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Abstract. Seasonal snow cover is the primary water source

for human use and ecosystems along the extratropical Andes

Cordillera. Despite its importance, relatively little research

has been devoted to understanding the properties, distribu-

tion and variability of this natural resource. This research

provides high-resolution (500 m), daily distributed estimates

of end-of-winter and spring snow water equivalent over a

152 000 km2 domain that includes the mountainous reaches

of central Chile and Argentina. Remotely sensed fractional

snow-covered area and other relevant forcings are combined

with extrapolated data from meteorological stations and a

simplified physically based energy balance model in order

to obtain melt-season melt fluxes that are then aggregated to

estimate the end-of-winter (or peak) snow water equivalent

(SWE). Peak SWE estimates show an overall coefficient of

determination R2 of 0.68 and RMSE of 274 mm compared to

observations at 12 automatic snow water equivalent sensors

distributed across the model domain, withR2 values between

0.32 and 0.88. Regional estimates of peak SWE accumula-

tion show differential patterns strongly modulated by eleva-

tion, latitude and position relative to the continental divide.

The spatial distribution of peak SWE shows that the 4000–

5000 m a.s.l. elevation band is significant for snow accumu-

lation, despite having a smaller surface area than the 3000–

4000 m a.s.l. band. On average, maximum snow accumula-

tion is observed in early September in the western Andes,

and in early October on the eastern side of the continental di-

vide. The results presented here have the potential of inform-

ing applications such as seasonal forecast model assessment

and improvement, regional climate model validation, as well

as evaluation of observational networks and water resource

infrastructure development.

1 Introduction

Accurately predicting the spatial and temporal distribution

of snow water equivalent (SWE) in mountain environments

remains a significant challenge for the scientific community

and water resource practitioners around the world. The An-

des Cordillera, a formidable mountain range that constitutes

the backbone of the South American continent, remains one

of the relatively least studied mountain environments due

to its generally low accessibility and complex topography.

The extratropical stretch of the Andes, extending south from

approximately latitude 27◦ S, is a snow-dominated hydro-

logical environment that provides key water resources for

a majority of the population in Chile and Argentina. Until

now, a very sparse network of snow courses and automated

snow measuring stations (snow pillows) has been the only

source of information about this key resource. In a context of

sustained climate change characterized by warming trends

and likely future precipitation reductions (Vera et al., 2006;

Vicuña et al., 2011), it becomes ever more relevant to un-

derstand the past dynamics of the seasonal snowpack in or-

der to validate predictive models of future snow water re-
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sources. This research presents the first spatially and tem-

porally explicit high-resolution SWE reconstruction over the

snow-dominated extratropical Andes of central Chile and Ar-

gentina based on a physical representation of the snowpack

energy balance (Kustas et al., 1994) and remotely sensed

snow extent (Dietz et al., 2012) between years 2001 and

2014. A key advantage of the presented product is its in-

dependence from notoriously scarce and unreliable precip-

itation measurements at high elevations. Estimates of maxi-

mum SWE accumulation and depletion curves are obtained

at 500 m resolution, coincident with the MODIS MOD10A1

Fractional Snow Cover product (Hall et al., 2002).

Patterns of hydroclimatic spatio-temporal variability in the

extratropical Andes have been studied with increased inten-

sity over the last couple of decades, as pressure for water

resources has mounted while at the same time rapid changes

in land use and climate have highlighted the societal need

for increased understanding of water resource variability and

trends under present and future climates. The vast majority

of studies have relied on statistical analyses of instrumen-

tal records and regional climate models to present synoptic-

scale summaries of precipitation (e.g., Aravena and Luck-

man, 2009; Falvey and Garreaud, 2007; Garreaud, 2009),

temperature (Falvey and Garreaud, 2009), snow accumu-

lation (Masiokas et al., 2006) and streamflow variability

(Cortés et al., 2011; Núñez et al., 2013). Currently, no high-

resolution, large-scale distributed assessments of snow water

equivalent are available for the Andes region.

The SWE reconstruction method seeks to estimate end-

of-winter accumulation by back accumulating melt energy

fluxes during the depletion season. The methods and assump-

tions required for SWE reconstruction have been tested and

refined since initial development (Cline et al., 1998). Ap-

plications across a variety of scales have been presented

in recent years. In the Sierra Nevada, Jepsen et al. (2012)

compared SWE reconstructions to distributed snow surveys

in a 19.1 km2 basin (R2
= 0.79), while Guan et al. (2013)

obtained good correlation with SWE observations from an

operational snow sensor network across the entire Sierra

Nevada (R2
= 0.74). In the Rocky Mountains, Jepsen et

al. (2012) obtained an R2 value of 0.61 when comparing re-

constructed SWE to spatial regression from snow surveys,

and Molotch (2009) estimated SWE with a mean absolute

error (MAE) of 23 % compared to intensive study areas. A

useful discussion on the uncertainties of the SWE recon-

struction method – albeit one based on temperature-index

melt equations – was presented by Slater et al. (2013), who

demonstrated that errors in forcing data are at least, if not

more, important than snow-covered area data availability.

The vast majority, if not all, of SWE reconstruction exercises

have been developed in the northern hemisphere, under en-

vironmental conditions quite different from those predomi-

nant in the extratropical Andes Cordillera. Here, snow dis-

tribution and properties have been analyzed in a few local

studies (e.g., Ayala et al., 2014; Cortés et al., 2014b; Gas-

coin et al., 2013), but no large-scale estimations at a rele-

vant temporal and spatial resolution for hydrologic applica-

tions have been presented. In fact, the Andes of Chile and

Argentina display near-ideal conditions for the SWE recon-

struction approach due to (1) the near absence of forest cover

over a large fraction of the domain where snow accumula-

tion is hydrologically significant; (2) the sharp climatolog-

ical distinction between wet (winter: June through August)

and dry (spring/summer: September through March) seasons,

with most of annual precipitation falling during the former;

and (3) the low prevalence of cloudy conditions during the

spring and summer months over the mountains, which afford

a high availability of remotely sensed snow cover informa-

tion. Conversely, the SWE reconstruction presented here is

certainly subject to a series of uncertainty sources, such as

the sparseness of the hydrometeorological observational net-

work, which limits both the availability of forcing and vali-

dation data.

However, this is the first estimation of peak SWE and snow

depletion distribution at this scale and spatial resolution for

the extratropical Andes, and the information shown here can

be useful for several applications such as understanding year-

to-year differential accumulation patterns that may impact

the performance of seasonal streamflow forecast models that

rely on point-scale data only. Also, the SWE reconstruction

can be used to validate output from global or regional cli-

mate models and reanalysis, which are being increasingly

employed to estimate hydrological states and fluxes in un-

gauged regions. By analyzing the spatial correlation of snow

accumulation and hydrometeorological variables, distributed

SWE estimates can inform the design of improved climate

observation networks. Likewise, from analyzing the obtained

SWE estimates in light of the necessary modeling assump-

tions and data availability we are able to highlight future re-

search directions aimed at quantifying and reducing these un-

certainties.

The objectives of this research include the following: (1) to

assess the dominant patterns of spatio-temporal variability in

snow water equivalent of the snow-dominated extratropical

Andes Cordillera; and (2) to explicitly evaluate the strengths

and weaknesses of the SWE reconstruction approach in dif-

ferent sub-regions of the extratropical Andes using snow sen-

sors and distributed snow surveys.

2 Study area

Figure 1 shows the study area, which includes headwater

basins in the Andes Mountains of central Chile and Ar-

gentina, between 27 and 38◦ S. These basins supply fresh-

water to low valleys located on both sides of the cordillera, a

topographic barrier more than 5 km high that strongly con-

trols the spatial variability in atmospheric processes (Gar-

reaud, 2009; Montgomery et al., 2001). In Chile, runoff

from the Andes Mountains benefits 75 % of the popula-
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Figure 1. Study area and model domain: (a) river basins, stream

gages (red circles) and sites where snow survey data are available

(green circles); (b) hydrologic units (C1 to C8) and snow-pillow

stations (white circles).

tion (http://www.ine.cl) as well as most of the country’s

agricultural output, hydropower and industrial activities. In

the case of Argentina, 7 % of the population is located in

the provinces of La Rioja, San Juan, Mendoza and north-

ern Neuquén (http://www.indec.gov.ar/), with primary wa-

ter uses in agriculture and hydropower. The selected water-

sheds have unimpeded streamflow observations and a snow-

dominated hydrologic regime (Fig. 2). River basins included

in this study have been grouped in eight clusters, or hydro-

logic response units, based on the seasonality of river flow,

numbered C1 to C8 in Fig. 1b. Due to differences in topog-

raphy and locations of stream gages, the number of headwa-

ter basins contained within clusters differs markedly on both

Figure 2. Summarized hydro-climatology of the model domain.

Data from meteorological stations located within zones C1, C4, C3

and C8 summarized the hydro-climatological regime of the north-

western, northeastern, southwestern and southeastern zones, respec-

tively. Total SWE is SWE measured at selected snow-pillow sta-

tions.

sides of the cordillera, with larger watersheds on the Argen-

tinean side.

The hydro-climate is mostly controlled by orographic ef-

fects on precipitation (Falvey and Garreaud, 2007) and inter-

annual variability associated with the Pacific Ocean through

the El Niño–Southern Oscillation and Pacific Decadal Oscil-

lation (Masiokas et al., 2006; Newman et al., 2003; Rubio-

Álvarez and McPhee, 2010). Precipitation is concentrated in

winter months on the western slope (Aceituno, 1988) and

sporadic spring and summer storms occur on the moun-

tain front plains of the eastern slope. The vegetation cover

presents a steppe-type condition on the western slope up to

33◦ S, transitioning to the south into tall bushes and sparse

mountain forest. On the eastern slope the steppe vegetation

prevails until 37◦ S, with an intermittent presence of moun-

tain forests in the Patagonian plains (Eva et al., 2004).

Figure 2 summarizes the dominant climatology and as-

sociated hydrological regime of rivers in the study region.

The temperature seasonality (upper left panel) is typical

of a temperate, Mediterranean climate, and precipitation

is strongly concentrated in the fall–winter months of May

through August (upper right panel). The hydrological regime

is markedly snow-dominated in the northern part of the do-

main, which can be seen from the sharp increase in river

flow from October and into the summer months of Dec, Jan

and Feb (lower right panel) that follows the seasonal melt

of snow (lower left panel). Only rivers in the southern sub-

region display a significant rainfall-dominated seasonal hy-

drograph. The importance of SWE for the region is demon-

strated by the fact that for the studied basins, ablation-season

(September–March) river flow accounts for two-thirds of av-
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erage annual streamflow. Maximum SWE accumulation is

reached between the months of August and September on

the western side and between late September and early Octo-

ber on the eastern side (Fig. S4 in the Supplement). Scattered

snow showers in mid-spring (September through November)

affect the study area, but they do not affect significantly the

decreasing trend of snow-covered area during the melt sea-

son (see timing of peak SWE and fractional snow-covered

area (fSCA) analysis in online supplementary material). This

feature is essential for choosing the SWE reconstruction

methodology used in this work, which is most applicable to

snow regimes with distinct snow accumulation and snow ab-

lation seasons.

By and large, the existing network of high-elevation mete-

orological stations does not include appropriately shielded

solid precipitation sensors. Some climate reanalysis prod-

ucts exist, but their representation of Andean topography is

crude, and their spatial resolution is not readily amenable to

hydrological applications without significant bias correction

(Krogh et al., 2015; Scheel et al., 2011). Previous attempts at

estimating precipitation amounts at high-elevation reaches in

the Andes suggest uncertainties on the order of 50 % (Castro

et al., 2014; Falvey and Garreaud, 2007; Favier et al., 2009).

In some basins, runoff is partially dictated by glacier contri-

butions, which occur in summer. According to the Randolph

Glacier Inventory (http://www.glims.org/RGI/), the central

Andes Cordillera has a glacier area of 2245 km2 between

27 and 38◦ S, which is equivalent to 1.5 % of the modeling

domain surface area (∼ 152 000 km2).

3 Methods

3.1 SWE reconstruction model

A retrospective SWE reconstruction model based on the con-

volution of the fSCA depletion curve and time-variant energy

inputs for each domain pixel is implemented. For each year,

the model is run at a daily time step between 15 August (end

of winter) and 15 January (mid-summer). This time window

ensures that the most likely time at which peak SWE occurs

is captured – which itself is variable from year to year – and

the almost complete depletion of the seasonal snowpack. Iso-

lated pixels with non-negative fSCA values may remain after

15 January at glacier and perennial snowpack sites. However,

the relative area that these pixels represent with respect to

the entire model domain is very low (< 1.5 %), and can be

neglected in the context of this work.

The energy balance model adopted here derives from the

formulation proposed by Brubaker et al. (1996), which con-

siders explicit net shortwave and longwave radiation terms

and a conceptual, pseudo-physically based formulation for

turbulent fluxes that depends only on the degree-day air tem-

perature:

Mp =max {(Qnsw+Qnlw)fB + Tdar, 0} , (1)

where Mp is potential melt; Qnsw is the net shortwave en-

ergy flux; Qnlw is the net longwave energy flux; Td is the

degree-day temperature, ar (mm ◦C−1 day−1) is the restricted

degree-day factor, and fB is the energy-to-mass conversion

factor with a value of 0.26 (mm W−1 m2 day−1). Actual melt

is obtained by multiplying potential melt by fractional snow

cover area:

M =MpfSCAfc, (2)

where fSCAfc is the fSCA MOD10A1 estimate adjusted to

forest cover correction by a vegetation fractional fveg (0 to

1) from the MOD44B product (Hansen et al., 2003):

fSCAfc
=

fSCAobs(
1− fveg

) . (3)

The SWE for each pixel is computed for each year by accu-

mulating the melt fluxes back in time during the melt season,

starting from the day on which fSCA reaches a minimum

value, and up to a date such that winter fSCA has plateaued,

according to the relations

SWEt = SWE0−

t∑
1

M =Mt+1+SWEt+1, (4)

SWE0 =

n∑
t=1

Mt ; SWEn = 0, (5)

where SWE0 is end-of-winter or initial maximum SWE accu-

mulation, SWEn is a minimum or threshold value. The model

was run retrospectively until 15 August, an adequate date be-

fore which little melt can be expected for most of the winter

seasons within the modeling period in this region (please see

Fig. S5).

3.2 Fractional snow-covered area and land use data

Spatio-temporal evolution of snow-covered area was esti-

mated using the fSCA product from the Moderate Resolution

Imaging Spectroradiometer (MODIS) on-board the Terra

satellite (MOD10A1 C5 Level 3). The MOD10A1 product

provides daily fSCA estimates at 500 m resolution. Percent-

ages of snow extent (i.e., 0 to 100 %) are derived from an

empirical linearization of the Normalized Difference Snow

Index (NDSI), considering the total MODIS reflectance in

the visible range (0.545–0.565 µm; band 4) and shortwave in-

frared (1.628–1.652 µm; band 6) (Hall et al., 2002; Hall and

Riggs, 2007).

Binary and fractional MODIS fSCA estimates are limited

by the use of an empirical NDSI-based method. These errors

are notoriously sensitive to surface features such as fractional

vegetation and surface temperature (Rittger et al., 2013). Ar-

senault et al. (2014) reviewed MODIS fSCA accuracy es-

timates from several studies under different climatic condi-

tions, and report a range between 1.5 and 33 % in terms of
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absolute error with respect to ground observations and oper-

ational snow cover data sets. Errors stem mainly from cloud

masking and detection of very thin snow (<10 mm depth),

forest cover and terrain complexity. In general, commission

and omission errors are greatest in the early and late por-

tions of the snow cover season (Hall and Riggs, 2007) and

decrease with increasing elevation (Arsenault et al., 2014).

Molotch and Margulis (2008) compared MODIS and Land-

sat Enhanced Thematic Mapper performance in the context

of SWE reconstruction, showing that significant differences

in SWE estimates were a result of SCA estimation accuracy

and less so of model spatial resolution. The latter conclusion

supports the feasibility of using the snow-covered area prod-

ucts at a 500 m spatial resolution for regional-scale studies.

In order to minimize the effect of cloud cover on the temporal

continuity and extent of the fSCA estimates, the MOD10A1

fSCA product was post-processed by a modified algorithm

for non-binary products, based on the algorithm proposed by

Gafurov and Bárdossy (2009). Their method is adapted here

to the fractional snow cover product, applying a three-step

correction consisting of: (1) a pixel-specific linear tempo-

ral interpolation over 1, 2 or 3 days prior and posterior to

a cloudy pixel; (2) a spatial interpolation over the eight-pixel

kernel surrounding the cloudy pixel, retaining information

from lower-elevation pixels only; and (3) assigning the 2001–

2014 fSCA pixel specific average when steps (1) and (2)

where not feasible. This step minimized the effect of cloud

cover on data availability over the spatial domain, yielding

cloud cover percentages ranging from 21 % in September to

8 % in December.

The Normalized Difference Vegetation Index (NDVI)

(Huete et al., 2002) derived from the MOD13Q1 v5 MODIS

Level 3 product (16 days – 250 m) is used to classify for-

est presence for each model pixel. For pixels classified as

forested, both fSCA and energy fluxes where corrected: frac-

tional SCA was modified on the basis of percentage forest

cover (Molotch, 2009; Rittger et al., 2013), using the average

of the forest percentage product from MOD44B V51. Forest

attenuation (below canopy) of energy fluxes at the snow sur-

face was estimated from forest cover following the method

from Ahl et al. (2006) assuming invariant NDVI over each

melt season. The selected NDVI pattern is obtained by av-

eraging the four NDVI scenes available in the December–

January time window through 14 study years. This time win-

dow displays the average state of evergreen forest with the

maximum amount of data.

3.3 Model forcings

Spatially distributed forcings are required at each grid ele-

ment in order to run the SWE reconstruction model. In or-

der to ensure the tractability of the extrapolation process,

we divided the model domain into sub-regions or clusters,

composed of one or more river basins. The river basins were

grouped using a clusterization algorithm (please see Sect. S2

in the Supplement) based on melt-season river flow volume

as described in Rubio-Álvarez and McPhee (2010). Then,

spatially distributed variables (surface temperature, fSCA,

global irradiance) are combined with homogeneous variables

for each cluster (e.g., cloud cover index) and point data from

meteorological stations in order to obtain a distributed prod-

uct as described below. A further benefit of the clustering

process is that it allows us to analyze distinct regional fea-

tures of the SWE reconstruction parameters, input variables

and output estimates.

Net shortwave radiation, Qnsw is estimated as a function

of incoming solar radiation based on the equation

Qnsw = (1−αs)
(
G↓
)
τa, (6)

where αs is snow surface broadband albedo; G↓ is incoming

solar radiation (global irradiance); and τa is the shortwave

transmissivity as a function of LAI for mixed forest cover

(Pontailler et al., 2003; Sicart et al., 2004), which in turn is

estimated as

τa = e
(−κLAI)

; LAI=−1.323ln

(
0.88−NDVI

0.72

)
, (7)

with κ = 0.52 for mixed forest species (DeWalle and Rango,

2008). Equation (7) is valid for NDVI values between 0.16

and 0.87. Global irradiance under cloudy sky conditions

is estimated considering a daily distributed spatial pattern

of clear sky irradiance Gc↓ derived by the r.sun GRASS

GIS module (Hofierka and Suri, 2002; Neteler et al., 2012)

and the clear sky index Kc derived from the insolation in-

cident on a horizontal surface from the “Climatology Re-

source for Agroclimatology” project in the NASA Predic-

tion Worldwide Energy Resource “POWER” (http://power.

larc.nasa.gov/) 1◦× 1◦ gridded product.

G↓ =KcGc↓; Kc =
(
Gr↓/Gc↓

)
(8)

In Eq. (8),Gr↓ andGc↓ are spatial averages over each hydro-

logic response unit (cluster) of the POWER and r.sun-derived

products, respectively.

A snow-age decay function based on snowfall detec-

tion is implemented to estimate daily snow surface albedo

(Molotch and Bales, 2006) constrained between values

of 0.85 and 0.40 (Army Corps of Engineers, 1960). Snowfall

events were diagnosed using a unique minimum threshold for

fSCA increments of 2.5 % for each hydrologic unit area.

Net longwave radiation estimates are derived using

Qnlw = L↓fsvεs+ σT
4

a (1− fsv)εsf− σT
4

s εs, (9)

L↓ = 0.575e
1/7
a σT 4

a

(
1+ acC

2
)
, (10)

where Ta is air temperature, Ts is the snow surface tempera-

ture, εs is the snow emissivity (i.e., 0.97), εsf is the canopy

emissivity (i.e., 0.97), fsv is the sky-view factor (i.e., as-

sumed equal to shortwave transmissivity; Pomeroy et al.,

www.hydrol-earth-syst-sci.net/20/411/2016/ Hydrol. Earth Syst. Sci., 20, 411–430, 2016
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2009; Sicart et al., 2004), σ is the Stefan–Boltzmann con-

stant, and L↓ is the incoming longwave radiation. Air va-

por pressure (ea) required for longwave radiation estimates

was derived from air temperature and relative humidity,

which in turn was assumed constant throughout the melt

period and equal to 40 % based on observations at selected

high-elevation meteorological stations. The multiplying fac-

tor (1+ acC
2) represents an increase in energy input rel-

ative to clear sky conditions due to cloud cover, where ac

equals 0.17 and C= 1−Kc is an estimate of the cloud cover

fraction (DeWalle and Rango, 2008).

Spatially distributed air temperature is generated by com-

bining daily air temperature recorded at index meteorolog-

ical stations and a weekly spatial pattern of skin temper-

ature derived from the MODIS Land Surface Temperature

product (MOD11A1.V5) (Wan et al., 2002, 2004). The prod-

uct MOD11A1 V5 Level 3 estimates surface temperature

from thermal infrared brightness temperatures under clear

sky conditions using daytime and nighttime scenes and has

been shown to adequately represent measurements at me-

teorological stations (R2
≥ 0.7), displaying moderate over-

estimation in spring and underestimation in fall (Neteler,

2010). Other studies have reported similar accuracies, with

RSME values around 4.5 ◦K in cold mountain environments

(Williamson et al., 2014). Taking into account the high corre-

lation between air temperature and LST (Benali et al., 2012;

Colombi et al., 2007; Williamson et al., 2014), we define

Ta = Ta base+1Ta = Ta base+µ(LST−LSTbase)+ ν, (11)

where Ta base is daily air temperature at an index station for

each cluster and 1Ta is the difference in air temperature be-

tween any pixel and the pixel where the index station is lo-

cated. To determine 1Ta we use a linear regression between

MODIS LST data and 1Ta considering pairs of stations lo-

cated at high-altitude and valley (base) sites, taking into ac-

count the melt season average values over the 2001–2014 pe-

riod. In Eq. (11), LST−LSTbase denotes the difference be-

tween skin temperatures from any pixel and the index station

pixel. The linear regression between skin temperature and air

temperature differences has a slope µ of 0.65, an intersect ν

of −0.5 and R2 of 0.93 (Fig. S3). Estimation of LST dur-

ing cloudy conditions is done as follows: (1) a pixel-specific

linear temporal interpolation is performed over 1 and 2 days

prior and posterior to the cloudy pixel; and (2) estimation of

remaining null values by an LST-elevation linear regression

(Rhee and Im, 2014).

This spatial extrapolation method was preferred over more

traditional methods – for example, based on vertical lapse

rates (Minder et al., 2010; Molotch and Margulis, 2008) –

after initial tests showed that the combined effect of the rel-

atively low elevation of index stations and the large vertical

range of the study domain resulted in unreasonably low air

temperatures at pixels with the highest elevations. Likewise,

the scarcity of high-elevation meteorological stations and the

large spatial extent of the model domain precluded us from

adopting more sophisticated temperature estimation methods

(e.g., Ragettli et al., 2014).

Snow surface temperature and degree-day temperature are

estimated (Brubaker et al., 1996) as

Td =max(Ta,0) ; Ts =min(Ta−1T ,0) , (12)

where 1T is the difference between air and snow surface

temperature. To the best of our knowledge, no direct, sys-

tematic values of snow surface temperature exist in this re-

gion, so for the purposes of this paper we adopt an average

value 1T = 2.5 [◦C], following the suggestion in Brubaker

et al. (1996). Slightly higher values ranging from 3 to 6 ◦C

are shown for continental and alpine snow types (Raleigh

et al., 2013), indicating an additional source of uncertainty

over net longwave radiation computations. More sophisti-

cated parametrizations for Ts, for example based on heat flow

through the snowpack, have been proposed (e.g., Rankinen et

al., 2004; Tarboton and Luce, 1996) but those require explicit

knowledge about the snowpack temperature profile and/or

more complex model formulations to estimate the internal

snowpack heat and mass budgets simultaneously.

The ar coefficient in the restricted degree-day energy bal-

ance equation was computed using a combination of sta-

tion and reanalysis data, and assumed spatially homogeneous

within each of the clusters that subdivide the model domain.

Brubaker et al. (1996) propose a scheme in which this param-

eter can be explicitly computed from air and snow surface

temperature, air relative humidity, and atmospheric pressure

and wind speed. Wind speed was obtained from the NASA

POWER reanalysis described previously. A correction for

atmospheric stability is applied on the bulk transfer coeffi-

cient Ch according to the formulation presented by Kustas et

al. (1994), assuming a surface roughness of 0.0005 m:

Ch =

{
(1− 58Ri)0.25 for Ri < 0

(1+ 7Ri)−0.1 for Ri > 0

}
;

Ri =
gz(Ta− Ts)

u2Ta

(13)

where Ri is the Richardson number, g is the gravity accel-

eration (9.8 [m s−2]), z is the standard air temperature mea-

surement height (2 m) and u is wind speed. The calculation

of Ri and ar is based on the standard assumptions of Ts at

the freezing point and a water vapor saturated snow surface

over all high-elevation meteorological stations with available

air temperature and relative humidity records (Molotch and

Margulis, 2008). Further in the text, we discuss some impli-

cations of these assumptions and of the input data used on

the ability of the model of simulating relevant components

of the snowpack energy exchange.

Table 1 shows the main cluster characteristics and region-

alized model parameters. It can be seen that for those clus-

ters located in the southern and middle reaches of the model

domain, the ar parameter values range from 0.10 to 0.23

Hydrol. Earth Syst. Sci., 20, 411–430, 2016 www.hydrol-earth-syst-sci.net/20/411/2016/



E. Cornwell et al.: Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera 417

Table 1. Study area subdivision, relevant characteristics and model parameters.

Cluster Area Average Average Clear sky Avg. ar Ta Forest

× 103 elevation cluster index (cm ◦C−1 day−1) (◦C) cover

(km2) (m a.s.l.) latitude (◦) (Kc) (%)

C1 26.5 3300 −29.4 0.78 0.02 18.3 2.0

C2 17.9 2760 −33.7 0.89 0.11 16.1 5.5

C3 9.20 1890 −36.4 0.83 0.18 12.2 13.8

C4 49.3 3520 −30.1 0.8 0.04 20.4 1.4

C5 18.5 2855 −33.4 0.83 0.15 15.6 3.0

C6 7.60 2807 −34.8 0.83 0.21 13.9 2.3

C7 14.8 2167 −36.1 0.85 0.20 16.7 2.5

C8 8.30 1840 −37.0 0.82 0.23 15.7 4.9

Total/ 152.1 2320 – 0.83 0.14 – 3.3

average

Table 2. Snow-pillow measurements available within the study domain.

ID SWE data Symbol Lat. Long. Elevation Reference

(S) (W) (m a.s.l.) cluster

Chile

1 Quebrada Larga QUE 30◦43′ 70◦16′ 3500 C1

2 Cerro Vega Negra CVN 30◦54′ 70◦30′ 3600 C1

3 El Soldado SOL 32◦00′ 70◦19′ 3290 C2

4 Portillo POR 32◦50′ 70◦06′ 3000 C2

5 Laguna Negra LAG 33◦39′ 70◦06′ 2780 C2

6 Lo Aguirre LOA 35◦58′ 70◦34′ 2000 C3

7 Alto Mallines ALT 37◦09′ 70◦14′ 1770 C3

Argentina

8 Toscas TOS 33◦09′ 69◦53′ 3000 C5

9 Laguna Diamante DIA 34◦11′ 69◦41′ 3300 C6

10 Laguna Atuel ATU 34◦30′ 70◦02′ 3420 C6

11 Valle Hermoso VAL 35◦08′ 70◦12′ 2250 C7

12 Paso Pehuenches PEH 35◦08′ 70◦23′ 2545 C7

(cm ◦C−1 day−1), which is similar to values reported in pre-

vious studies performed in other mountain ranges in the

Northern Hemisphere (0.20–0.25 in Martinec, 1989; 0.17 in

Kustas et al., 1994; 0.20 in Brubaker at al., 1996; 0.15 in

Molotch and Margulis, 2008). However, values associated

with the northernmost clusters of our study area are quite

low, reaching under 0.02 for the C1 cluster in northern Chile.

Clear sky index (Kc) values range between 0.78 and 0.89,

which is similar to values reported by Salazar and

Raichijk (2014), who estimateKc values on the order of 0.90

for a single location at 1200 m a.s.l. in northern Argentina.

A 5 to 6 ◦C difference can be observed in mean air tempera-

ture at index stations between the northern and southern edge

of the domain. Temperatures for the C4 cluster are subject to

greater uncertainty, because no high-elevation climate station

data were available for this study (Fig. S4). Forest cover val-

ues are lower than 6 % throughout the model domain, with

the exception of cluster C3, with a value of 13.8 %. The dif-

ference in forest cover between clusters C3 and C8 can be

attributed to the precipitation shadow effect induced by the

Andes ridge. Forest corrections applied to MODIS fSCA re-

sulted in a 17 % increase with respect to the original values

over the southern sub-domain (C3).

3.4 Evaluation data: SWE, snow depth and river flow

observations

Operational daily snow-pillow data from stations maintained

by government agencies in Chile and Argentina were avail-

able for this study (Table 2). Only stations with 10 or more

years of record were included, and manual snow course data

were neglected because of their discontinuous nature. Ap-

proximately 10 % of observed maximum SWE accumula-

tion values were discarded due to obvious measurement er-
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Table 3. Summary of snow depth and density intensive study campaigns.

Year ID Symbol Field site Date Snow-pit SWE SWE SWE Sample

(Fig. 1) density average SD range size

(kg m−3) (mm) (mm) (mm)

2010 2 ODA Ojos de Agua 25 Sep 352 450 163 848–0 134

2011 2 ODA Ojos de Agua 30 Aug 341 705 199 1194–136 374

5 MOR Morales 1 Sep 367 642 282 1101–0 171

8 OBL Olla Blanca DET 31 Aug 333 539 217 1032–79 289

2012 1 CVN Cerro Vega Negra 28 Aug 308 296 115 700–40 166

3 MAR Juncal–Mardones 30 Aug 373 530 230 1120–40 163

5 MOR Morales 12 Sep 412 590 360 1240–150 152

8 OBL Olla Blanca DET 3 Sep 411 590 260 1230–0 309

4 POR Portillo 15 Sep 410 170 180 1230–0 181

2013 1 CVN Cerro Vega Negra 21 Aug 356 405 165 1040–10 282

2 ODA Ojos de Agua 23 Aug 355 540 220 1310–100 300

10 CHI Nevados Chillána 27 Aug 416 980 240 1270–30 104

10 CHI Nevados Chillánb 27 Aug 416 600 240 1230–70 216

4 POR Portillo 23 Aug 392 340 210 1120–0 91

6 LAG Laguna Negra 30 Aug 455 480 250 1770–0 32

2014 1 CVN Cerro Vega Negra 5 Aug 321 163 85 620–0 326

5 MOR Morales 12 Aug 401 510 250 1190–0 329

7 LVD Lo Valdez 13 Aug 365 710 290 1260–0 186

8 OBL Olla Blanca DET 12 Sep 363 420 240 1210–0 334

9 RBL Río Blanco DET 6 Sep 354 620 290 1210–0 99

10 CHI Nevados Chillána 26 Sep 504 830 400 380–1510 18

10 CHI Nevados Chillánb 26 Sep 504 980 250 530–1500 87

4 POR Portillo 19 Aug 436 170 140 850–0 73

6 LAG Laguna Negra 30 Aug 365 300 110 540–0 117

a Without forest cover (upper part of basin). b With forest cover (lower part of basin).

rors and data gaps. An analysis of the seasonal variability

of snow-pillow records on the western and eastern slopes of

the Andes suggests that the peak-SWE date is somewhat de-

layed on the latter, by approximately 1 month. Therefore,

peak-SWE estimates for Chilean and Argentinean stations

are evaluated on 1 September and 1 October, respectively,

although in the results section we show values for 15 Septem-

ber in order to use a unique date for the entire domain. Man-

ual snow depth observations were taken in the vicinity of

selected snow-pillow locations in order to evaluate the rep-

resentativeness of these measurements at the MODIS grid

scale during the peak-SWE time window. These depth obser-

vations were obtained in regular grid patterns within an area

the approximate size of a MODIS pixel (500 m), centered

about the snow-pillow location. On average, 120 depth obser-

vations spaced at approximately 50 m increments were ob-

tained at each snow-pillow site. Snow density was estimated

by a depth-weighted average of snow densities measured in

snow pits with a 1000-cc snow cutter. Samples where ob-

tained either at regular 10 cm depth intervals along the snow

pit face, or at the approximate mid depth of identifiable snow

strata for very shallow snow pack conditions. Weights were

computed as the fraction of total depth represented by each

snow sample.

Distributed snow depth observations were available from

snow surveys carried out during late winter between 2010

and 2014 at seven study catchments on the western side of

the Andes, between latitudes 30 and 37◦ S (Fig. 1, Table 3).

Snow depths were recorded with 3 m graduated avalanche

probes inserted vertically into the snow pack. Depending

on the terrain conditions, between three and five individual

point snow depth measurements were obtained at each lo-

cation, from which a mean snow depth and standard error

are calculated; i.e., three-point observations are made form-

ing a line with a spacing of 1 m and five-point observations

are made forming a cross with an angle of 90◦ and a spac-

ing of 1 m. Pixel-scale SWE estimates are obtained by av-

eraging all depth observations within the limits of MODIS

pixels and multiplying them by density observations from

snow pits excavated at the time of each snow survey, i.e., two

or three snow pits per field campaign. After this, individual

depth observations are converted into SWE for model valida-

tion. Modeled SWE values are averaged at all MODIS pix-

els where manual depth observations are available, and their

summary statistics are compared to those of SWE estimated

from manual depth observations at the same pixels, multi-

plied by average density from snow pits.
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Spring and summer season (September to March) total

river flow volume (SSRV) for the 2001–2014 period is ob-

tained from unimpaired (no human extractions) streamflow

records at river gauges located in the mountain front along

the model domain. Data were pre-selected leaving out series

that showed too many missing values, and verified through

the double mass curve method (Searcy and Hardison, 1960)

in order to discard anomalous values and to ensure ho-

mogeneity throughout the period of study. Regional con-

sistency was verified through regression analysis, only in-

cluding streamflow records with R2 values greater than 0.5

among neighboring catchments. Missing values constituted

about 3.7 % of the entire period and were filled through lin-

ear regression.

4 Results

4.1 Model validation

Figure 3 compares reconstructed peak SWE (gray circles) to

observed values at three snow-pillow locations (black dia-

monds) where additional validation sampling at the MODIS

pixel scale was conducted (box plots). At the Cerro Vega Ne-

gra site (CVN), located in cluster C1, the model overesti-

mates peak SWE (1 September) with respect to the snow-

pillow value by 97 % in 2013 and by 198 % in 2014. At the

Portillo site (POR, cluster C2), reconstructed SWE underes-

timates recorded values by 51 % in 2013 and 72 % in 2014.

At the Laguna Negra site (LAG, also C2), reconstructed

peak SWE slightly overestimates recorded values (8 %) (Ta-

ble 4). However, reconstructed SWE compares favorably to

distributed manual SWE observations obtained in the vicin-

ity of the snow pillows at the POR and LAG sites. At POR,

model estimates approach upper (2012) and lower (2013 and

2104) quartiles, while at LAG the model estimates are closer

to the minimum value observed in 2013 and very similar to

the observed mean in 2014.

Figure 4 depicts the comparison between reconstructed

SWE and snow surveys carried out at pilot basins throughout

the model domain. From left to right, it can be seen that the

model slightly overestimates SWE with respect to observa-

tions at CVN (i.e., 18 % overestimation). Further south, there

is a very good agreement at ODA-MAR (i.e., 4 % underesti-

mation), with less favorable results at MOR-LVD (i.e., 39 %

underestimation) and OB-RBL (i.e., 36 % underestimation).

At CHI the model significantly underestimates SWE (i.e., by

67 %); note that this site is heavily forested. For the 2013a

and 2014a boxes (Fig. 4) – which correspond to clearing

sites – there is still underestimation, but of lesser magnitude

(20 %). Summarizing, we detect model overestimation with

respect to snow survey medians in four cases and underesti-

mation in fifteen cases. In 11 out of 19 cases, reconstructed

SWE lies within the snow survey data uncertainty bounds

(standard deviation).

Figure 3. Reconstructed SWE validation at selected snow-pillow

sites. Black diamonds are instrumental records, gray circles are

model estimates, and box plots summarize the manual verification

data set around the pillow site. Upper and lower box limits are the

75 and 25 % quartiles, the horizontal line is the median, the white

box is the mean, upper and lower dashes represent plus and minus

2.5 SD from the mean, and crosses are outlying values.

Figure 5 shows a comparison between model estimates

of peak (15 September) SWE and corresponding observa-

tions at snow-pillow sites. In general, directly contrasting

pixel-based estimates with sensor observations should be at-

tempted with caution. In areas with complex topography,

slight variations in the position of the sensor with respect

to the model grid, combined with high spatial variability

in snow accumulation could lead to large differences be-

tween model estimates and observations. Also, small-scale

variations in snow accumulation near the sensor, for exam-

ple induced by protective fences, could introduce bias to

the results (e.g., Meromy et al., 2013; Molotch and Bales,

2006; Rice and Bales, 2010). Taking the above into con-

sideration, Fig. 5 suggests that the model tends to overes-

timate observed peak SWE at the two northernmost sites

on the Chilean side (QUE and CVN); the equivalent clus-

ter on the Argentinean side (C4) lacks SWE observations.

The R2 values indicated below refer to the best linear fit; re-

gression line slope and intercept coefficients are provided in

Table 4. Overall, we find a better agreement at the eastern

slope sites (i.e., R2
= 0.74) than at their western counterparts

(i.e., R2
= 0.43), with a combined R2 value of 0.61. Individ-

ually, the worst and best linear agreements are obtained at

POR (R2
= 0.32) and LOA (R2

= 0.88), respectively. Time

series of observed SWE and model estimates for these two

extreme cases are shown in the supplementary online ma-

terial, and indicate a significant degree of inter-annual vari-

ability in model discrepancies in terms of peak SWE, but

less in terms of, for instance, snow cover duration. Average

standard error, SEx is 284 mm (SEx = 242 mm at the western

slope; SEx = 302 mm at the eastern slope), with a range be-

tween 72 mm (TOS) and 378 mm (ATU) (Table 4). Relative

errors display some variability, with overestimation higher

than 30 % at the two northernmost (QUE and CVN) and at

the southernmost (PEH) snow pillows. For all other snow
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Table 4. Model validation statistics against intensive study area observations around snow pillows and at catchment scale.

Reconstructed SWE vs. MODIS pixel (grid) sampling (selected snow pillows)

Avg. SD Avg. SP RE% RE% RE%

sampling sampling model (sensor) (avg.) (avg.) (avg.)

(mm) (1) (mm) (2) (mm) (3) (mm) (4) (1) vs. (3) (1) vs. (4) (3) vs. (4)

CVN 223 110 334 200 49 % −10 % 98 %

POR 227 177 170 353 −25 % 35 % −51 %

LAG 395 180 283 280 −28 % −30 % 8 %

Reconstructed SWE vs. snow surveys (pilot basins)

Avg. AD Avg. SD RE% RE%

sampling sampling model model (avg.) (SD)

(mm) (1) (mm) (2) (mm) (3) (mm) (4) (1) vs. (3) (2) vs. (4)

CVN 253 133 298 63 18 % −53 %

ODA-MAR 556 203 535 128 −4 % −37 %

MOR-LVD 613 295 375 115 −39 % −61 %

OBL-RBL 497 252 317 89 −36 % −65 %

CHI (forest) 790 245 257 46 −67 % −81 %

CHI (clear) 905 320 724 170 −20 % −47 %

Reconstructed SWE vs. snow pillows (1 Sep – Chile and 1 Oct – Argentina)

R2 Slope Intercept SEx RE% RMSE Mod. SWE Mod. SWE

(mm) (mm) (mm) average SD

(mm) (mm)

QUE 0.71 1.39 131 208 79 335 529 350

CVN 0.78 0.92 247 140 56 251 609 281

SOL 0.68 0.85 −16 112 −19 127 401 241

POR 0.32 0.52 87 277 −36 398 437 324

LAG 0.42 0.76 16 217 −21 230 424 263

LOA 0.88 0.79 101 123 −5 171 734 316

ALT 0.83 0.56 5 89 −41 332 489 296

TOS 0.78 0.41 26 72 −52 251 120 141

DIA 0.76 0.85 38 141 −4 137 455 291

ATU 0.56 1.04 77 378 9 349 1263 496

VAL 0.72 0.74 11 211 −24 273 457 371

PEH 0.74 1.01 303 334 32 436 1302 580

Average 0.68 – – 192 −2 274 602 330

Figure 4. Reconstructed SWE validation at pixels with snow survey data. Box plots summarize all individual measurements at pixels co-

located with SWE reconstruction. Symbology analogous to Fig. 3.
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Figure 5. Comparison between peak reconstructed and observed

SWE at snow-pillow sites. Solid line represents the 1 : 1 line.

pillows, the model estimates are lower than the sensor ob-

servation; the range of relative errors for those sites with un-

derestimation goes from −52 to −5 %.

4.2 Correlation with melt-season river flows

Under the assumption of unimpaired flows, peak SWE and

seasonal flow volume should show some degree of correla-

tion, even though no assumptions can be made here about

other relevant hydrologic processes, such as flow contribu-

tions from glaciated areas, subsurface storage carryover at

the basin scale and influence of spring and summer precip-

itation. Differences can be expected due to losses to evap-

otranspiration and sublimation affecting the snowpack and

soil water throughout the melt season. Hence, basin-averaged

peak SWE should always be higher than melt season river

volume. A clear regional pattern emerges when inspecting

the results of this comparison in Fig. 6. Correlation between

peak SWE and melt season river flow is higher in clusters C1

and C4 with R2 values of 0.84 and 0.86, respectively. The re-

Figure 6. Area-specific spring–summer runoff volume (SSRV) ver-

sus peak SWE. Clusters 1 through 3 include rivers on the Chilean

(western) slope of the Andes range; clusters 4 through 8 correspond

to Argentinean (eastern) rivers. Solid line represents the 1 : 1 line.

C4 and C8 SSRV were estimated by the area-transpose method.

sult for Cluster C4 indicates that liquid precipitation during

the melt season (Fig. 2) does not result in decreased correla-

tion between peak SWE and river flow. Clusters C2, C5, C6

and C7 display a somewhat lower correlation, with some in-

dividual years departing more significantly from the overall

linear trend. R2 values range between 0.46 and 0.78 in these

cases. Finally, not only are correlation coefficients lower for

the southern clusters C3 (R2
= 0.56) and C8 (R2

= 0.48), but

also estimated peak SWE is always lower than river flow,

which indicates the importance of spring and summer pre-

cipitation in determining streamflow variability. In fact, Cas-

tro et al. (2014) analyze patterns of daily precipitation in

this area and document average spring and summer rain-

fall amounts of approximately 520 mm in C3 and 85 mm

in C8. A promising avenue for further research in this re-

gion emerges when comparing the correlation between melt-

season river flow and the spatially distributed reconstructed

product versus that of river flows and snow-pillow data. Ta-

ble 5 shows values of R2 for the linear regression between

these variables. It can be seen that for two of the three clus-

ters on the western side of the continental divide, the end-of-

winter distributed reconstruction has more predictive power

than observed SWE. Only for central Chile the Laguna Negra

(LAG, with a value of 0.82) site has a better correlation with

river flows, but the reconstructed product has a value of 0.78,

which lies in between those found for LAG and for Portillo
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Table 5. Coefficient of determination R2 between river melt season flows (SSRV) and estimated and observed SWE (end-of-winter).

R2 value-specific SSRV vs. R2 value-specific SSRV vs.

estimated SWE per cluster SWE at snow pillows (2001–2013)∗

2001–2014 Neglecting 2009 Best Second best

at Argentinean

clusters∗∗

C1 0.84 – 0.74 (CVN) 0.69 (QUE)

C2 0.78 – 0.82 (LAG) 0.68 (POR)

C3 0.57 – 0.17 (LOA) 0.16 (ALT)

C4 0.87 – – –

C5 0.66 0.82 0.81 (TOS) –

C6 0.45 0.76 0.87 (ATU) 0.77 (DIA)

C7 0.64 0.89 0.77 (VAL) 0.41 (PEH)

C8 0.48 0.64 – –

∗ 2014 flows in Argentina unavailable to us at the time of writing. ∗∗ 2009 is considered an outlier year for

the reconstruction at Argentinean sites.

(POR, with a value of 0.68). For the eastern side of the conti-

nental divide, the distributed product shows similar skill than

that of snow pillows except for Atuel, which has a very high

correlation (R2 of 0.87) with cluster C6 river flows, and for

cluster C7, in which the reconstruction shows higher predic-

tive power (R2 of 0.89) than the available SWE observations

(VAL and PEH).

4.3 Regional SWE estimates

Figure 7 shows the 15 September SWE average over the

2001–2014 period obtained from the reconstruction model,

and the percent annual deviations (anomalies) from that av-

erage. Steep elevation gradients can be inferred from the cli-

matology, as well as the latitudinal variation expected from

precipitation spatial patterns. For the northern clusters (C1

and C4), the peak SWE averaged over snow-covered areas is

on the order of 300 mm, while in the middle of the domain

(C2, C5, C6), it averages approximately 750 mm. The south-

ern clusters (C3, C7, C8) do show high accumulation aver-

ages (≈ 650 mm), despite the sharp decrease in the Andes

elevation south of latitude 34◦ S. The anomaly maps convey

the important degree of inter-annual variability, as well as

distinct spatial patterns associated with it. Between 2001 and

2014, years 2002 and 2005 stand out for displaying large pos-

itive anomalies throughout the entire mountainous region of

the model domain, with values 2000 mm and more above the

simulation period average. Other years prior to 2010 show

differential accumulation patterns, where either the northern

or southern parts of the domain are more strongly affected

by positive or negative anomalies. Overall, the northern clus-

ters (C1 and C4) show above-average accumulation in only 3

(2002, 2005 and 2007) of the 14 simulated years, whereas the

other clusters show above-average accumulation for 6 years

(2001, 2002, 2005, 2006, 2008 and 2009). In particular, years

2007 and 2009 show a bimodal spatial structure, with excess

accumulation (deficit) in the northern (southern) clusters dur-

ing the former, and the inverse pattern in the latter year.

A longitudinal pattern in the distribution of negative

anomalies can be discerned from Fig. 7, whereby drought

conditions tend to be more acute on one side of the divide

versus the other. Conversely, during positive anomaly years,

both sides of the Andes seem to show similar behavior. Fur-

ther research on the mechanisms of moisture transport during

below-average precipitation years may shed light on this re-

sult.

Figure 8 provides a different perspective on the region’s

peak SWE climatology by presenting our results aggre-

gated into elevation bands for each hydrologic unit. Eleva-

tion bands are defined at 1000 m increments starting from

1000 m a.s.l. Crosses indicate average peak SWE for each

band (mm), and circle areas are proportional to the surface

area covered by each elevation band. From north to south,

hydrologic unit C4 shows slightly higher SWE than C1 be-

tween 3000 and 5000 m a.s.l., but much larger surface areas

(∼ 32 000 vs. ∼ 17 000 km2), indicating a larger water re-

source potential. C2 stands out as having the greatest area-

weighted cluster SWE and the greatest SWE for each eleva-

tion band. Compared to its counterpart on the eastern side of

the Andes range (C5), C2 shows higher accumulations (up

to ∼ 1800 mm) at all elevations. The area included between

2000 and 4000 m a.s.l. (∼ 13 000 km2), which shows an es-

timated peak SWE accumulation on the order of 600 mm,

represents the most predominant snow volume accumulation

zone. Although the 4000–5000 m a.s.l. elevation band con-

tributes approximately half the 2000–4000 band surface area

in C2, its average peak SWE is roughly twice that of the

3000–4000 band (∼ 6000 km2). This makes this subregion

interesting for future research, because most snow observa-

tions in the area are obtained below 4000 m a.s.l.; the same is

true for unit C5. Further to the south, the barrier effect of the

Andes is also suggested by the displacement of the SWE-
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Figure 7. Regional peak (15 September) SWE climatology for the 2001–2014 period (upper left panel), and annual peak SWE anomalies.

elevation distribution in C6 and C7 when compared to C3.

On the eastern side of the model domain, it is interesting to

see a steepening of the average peak SWE elevation profile

between C6 and C8, suggesting that C8 is less affected by

Andes blockage than its northern counterparts.

Estimated net energy inputs (Fig. 9) shows a decrease from

the northern (C1 and C4) into the mid-range clusters (C2, C5

and C6), with increases again in the southern reaches of the

domain (C3, C7 and C8). This is a result of a combination of

an increasing trend in net shortwave radiation in the south–

north direction and a reverse spatial trend in net longwave

radiation exchange, which increases (approaches less nega-

tive values) in the north–south direction. Modeled turbulent

energy fluxes (Eq. 1) are negligible in the northern clusters,

but their contribution to the net energy exchange increases

with latitude as a result of the spatial variation in the ar pa-

rameter.

Figure 10 shows the temporal (seasonal) variation in av-

erage fSCA and SWE for each cluster, and Table 6 shows

peak SWE at the watershed scale, averaged both over the en-

tire basin and over the snow-covered area. Maximum fSCA

increases in the north–south direction, consistent with the cli-

matological increase in winter precipitation and decrease in

temperature. A dramatic increase in snow coverage is ob-

served between the northern (i.e., C1 and C4) and adjacent

southern clusters (i.e., C2 and C5), with average peak fSCA

increasing from 20 to 50 %. The highest average snow cov-

erage is observed for cluster C8, with more than 60 %. Snow

water equivalent displays a similar regional variability with

lower seasonal variability than snow cover for all clusters ex-

cept for C2, where fSCA and SWE variability throughout

the melt season are identical. Mean peak SWE in northern

Chile is the lowest among the eight clusters, with approxi-

mately 100 mm SWE over the 2001–2014 period. The largest

estimate is for cluster C2, central Chile, where mean peak

SWE exceeds 500 mm. The rain shadow effect of the Andes

range is apparent in the comparison of SWE and fSCA in C2

and C5–C6–C7. Fractional snow-covered area is lower on the

eastern side because of the larger basin sizes, which increases

the proportional area of lower elevation terrain. In addition,

peak SWE is approximately 25 % lower on the eastern side,

with less than 400 mm SWE for the eastern clusters. Clus-

ter C4 is not affected by this phenomenon, showing higher

snow coverage and water equivalent accumulation than its

counterpart, C1. Cluster C8 represents an interesting excep-

tion in that its average fSCA is the largest within the model
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Figure 8. Maximum SWE through 1000 m elevation bands (EB). Crosses are mean values within EB, lines are the estimated SWE-elevation

profile. Circle radius indicates EB area (km2) scaled by 0.05 and takes values from the SWE axis.

domain, but peak SWE is not significantly higher than the

estimates in the other clusters on the Argentinean side of the

Andes.

5 Discussion

5.1 Sensitivity analysis

The Andes Cordillera, on the one hand, displays ideal con-

ditions for SWE reconstruction, including low cloud cover,

infrequent snowfall during spring and summer, and very low

forest cover. On the other hand, the scarcity of basic climate

data poses challenges that would affect any modeling exer-

cise. A local sensitivity analysis is implemented in order to

gain insights regarding the influence of some of the assump-

tions required for SWE modeling (Fig. 11). The influence of

the clear sky factor (Kc), snow surface albedo (∝s), the slope

of the 1LST vs. 1Ta relationship (µ), the ar parameter, and

the difference between air and snow surface temperature are

explored. Results are shown for the model pixels correspond-

ing to two of the snow-pillow sites, each located at the north-

ern and southern sub-regions of the model domain respec-

tively. The clear sky factor, snow albedo and 1LST vs. 1Ta

slope are the most sensitive parameters at the northern (CVN)

site. Increasing the slope in the 1LST vs. 1Ta relationship

results in decreasing temperature at pixels with higher ele-

vations than the index station, thus lowering longwave cool-

ing and resulting in higher SWE estimates. The impact of

increasing slope values decreases progressively, because an

increasing slope results in increased pixel air temperature,

but snow surface temperature cannot exceed 0 ◦C. The in-

fluence of snow albedo is analyzed by perturbing the entire

albedo time series for each season from the values predicated

by the USACE model. Increasing albedo values restricts the

energy available for melt therefore decreasing peak SWE es-

timates. Again, a nonlinear effect is observed, constrained by

a minimum albedo value of 0.4. The sensitivity of the clear

sky factor, on the other hand, is monotonic, with increasing

values generating more available solar energy, resulting in

higher SWE estimates. At the southern site (ALT), the shape

of the sensitivity functions is the same as at CVN, but the

magnitude of SWE variations as a function of parameter per-

turbations is smaller. This is likely related to the fact that

turbulent fluxes constitute a larger fraction of the simulated

overall energy balance at the southern sites; ar parameter val-

ues are greater in the southern portions of the domain. There-
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Figure 9. Time series of energy fluxes over snow surface (average over 14 years) and global average per cluster. Unique axes scale for all

plots.

Figure 10. Average seasonal evolution of fSCA and SWE in the study region. Lower right panel shows the spatial correlation between

time-averaged fSCA, SWE and specific melt-season river discharge.
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Table 6. Peak SWE 2001–2014 climatology for river basins within the study region. Basin-wide averages, SCA-wide averages and basin-

wide water volumes shown.

ID Basin – gauge station Lat. S Long. W Outlet Area SWE

elev. (km2) Basin-wide Over SCA Basin-wide

(m a.s.l.) (mm) (mm) (m3
× 10−6)

Chile

1 Copiapó en Pastillo 27◦59′ 69◦58′ 1300 7470 45 120 336

2 Huasco en Algodones 28◦43′ 70◦30′ 750 7180 68 161 488

3 Elqui en Algarrobal 29◦59′ 70◦35′ 760 5710 151 269 862

4 Hurtado en San Agustín 30◦27′ 70◦32′ 2050 676 302 325 204

5 Grande en Puntilla San Juan 30◦41′ 70◦55′ 2140 3545 137 306 486

6 Cogotí en La Fraguita 31◦06′ 70◦53′ 1021 491 182 335 89

7 Illapel en Huintil 31◦33′ 70◦57′ 650 1046 180 305 188

8 Chalinga en San Agustín 31◦41′ 70◦43′ 920 437 142 332 62

9 Choapa en Salamanca 31◦48′ 70◦55′ 560 2212 214 356 473

10 Sobrante en Piñadero 32◦12′ 70◦42′ 2057 126 172 198 22

11 Alicahue en Colliguay 32◦18′ 70◦44′ 852 344 92 184 32

12 Putaendo en Resg. Los Patos 32◦30′ 70◦34′ 1218 890 273 346 243

13 Aconcagua en Chacabuquito 32◦51′ 70◦30′ 950 2110 609 692 1285

14 Mapocho en Los Almendros 33◦22′ 70◦27′ 970 640 269 342 172

15 Maipo en El Manzano 33◦35′ 70◦22′ 850 4840 692 760 3349

16 Cachapoal en Puente Termas 34◦15′ 70◦34′ 700 2455 700 814 1719

17 Tinguiririca en Los Briones 34◦43′ 70◦49′ 560 1785 532 677 950

18 Teno en Claro 34◦59′ 70◦49′ 650 1210 438 524 530

19 Lontué en Colorado–Palos 35◦15′ 71◦02′ 600 1330 656 759 872

20 Maule en Armerillo 35◦42′ 70◦10′ 470 5465 525 554 2869

21 Ñuble en San Fabián 36◦34′ 71◦33′ 410 1660 376 430 624

22 Polcura en Laja 37◦19′ 77◦32′ 675 2088 358 378 748

Argentina

23 Jachal en Pachimoco 30◦12′ 68◦49′ 1563 24 266 79 175 1917

24 San Juan en km 101 31◦15′ 69◦10′ 1129 23 860 308 569 7349

25 Mendoza en Guido 32◦54′ 69◦14′ 1479 7304 460 672 3360

26 Tunuyán en Zapata 33◦46′ 69◦16′ 852 11 230 289 592 3245

27 Diamante en La Jaula 34◦40′ 69◦18′ 1451 2832 395 489 1118

28 Atuel en Loma Negra 35◦15′ 69◦14′ 1353 3696 338 525 1249

39 Malargue en La Barda 35◦33′ 69◦40′ 1568 1055 171 284 180

30 Colorado en Buta Ranquil 37◦04′ 69◦44′ 817 14 896 288 495 4290

31 Neuquén en Rahueco 37◦21′ 70◦27′ 870 8266 356 446 2943

fore, perturbations of the other terms account for a smaller

fraction of the energy exchange at the southern sites.

5.2 Model performance and conceptual energy balance

representation

Among the many factors that influence model performance,

the sub-region delineation involves the selection of index

meteorological stations for extrapolating input data at the

domain level. Thus, for example, two adjacent pixels that

are part of different sub-regions may be assigned input data

derived from two different meteorological stations that are

many kilometers apart. It would be preferable to use dis-

tributed inputs only, but these were not available for this do-

main. Future research is needed to explore alternative strate-

gies for domain clustering.

Overall, the model performance, evaluated against SWE

observations, is comparable to that achieved in other moun-

tain regions of the world. Our average coefficient of deter-

mination R2 of 0.68 is lower than that obtained by Guan et

al. (2013) in the Sierra Nevada (0.74) when comparing op-

erational snow-pillow observations, although this value is af-

fected by three stations with much lower agreement (POR,

LAG, ATU); the median R2 in our study, on the other hand,

is 0.73, which we consider satisfactory in light of the scarcity

of forcing data and direct snow properties observations avail-

able in this region. The overall relative error is −2 % for ob-

servations from snow pillows within our study region, but
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Figure 11. Sensitivity of peak SWE estimates to model forcings and

parameters. Average over the 2001–2014 period at selected snow-

pillow sites.1x represents the percentage change over each param-

eter studied with respect to the base case.

this value is strongly affected by two stations where we ob-

served significant overestimation (QUE and CVN). When

including the remaining ten snow pillows only, relative er-

ror increases to −16 %. Given that forest cover is mini-

mal in our modeling domain, we can attribute this bias to

either weaknesses in the simplified energy balance model

formulation or to errors in the MOD10A1 fSCA product.

Previous work in the northern hemisphere (Rittger et al.,

2013) has shown that MODIS can underestimate fractional

snow cover during the snowmelt season. On the one hand,

land cover heterogeneity at spatial resolutions lower than

the MODIS scale (i.e., 500 m) results in mixed-pixel detec-

tion problems. On the other hand, spectral unmixing based

on the NDSI approach tends to underestimate fSCA un-

der patchy snow distributions. In addition, surface temper-

atures greater than 10 ◦C – more likely to exist during late

spring – induce MODIS fSCA underestimation. Molotch and

Margulis (2008) tested the SWE reconstruction model us-

ing Landsat ETM and MOD10A1 and found that maximum

basin-wide mean SWE estimates were significantly lower

when using MOD10A1. More recently, Cortés et al. (2014a)

showed that a similar pattern can be seen for the extratrop-

ical Andes, whereby MODIS fSCA consistently underesti-

mated LANDSAT TM fSCA retrievals. MODIS fSCA under-

estimation during spring combined with increased net energy

fluxes over the snowpack can result in a marked underestima-

tion (∼ 20 %) for available energy flux for snowpack melting

and consequently (∼ 45 %) for maximum SWE (Molotch and

Margulis, 2008).

Figure 12. Restricted degree-day factor as a function of space

(basin cluster) and climatological properties. Bowen (β) coefficient

shown between parentheses in the legend.

Comparisons against spatial interpolations from intensive-

study areas in the Sierra Nevada or Rocky Mountains

(e.g., Erxleben et al., 2002; Jepsen et al., 2012) are not di-

rectly applicable, because in this study we do not employ in-

terpolation methods to derive our manual snow survey SWE

estimates. However, the average overestimation found with

respect to snow survey data could be explained by the fact

that manual surveys are limited by site accessibility and sam-

pling procedures. For example, snow probes utilized are only

3.0 m long, which precludes observation of deeper snow-

pack; likewise, deep snow is expected in sites exposed to

avalanching, which were generally avoided in snow survey

design due to safety considerations. On the other hand, man-

ual snow surveys do not visit steep snow-free areas where

snow depth is expected to be lower than the 500 m pixel re-

construction. The combined effect of these two contrasting

effects is the subject of further research in this region.

Another possible explanation for model errors is the sim-

plified formulation of the energy balance equation, which

may be problematic when applied over a large, climatically

variable model domain. To explore the implications of the

simplified energy balance with respect to model errors, we

focus on the representation of turbulent energy fluxes, rep-

resented here through a linear temperature-dependent term.

Figure 12 describes the spatial distribution of the ar param-

eter, and its dependence on air temperature and relative hu-

midity observed at index meteorological stations. The impli-

cation for energy balance modeling is that turbulent fluxes

would account for a very small portion of the snowpack en-

ergy and mass balance in the northern area (C1 and C4),

which is characterized by low air temperatures and relative

humidity, which yield very low ar values. The reader must re-

call that ar values were computed based on index station data

and assumed spatially homogeneous over each cluster. The

simplified model formulation used in this research, however,
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although pseudo-physically based – compared to degree-day

or fully calibrated models – allows only for positive net tur-

bulent fluxes, because both the ar and the degree-day temper-

ature index are positive values. However, previous studies in

this region (Corripio and Purves, 2005; Favier et al., 2009)

have suggested that latent heat fluxes have a relevant role be-

cause of high sublimation rates favored by high winds and

low relative humidity conditions predominant in the area.

In order to diagnose differential performance of the model

across the hydrologic units defined in this study, we com-

pute the Bowen ratio (β) at the point scale from data avail-

able only at the few high-elevation meteorological stations in

the region with recorded relative humidity. The calculations

show that at stations located within cluster C1, latent heat

fluxes are opposite in sign and larger in magnitude than sen-

sible heat fluxes (Fig. S6). While this results in net turbulent

cooling of the snowpack, this energy loss is not considered

in our simplified energy balance approach. Note that for the

clusters C5, C6, C7 and C8, all located on the eastern (Ar-

gentinean) slope of the Andes, sensible and latent heat fluxes

are positive, compared to negative latent heat fluxes for all

the index stations within clusters C2 and C3 on the Chilean

side. This result is consistent with Insel et al. (2010), who ap-

plied a regional circulation model (RegCM3) in the area and

showed a significant difference in relative humidity (∼ 70 %

on the eastern side vs. ∼ 40 % on the western side). The fact

that we extrapolate the ar parameter value based on rela-

tively low elevation meteorological observations throughout

the southern Argentinean hydrologic units may result in a yet

not quantified overestimation of seasonal energy inputs and

peak SWE for those clusters.

6 Conclusions

Snow water equivalent is the foremost water source for the

extratropical Andes region in South America. This paper

presents the first high-resolution distributed assessment of

this critical resource, combining instrumental records with

remotely sensed snow-covered area and a physically based

snow energy balance model. Overall errors in estimated peak

SWE, when compared with operational station data, amount

to −2.2 %, and correlation with observed melt-season river

flows is high, with an R2 value of 0.80. MODIS fractional

SCA data proved adequate for the goals of this study, afford-

ing high temporal resolution observations and an appropriate

spatial resolution given the extent of the study region. These

results have implications for evaluating seasonal water sup-

ply forecasts, analyzing synoptic-scale drivers of snow ac-

cumulation, and validating precipitation estimates from re-

gional climate models. In addition, the strong correlation

between peak SWE and seasonal river flow indicates that

our results could be useful for the evaluation of alternative

water resource projects as part of development and climate

change adaptation initiatives. Finally, the regional SWE and

anomaly estimates illustrate the dramatic spatial and tempo-

ral variability of water resources in the extratropical Andes,

and provide a striking visual assessment of the progression

of the drought that has affected the region since 2009. These

results should motivate further research looking into the cli-

matic drivers of this spatially distributed phenomenon.

The Supplement related to this article is available online

at doi:10.5194/hess-20-411-2016-supplement.
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