasts with 0-day lead time, the
mean reduction in CRPS skill scores in skilful cases is ap-
proximately 4 pp (Fig. 9), which is likely to be tolerated by
forecast users in exchange for earlier forecast release. How-
ever, it is to be reasonably expected that CRPS skill scores
will reduce by up to 10–15 pp in some instances (Fig. 9).
The significant reduction in skill scores at 21-day lead time
(Fig. 9) highlights the importance of short-lead-time fore-
casts for Australian catchments and confirms that simply
switching to a 1-month-ahead forecast system is undesirable.

A better, more flexible operational forecasting system for
Australia could be built upon a flexible strategy that allows
for any number of lead times (in days). Such a system al-

lows for multiple forecast runs prior to forecast release. To
reduce forecast preparation time, while striving for optimal
skill, a communication strategy for the forecasts can be de-
veloped based on a preliminary forecast run with, for exam-
ple, 7-day lead time. The final forecast release could sub-
sequently be based on a shorter lead time, e.g. 4 days. Fur-
thermore, it sometimes happens that unexpected heavy rains
fall within the period of forecast generation and forecast re-
lease. If significant events occur that change the hydrological
outlooks dramatically, having the option to reissue forecasts
would benefit users.

The discussion thus far has considered only the forecast
preparation and dissemination time. As identified previously,
optimal forecast lead time for operational decision making
depends on other factors, including the time needed for com-
prehension and application. That is, forecast users need time
to understand the forecasts and the likely impact on their op-
erations. The process of understanding may include further
sophisticated modelling using streamflow forecasts as inputs.
For water managers, lead times of a few days may be suffi-
cient to assimilate the forecast information. For other oper-
ators, longer-lead-time forecasts may be preferred. In fact,
the optimal forecast lead time for operational decision mak-
ing across a range of industries is likely to vary. It therefore
remains a research questions whether water forecasting ser-
vices need to evolve to cater for the needs of different (so-
phisticated) water forecast users.

6 Conclusion

Currently the Bureau of Meteorology releases seasonal
streamflow forecasts approximately 7 days into the fore-
cast target season. In this study we develop seasonal stream-
flow forecasting models with 0–14- and 21-day lead time to
demonstrate that it is possible to release skilful operational
forecasts ahead of the commencement of the forecast pe-
riod. Forecasts were produced for 23 of the Bureau of Me-
teorology’s seasonal streamflow forecast locations, using the
Bayesian joint probability modelling approach. The forecast-
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ing models were constructed similarly to the bureau’s offi-
cial models, using climate predictors and initial catchment
condition predictors. Climate predictors were adapted to be
based on SST predictors so that daily SST data sets could be
adopted.

The skill and reliability of the 0–14-day-lead-time fore-
casts were assessed. Reliability was found to be similar for
all forecast lead times. Average skill reduces monotonically
for each 1 day that forecast lead time increases. For fore-
casts with 7-day lead time, the mean reduction in CRPS
skill scores is small, approximately 4 percentage points, al-
though skill score differences within a range of +5 to −15
are possible. For forecasts with 14-day lead time, the mean
reduction in CRPS skill scores is approximately 6 percent-
age points. In correspondence with decreasing forecast skill,
forecast sharpness reduces slightly as forecast lead time is in-
creased. The reductions in skill are very likely to be tolerated
by forecast users in exchange for forecasts released ahead of
the commencement of the forecast target season. Particularly
as the bureau moves towards a monthly forecasting service,
timelier forecast release is going to become critical.

7 Data availability

Data used in this study are available by contacting the corre-
sponding author.
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