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Abstract. The need for accurate, real-time, reliable, and
multi-scale soil water content (SWC) monitoring is critical
for a multitude of scientific disciplines trying to understand
and predict the Earth’s terrestrial energy, water, and nutrient
cycles. One promising technique to help meet this demand is
fixed and roving cosmic-ray neutron probes (CRNPs). How-
ever, the relationship between observed low-energy neutrons
and SWC is affected by local soil and vegetation calibra-
tion parameters. This effect may be accounted for by a cal-
ibration equation based on local soil type and the amount
of vegetation. However, determining the calibration parame-
ters for this equation is labor- and time-intensive, thus lim-
iting the full potential of the roving CRNP in large sur-
veys and long transects, or its use in novel environments.
In this work, our objective is to develop and test the ac-
curacy of globally available datasets (clay weight percent,
soil bulk density, and soil organic carbon) to support the
operability of the roving CRNP. Here, we develop a 1 km
product of soil lattice water over the continental United
States (CONUS) using a database of in situ calibration sam-
ples and globally available soil taxonomy and soil texture
data. We then test the accuracy of the global dataset in the
CONUS using comparisons from 61 in situ samples of clay
percent (RMSE = 5.45 wt %, R2

= 0.68), soil bulk density
(RMSE= 0.173 g cm−3, R2

= 0.203), and soil organic car-
bon (RMSE= 1.47 wt %, R2

= 0.175). Next, we conduct an
uncertainty analysis of the global soil calibration parameters
using a Monte Carlo error propagation analysis (maximum

RMSE ∼ 0.035 cm3 cm−3 at a SWC= 0.40 cm3 cm−3). In
terms of vegetation, fast-growing crops (i.e., maize and soy-
beans), grasslands, and forests contribute to the CRNP sig-
nal primarily through the water within their biomass and this
signal must be accounted for accurate estimation of SWC.
We estimated the biomass water signal by using a vegetation
index derived from MODIS imagery as a proxy for stand-
ing wet biomass (RMSE< 1 kg m−2). Lastly, we make rec-
ommendations on the design and validation of future roving
CRNP experiments.

1 Introduction

By the year 2050, over 9 billion people are predicted to in-
habit the Earth (United Nations, 2015). The monumental task
of feeding the projected global population will require a near
doubling of grain production (FAO, 2009). As of today, the
majority (∼ 2/3) of water consumption by humans is used
for agriculture, where approximately half of all global food
production comes from irrigated agriculture (Mekonnen and
Hoekstra, 2011). As such, an increase in food demand will
put an even greater demand on freshwater resources, particu-
larly an increasing reliance on groundwater (Mekonnen and
Hoekstra, 2011). The ability to model and forecast the hydro-
logic cycle will continue to play a major role in effective wa-
ter resource management in the coming decades. Currently,
most land surface models (LSMs) aimed at characterizing the
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fluxes of water, energy, and nutrients have relied on either
sparse point-scale soil water content (SWC) monitoring net-
works (Crow et al., 2012) or remote sensing products with
large pixel sizes (∼ 36 km) and shallow penetration depths
(Kerr et al., 2010; Entekhabi et al., 2010). A critical scale gap
exists between these methods, requiring innovative monitor-
ing strategies (Robinson et al., 2008). Moreover, as LSMs
continue to move towards highly refined spatial resolutions
of 1 km or less (Wood et al., 2011), the need for accurate and
spatially exhaustive SWC datasets continues to grow (Beven
and Cloke, 2012).

Estimating and monitoring SWC at the appropriate spatial
and temporal scale for effective incorporation into LSMs has
proven to be a difficult task. On the one hand, monitoring
networks at the regional (e.g., Nebraska Automated Weather
Data Network; AWDN, Oklahoma Mesonet) and continen-
tal scales (Climate Reference Network; CRN, Soil Cli-
mate Analysis Network; SCAN) have continuously record-
ing point sensors. However, these sparse networks are dif-
ficult to place in the context of the surrounding landscape
given the multifractal behavior that soil moisture fields ex-
hibit (Korres et al., 2015). Techniques such as temporal sta-
bility analysis (Vachaud et al., 1985) can help improve the
representativeness of the monitoring networks but require a
priori spatial information. On the other hand, remote sensing
satellites using passive microwaves can monitor global SWC
data every few days, albeit with large spatial footprints (∼ 36
by 36 km; Entekhabi et al., 2010; Kerr et al., 2010). In addi-
tion, passive microwaves lack significant penetration depths
(∼ 2–5 cm; Njoku and Entekhabi, 1996), limiting their effec-
tiveness as a remote sensing input for full root zone coverage
in LSMs.

Alternatively, the field of geophysics offers a variety of
techniques to help fill the spatial and temporal gaps be-
tween point sensors and remote sensing products (Bogena et
al., 2015). Bridging this gap requires both novel geophys-
ical techniques and integrated modeling strategies capable
of merging both point and remotely sensed data into a uni-
fied framework (Binley et al., 2015). One promising geo-
physical technique to help fill this need is fixed (Desilets
et al., 2010; Zreda et al., 2012) and roving cosmic-ray neu-
tron probes (CRNPs; Chrisman and Zreda, 2013; Dong et
al., 2014), which measure the ambient amount of low-energy
neutrons in the air. The low-energy neutrons are highly sensi-
tive to the mass of hydrogen, and thus SWC, in the near sur-
face (Zreda et al., 2012). CRNPs estimate the area-averaged
SWC because neutrons are well mixed within the footprint
of the sensor, which typically has a radius of several hundred
meters and depths of tens of decimeters (Desilets and Zreda,
2013; Köhli et al., 2015).

To date, the CRNP method has been mostly used as a fixed
system in one location to continuously measure SWC as part
of a large monitoring network (Zreda et al., 2012; Hawdon et
al., 2014). Recent advancements have allowed the CRNP to
be used in mobile systems to monitor transects across Hawaii

(Desilets et al., 2010), monitor entire basins in southern Ari-
zona (Chrisman and Zreda, 2013), compare against remote
sensing products in central Oklahoma (Dong et al., 2014),
and monitor ∼ 140 agricultural fields in eastern Nebraska
(Franz et al., 2015). In order to accurately estimate SWC,
the CRNP method relies on a calibration function to convert
observed low-energy neutron counts into SWC (Desilets et
al., 2010; Bogena et al., 2013; see Sect. 2.2 for full details).
The calibration procedure requires site-specific sampling of
both soil and vegetation data in order to determine the re-
quired parameters. While the calibration of a fixed CRNP
is fairly standardized (Zreda et al., 2012; Franz et al., 2012;
Iwema et al., 2015; Baatz et al., 2014), the heterogeneous na-
ture of soil and vegetation characteristics across a landscape
makes the pragmatic calibration of the roving CRNP a sig-
nificant challenge. Specifically, the presence of water within
vegetation and the soil minerals may alter the shape of the lo-
cal calibration function and thus accuracy of SWC (Baatz et
al., 2015). The need for reliable, accurate, depth-dependent,
and localized soil and vegetation spatial information for use
in the calibration function is critical in order to fully exploit
the potential of the roving CRNP to monitor landscape-scale
SWC across the globe.

The objective of this study is to explore the utility and
accuracy of currently available global soil and vegetation
datasets (soil organic carbon, soil bulk density, soil clay
weight percent, and crop biomass) for use in the calibration
function. To accomplish our objective, we aimed to answer
the following questions:

1. Can global datasets of soil bulk density, soil organic car-
bon, and soil clay weight percent be used instead of in
situ sampling within reasonable error for use in the rov-
ing CRNP calibration function?

2. Can the use of remotely sensed vegetation products,
specifically the Green Wide Dynamic Range Vegetation
Index (GrWDRVI) be used to quantify fresh biomass
with reasonably low error (< 1 kg m−2) for use in the
roving CRNP calibration function?

To answer these questions, we tested the accuracy of these
datasets against in situ sample datasets of the same param-
eters. Existing in situ datasets from across the continental
United States (CONUS) were combined with in situ datasets
from eastern Nebraska, which focused on fast-growing crops
of maize and soybean. Specifically, we tested the accu-
racy and use of a ∼ 1 km global soil dataset (Shangguan et
al., 2014). In addition, we examined the use of the GrW-
DRVI (Gietelson, 2004) derived from NASA’s MODIS sen-
sor aboard the Terra satellite for use in estimating the amount
of fresh crop biomass.

The remainder of the paper is organized as follows: in
the Methods section, the CRNP method is first presented,
with emphasis on the integration of the calibration function
and soil and vegetation parameters to convert observed low-
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energy neutron counts into SWC. Next, in situ methods for
estimating the soil and vegetation calibration parameters are
discussed, which is followed by discussions on the soil and
vegetation products available globally at ∼ 1 km resolution.
In the Results section, we first compare the in situ soil sam-
pling against the global datasets. Next, we develop a 1 km
CONUS soil lattice water map using in situ samples. We
then compare the GrWDRVI against in situ samples from
Nebraska to estimate the changes in maize and soybean fresh
biomass. Lastly, we present an error propagation analysis in-
vestigating the potential uncertainty of using the global soil
calibration data vs. local in situ sampling. The paper con-
cludes with a discussion on best-practice recommendations
for calibrating and validating a roving CRNP experiment.

2 Methods

2.1 Overview of cosmic-ray neutron probe

The CRNP estimates area-averaged SWC via measuring the
intensity of low-energy neutrons (i.e., ∼ epithermal) near the
ground surface (Zreda et al., 2008, 2012). A cascade of neu-
trons with a continuous energy spectrum are created in the
Earth’s atmosphere when incoming higher-energy particles
produced within supernovae interact with atmospheric nuclei
(Zreda et al., 2012 and Köhli et al., 2015). After fast neutrons
are created, they continue to lose energy during numerous
collisions with nuclei in air and soil and become low-energy
neutrons that are detected with the probe. The abundance of
hydrogen atoms in the air and soil largely controls the re-
moval rate of low-energy neutrons from the system (Zreda et
al., 2012). Water in the near-surface soil (i.e., SWC) is one
of the largest sources of hydrogen present in terrestrial sys-
tems (McJannet et al., 2014). Thus, relative changes in the
intensity of low-energy neutrons are overwhelmingly due to
changes in the SWC. However, the shape of the calibration
function (see Sect. 2.2) is somewhat modified by local soil
and vegetation parameters (Zreda et al., 2012) reflecting the
variation of background hydrogen levels across landscapes.

Using a standard neutron detector with a 2.54 cm layer of
plastic, Zreda et al. (2008) first described the support vol-
ume the detector measures to be a circle of∼ 300 m in radius
with vertical penetration depths of 12 to 76 cm depending on
SWC. Recent neutron transport modeling has further refined
the footprint area to be a function of atmospheric water vapor,
elevation (Desilets and Zreda, 2013), surface heterogeneity
(Köhli et al., 2015), vegetation (Köhli et al., 2015), and SWC
(Köhli et al., 2015). Köhli et al. (2015) found the footprint to
range between 130 and 240 m in radius depending on condi-
tions. Despite the varying footprint characteristics, the large
measurement area of tens of hectares makes this non-invasive
technique an ideal complement to long-term surface energy
balance monitoring around the globe. Currently, there are
> 200 fixed CRNP (personal communication with Darin De-

silets of HydroInnova LLC, Albuquerque, NM, 2015) func-
tioning in this capacity around the United States (Zreda et
al., 2012), Australia (Hawdon et al., 2014), Germany (Baatz
et al., 2014), South Africa, China, and the United Kingdom.
The real-time SWC data provide critical infrastructure for
use in weather forecasting and data assimilation in LSMs
(Shuttleworth et al., 2013; Rosolem et al., 2014; Renzullo
et al., 2014).

In addition to the fixed CRNP measuring hourly SWC, a
roving version of the CRNP has been used to reliably mea-
sure SWC at temporal resolutions as low as 1 min (Chrisman
and Zreda, 2013; Dong et al., 2014) providing the ability to
make SWC maps over hundreds of square kilometers in a
single day. Moreover, Franz et al. (2015) found that a combi-
nation of fixed and roving CRNP data in a statistical frame-
work has the ability to form an accurate, real-time, and mul-
tiscale monitoring network. With the continued increase in
observation spatial scales, the use of in situ sampling in the
traditional CRNP calibration procedure is no longer practi-
cal, thus requiring the use of alternative available datasets to
improve its operability. The remainder of this work will first
describe the availability of such global datasets and then test
the accuracy of using the datasets in the CRNP calibration
function.

2.2 The cosmic-ray neutron probe calibration function

In order to convert observed low-energy neutron measure-
ments into SWC, a series of scaling factors, correction fac-
tors, and calibration functions have been developed. Zreda
et al. (2012) describe in detail the effects from changes
in geomagnetic latitude, changes in incoming high-energy
cosmic-ray intensity, and atmospheric pressure. Rosolem et
al. (2013) further describe changes in absolute air humidity
near the surface. Following these four scaling and correction
factors, the corrected low-energy neutron counts can be con-
verted into SWC. Desilets et al. (2010) proposed the original
calibration function (Eq. 1) valid for mass-based gravimetric
measurements, which Bogena et al. (2013) further expanded
for volumetric water content. The calibration function has
been successfully tested against direct sampling and point
sensor measurements with RMSE< 0.03 cm3 cm−3 across
the globe including arid shrublands in Arizona, USA (Franz
et al., 2012), semi-arid forests in Utah, USA (Lv et al.,
2014), to humid forests in Germany (Bogena et al., 2013),
and across ecosystems in Australia (Hawdon et al., 2014).
The original calibration function proposed by Desilets et
al. (2010) is

θT =

(
a0

N
N0
− a1
− a2

)
, (1)

where θT (g g−1) is the total gravimetric water content,
a0= 0.0808, a1= 0.3720, a2= 0.1150 (see Desilets et al.,
2010, for details), N (counts per time interval) is the afore-
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mentioned low-energy corrected neutron count rate, and
N0 (counts per time interval) is the theoretical counting rate
at a location with dry silica soils. Zreda et al. (2012) illus-
trated that

θT = θp+ θLW+ θSOC, (2)

where θp ( g g−1) is the gravimetric pore water content in the
soil, θLW (g g−1) is the soil lattice water, and θSOC (g g−1)
is the soil organic carbon water equivalent. The volumetric
SWC (cm3 cm−3) is found by multiplying θp by ρb

ρw
, where

ρb (g cm−3) is dry soil bulk density and ρw= 1 g cm−3 is the
density of water.

To account for effects of time-varying above-ground veg-
etation on the low-energy neutron counts (Franz et al., 2013;
Coopersmith et al., 2014), Franz et al. (2015) proposed the
following additional correction factor to N0:

N0(BWE)=m ·BWE+N0(0), (3)

where N0(0) is the instrument-specific estimate of N0 with
no standing biomass, BWE is the biomass water equivalent
(kg m−2

∼mm of water m−2), and m is the slope of the rela-
tionship between N0 and BWE, determined via in situ cali-
bration datasets. The BWE is further defined as

BWE= SWB−SDB+SDB · fWE, (4)

where SWB is the standing wet biomass per unit area
(kg m2

∼mm of water m−2), SDB is the standing dry
biomass per unit area (kg m2

∼mm of water m−2), and
fWE= 0.494 is the stoichiometric ratio of H2O to organic
carbon (assuming organic carbon is cellulose, C6H10O5). Us-
ing nine in situ calibration datasets for maize and soybean
crops, Franz et al. (2015) found their roving CRNP had a sta-
tistically significant linear relationship betweenN0 and BWE
yieldingN0(0)= 518.34 counts per minute andm=−4.9506
(R2
= 0.515 and p value= 0.03). We note the coefficients are

less suitable for forest canopies given the need for a neu-
tron geometric efficiency factor described further in the sup-
plemental material of Franz et al. (2013). We also refer the
reader to Coopersmith et al. (2014) and Baatz et al. (2015) for
further discussion of CRNP use in forest canopies and Bo-
gena et al. (2013) for a discussion of below-ground biomass
and litter layers. In addition, plant-specific root–shoot ratios
(Peichl et al., 2012) or allometric relationships (Jenkins et
al., 2003) may be used to derive a better understanding of the
impact of time-varying below-ground biomass onN0. This is
an open and challenging research area and beyond the scope
of the current work.

2.3 In situ soil and vegetation calibration parameters

In the simplest form, the calibration function summarized
in Eqs. (1)–(4) requires depth-averaged estimates of three
soil parameters, θLW, θSOC, and ρb, and two vegetation pa-
rameters SWB and SDB. We note that depth-weighted aver-
age parameters, belowground biomass, and depth-weighted

SWC are needed to fully understand the decreasing sensi-
tivity of the CRNP with depth as recommended elsewhere
(Bogena et al., 2013; Köhli et al., 2015). As a first step,
here we will only consider depth- and area-averaged prop-
erties given the resolution of the global remote sensing prod-
ucts. We expect future work to improve on these analyses
as regional datasets contain higher-spatial-resolution data. In
order to estimate depth- and area-averaged soil parameters,
Zreda et al. (2012) and Franz et al. (2012) recommended av-
eraging 108 individual in situ soil samples from 18 locations
(every 60◦ and radii of 25, 75, 200 m) and six depths (ev-
ery 5 cm from 0 to 30 cm) within a CRNP footprint. In light
of recent modeling work (Köhli et al., 2015), this sampling
pattern may need to be adjusted to be more representative of
encountered conditions (such as shorter sampling distances
due to reduced footprint area). Given the mixture of previ-
ously published datasets and new datasets used here, we de-
cided to use the original sampling location description. Zreda
et al. (2012) found that a composite sample of 1 g of ma-
terial gathered from each of the 108 samples was adequate
to estimate θLW and θSOC. These composite samples can be
analyzed directly for lattice water (g g−1), soil total carbon
(TC, g g−1), and inorganic carbon (TIC, g g−1) determined
by measuring CO2 after the sample is acidified (e.g., by Act-
labs of Ontario Canada, analysis codes: 4E-exploration, 4F-
CO2, 4F-C, and 4F-H2O+/−). Franz et al. (2015) reported
θSOC= (TC−TIC) · 1.724 · fWE, where 1.724 is a constant
to convert total organic carbon into total organic matter and
fWE is given above. To estimate ρb at each location, Zreda
et al. (2012) used a 30 cm long split tube auger, which con-
tained six 5 cm diameter by 5 cm length rings. All samples
were then averaged to get a composite value.

In order to estimate standing wet biomass (SWB) and
standing dry biomass (SDB) in maize and soybeans, Franz
et al. (2015) measured average plant density in 1 m2 quadrats
at each of the 18 sampling locations. In a subset of six sites
(randomly chosen from one radius for each of the six tran-
sects) three plants were removed and placed in a paper bag
for weighing within 2 h (to minimize water loss). The plants
were then dried for 5 days at 70 ◦C and weighed again. Using
the density of plants, wet weight, and dry weight, SWB and
SDB can be determined at each site and averaged across the
CRNP footprint.

2.4 Global datasets of soil properties

Shangguan et al. (2014) compiled a 30 arcsec (∼ 1 km)
Global Soil Dataset (GSDE) with 34 soil parameters
in 8 layers (0–0.045, 0.045–0.091, 0.091–0.166, 0.166–
0.289, 0.289–0.493, 0.493–0.829, 0.829–1.383, and 1.383–
2.296 m). In order to construct an average value relevant to
the CRNP, we arithmetically averaged the top four layers in
each grid location to form a composite value (∼ 30 cm) over
the CONUS. The GSDE contains estimates of soil bulk den-
sity and soil organic carbon. In order to construct a map of

Hydrol. Earth Syst. Sci., 20, 3859–3872, 2016 www.hydrol-earth-syst-sci.net/20/3859/2016/



W. A. Avery et al.: Incorporation of globally available datasets 3863

Figure 1. Map of soil taxonomic classification over the continental USA using the 12 US soil taxonomic orders (data source: United Nations,
2007), and M. Kuzila, personal communication, 2014). Note Gelisols are not present in the CONUS. Black dots indicate 61 locations where
we have in situ composite/average samples for soil bulk density, soil lattice water, soil organic carbon, and clay weight fraction collected
over a 12.6 ha circle and averaged over the top 30 cm (Table S1 in the Supplement).

lattice water, we explored whether any relationships existed
between clay weight fraction and lattice water following the
work of Greacen (1981) using active neutron probe calibra-
tion procedures developed for Australian soils. In order to
account for variations in chemical and physical weathering
on lattice water (Zreda et al., 2012), we further partitioned
the analyses based on soil order. A global soil order map
with a resolution of 5 arcmin (∼ 8 km) containing 25 ma-
jor soil classifications was first uploaded to ArcMap (ESRI,
v. 10.2.2) and clipped to the CONUS. The 25 soil classifi-
cations were then categorized into 12 major classifications
of US soil taxonomy (see Fig. 1, M. Kuzila, University of
Nebraska-Lincoln, personal communication, 2014, Soil Sur-
vey Staff, 1999). The reduction from 25 to 12 soil classifica-
tions allowed us to generate larger sample sizes for each clas-
sification from the available calibration datasets. Using the
available lattice water samples from Zreda et al. (2012) and
additional samples collected in situ over 2014, we analyzed
whether any statistically significant relationships existed be-
tween GSDE clay weight percent and 61 in situ lattice water
samples for each of the US soil orders (Table S1). We note
that this procedure could be used globally if in situ lattice wa-
ter samples were available for all 25 soil taxonomic groups.
From these relationships, a map of the CONUS lattice water
weight percent was developed by using either the mean value
of the in situ lattice water or the linear relationships between
clay weight percent (from the GSDE) and the lattice water in
situ samples. A statistically significant p value (< 0.05) was
used to discriminate between using the mean values and lin-
ear relationship. Additionally, in situ samples of soil organic
carbon, bulk density, and clay weight percent were compared
against the same parameters derived from the GSDE.

2.5 Global datasets of vegetation properties

In order to estimate SWB and SDB, we downloaded remotely
sensed 500 m MODIS reflectance data from NASA’s Terra
satellite (http://earthexplorer.usgs.gov/). To calibrate and val-
idate the in situ vegetation data to the remotely sensed veg-
etation estimates, we sampled two different agricultural ar-
eas in eastern Nebraska. The MODIS reflectance data were
used to generate a widely used vegetation index (see detailed
information below), and then calibrated against historical
biomass data (2003–2013) from three fields near Mead, NE.
Each field is part of the AmeriFlux network (http://ameriflux.
ornl.gov/) with data going back to 2001 (site description
given in Suyker et al., 2005). Each field is approximately
65 ha in area. Field 1 (Mead Irrigated/US-Ne1, 41.1650,
−96.4766◦) is irrigated with continuous maize. Field 2
(Mead Irrigated Rotation/US-Ne2, 41.1649, −96.4701◦) is
irrigated with a rotation of maize and soybean. Field 3 (Mead
Rainfed/US-Ne3, 41.1797, −96.4396◦) is rainfed with a ro-
tation of maize and soybean. At these three fields, destruc-
tive biomass samples were collected approximately every 2
weeks at six different locations in the field, typically consist-
ing of 30–35 individual plants per sampling bout. From the
destructive sampling bouts, we were able to compute SWB
and SDB. The sites, with their long sampling records consist-
ing of both rainfed and irrigated soybean and maize, are an
ideal location for calibrating the remote sensing reflectance
data and vegetation indices. In order to validate the derived
vegetation index and coefficients from the abovementioned
three sites, we used four bouts of destructive biomass sam-
pling at two fields (each∼ 65 ha) during 2014 near Waco, NE
(Franz et al., 2015). The fields were irrigated maize (40.9482,
−97.4875◦) and irrigated soybean (40.9338, −97.4587◦).
SWB and SDB were collected following the protocol de-
scribed in Sect. 2.3.
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A total of 924 MODIS images over the growing seasons
(May to October) between 2003 and 2014 were downloaded
for calibration and validation of the corresponding destruc-
tive biomass samples at the five field sites in central and east-
ern Nebraska (note that MODIS images from the closest date
to in situ sampling were used with up to a 4-day offset). We
extracted the MODIS reflectance data in the green and near-
infrared electromagnetic spectrum range. Next, we removed
any pixels that were skewed by incidental cloud cover (Nguy-
Robertson and Gitelson, 2015). The resulting data were then
transformed from separate reflectance images into the GrW-
DRVI (Gietelson, 2004):

GrWDRVI=
(0.1 · near infrared− green)
(0.1 · near infrared+ green)

, (5)

where near-infrared light (MODIS band 2) has a wavelength
between 841 and 876 nm, and green light (MODIS band 4)
has a wavelength between 545 and 565 nm. The GrWDRVI
has been shown to have better correlations with observed in
situ biomass as compared to other vegetation indices such
as normalized difference vegetation index (NDVI; Nguy-
Robertson et al., 2012; Nguy-Robertson and Gitelson, 2015).
We then investigated whether any relationships existed be-
tween GrWDRVI and SWB as well as between GrWDRVI
and SDB. We note that a variety of vegetation indices exist
in the literature (cf. Kumar et al., 2015; Duncan et al., 2015)
and that this analysis is a first step for use with maize and
soybean. We anticipate that other vegetation indices may be
more appropriate with use in other crops or vegetation types
and more research is needed in this area.

2.6 Error propagation analysis of GSDE soil properties

We used a Monte Carlo analysis to estimate the expected
uncertainty if the GSDE parameters were used instead of in
situ estimates. The statistical metrics of root mean square er-
ror (RMSE), mean absolute error (MAE), and bias describe
the error propagation in the Monte Carlo simulation experi-
ment. From the 61 CONUS in situ samples and the GSDE
soil properties, we estimated the mean difference and the
covariance matrix for θLW, θSOC, and ρb. With these data,
we simulated 100 000 realizations of the “true” (i.e., from
the in situ sampling) and perturbed soil properties using a
multivariate normal distribution. Using a range of observed
neutron counts and solving Eqs. (1)–(2) with the true and
perturbed soil properties, we also estimated the true and
perturbed SWC. In order to provide realistic constraints on
the error propagation results, we assumed soil bulk density
was constrained between 1.2 and 1.5 g cm−3, lattice water
between 1 and 8 wt %, soil organic carbon between 0 and
8 wt %, and SWC between 0.03 and 0.45 cm3 cm−3. Simu-
lated and calculated values outside of these bounds were ei-
ther reset to the minimum or maximum value or removed
from the Monte Carlo statistics. A minimum threshold of
70 % of simulated cases was used to compute all error statis-

tics for each case. We note that the effects of growing
biomass were not included here given the lack of available
calibration datasets at all sites but could be incorporated in
future work following a similar methodology.

3 Results

3.1 Comparison of in situ and global soil calibration
parameters

The comparisons between observed clay weight percent, soil
bulk density, soil organic carbon and the GSDE values are
summarized in Table S1 and Fig. 2a–c for the 61 sampling
sites within the CONUS. Other than one outlier (see discus-
sion in Sect. 4.1), the comparison between the mean observed
and GSDE clay weight percent (of sites that had clay weight
percent) behaved well (RMSE= 5.45 wt %, R2

= 0.68) con-
sidering the difference in scale and methods. The com-
parisons between soil bulk density (RMSE= 0.173 g cm−3,
R2
= 0.203) and soil organic carbon as it was during the var-

ious 2011–2014 sampling campaigns (RMSE= 1.47 wt %,
R2
= 0.175) generally followed the same positive trend. We

note that the slope of the relationships for soil bulk density
and soil organic carbon is different from 1 and can lead to bi-
ased results. Caution should be used for using these estimates
as opposed to local in situ sampling.

In order to construct a map of the CONUS lattice water,
we investigated whether any significant relationships existed
between GSDE clay wt % and observed lattice water for each
US soil taxonomic group (Table 1). We found that a signifi-
cant linear relationship existed between clay wt % and lattice
water for all 61 sites (R2

= 0.183, p value< 0.001). How-
ever, after partitioning the sites into soil taxonomic groups,
only the Mollisol taxonomic group yielded a statistically sig-
nificant relationship (R2

= 0.539, p value< 0.001). There-
fore, in order to construct a CONUS lattice water map, we
used the mean values for six taxonomic groups and neglected
the remaining five taxonomic groups due to an inadequate
number of samples (Fig. 3). Figure 2d illustrates the com-
parison between the derived and observed lattice water for
the 61 CONUS sites (RMSE= 1.299 wt %, R2

= 0.315). Ta-
ble S1 summarizes the observed and GSDE values for all
61 sites and Table 2 summarizes the mean difference and co-
variance matrix between the in situ values and GSDE values.
The mean difference and covariance differences were used in
the error propagation analysis described in Sects. 2.6 and 3.3.
We note that each of the mean differences followed a normal
distribution (see Table S1 for in situ and GSDE values).

3.2 Comparison of in situ and remotely sensed
vegetation calibration parameters

Using the 11 years of destructive vegetation sampling from
3 fields near Mead, NE, we found that the GrWDRVI
was able to reasonably predict SWB when partitioning the
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Figure 2. Comparison between 61 in situ composite samples and GSDE values from the closest pixel for (a) clay weight percent, (b) soil
bulk density, and (c) soil organic carbon. (d) Comparison between in situ lattice water and derived values using GSDE clay weight fraction
and soil taxonomic orders. See Table 1 for summary of data by taxonomic group, Table S1 for raw data, and Table 2 for statistical summary
of differences between in situ and GSDE products. Note error bars denote ±1 SD (standard deviation).

data into maize and soybean, irrigated and rainfed, and
green-up/mature and senescence periods of crop develop-
ment (Fig. 4 and Tables S2 and S3). Figure 4a and b
illustrate the logistic functions that were used to predict
SWB for maize green-up (RMSE= 0.88 kg m2) and soy-
bean green-up (RMSE= 0.47 kg m−2). We note that SWB
relationships with GrWDRVI indicate that GrWDRVI val-
ues less than 0.25 equated to the absence of SWB. During
senescence, we found that a second-order power law func-
tion fit the data well. We found the maize senescence func-
tions (DOY> 210) needed to be further partitioned by irri-
gated and rainfed conditions as limitations in soil water will
occur more quickly with mature plants that utilize the en-
tire root zone. The resulting functions for irrigated maize
during senescence (RMSE= 0.75 kg m−2) and rainfed maize
during senescence (RMSE= 0.92 kg m−2) behaved well. For
the soybean senescence function (DOY> 230), we found a
single function behaved reasonably well for both irrigated
and rainfed conditions (RMSE= 0.45 kg m−2). As expected
from previous research (Ciganda et al., 2008; Peng et al.,

2011), we found that the GrWDRVI was a poor predictor of
SDB/percent water content of the vegetation. We will discuss
the reasons and alternative strategies for estimating SDB in
Sect. 4.2.

Using the derived relationships from the three study sites
near Mead, NE, we applied the equations to our two study
sites near Waco, NE (∼ 88 km from Mead, NE, Fig. 5 and
Tables 3 and 4). Figure 5 illustrates the time series of SWB
using the 8-day MODIS product in combination with the de-
rived equations for both field sites. The figure also illustrates
the observed destructive sampling for four different sam-
pling bouts. With the limited data, we found the time series
of SWB calculated from the MODIS data followed the ex-
pected green-up and senescence SWB behavior for both the
irrigated maize and soybean. The GrWDRVI-derived SWB
largely captured the maximum observed value for both the
irrigated maize (6.58 kg m−2 vs. 6.2 kg m−2) and irrigated
soybean (2.61 kg m−2 vs. 1.81 kg m−2). The largest discrep-
ancy was during the maize green-up period (DOY 183) where
the observed value was 2.4 and∼ 4.0 kg m−2 calculated from
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Table 1. Summary of mean and standard deviation of in situ lattice water samples organized by US soil taxonomic groups. The table also
summarizes a linear regression analysis using the GSDE clay percent and in situ samples. The last column indicates how the 1 km CONUS
lattice water map was generated. ∗ Note that n/a stands for not applicable because of a lack of data.

USA soil Mean SD Number Linear Linear Linear Linear GSDE-
taxonomic lattice lattice of regression regression regression regression derived
group water water samples slope intercept R2 p value CONUS

(wt %) (wt %) lattice
water
product

Alfisol 4.31 1.36 9 6.09 −0.11 0.086 0.44330 Mean
Andisol n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗

Aridisol 2.73 1.36 10 4.82 −0.15 0.095 0.38607 Mean
Entisol 1.47 0.93 5 2.48 −0.14 0.233 0.41064 Mean
Gelisol n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗

Histosol n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗

Inceptisol 4.98 0.28 2 n/a∗ n/a∗ n/a∗ n/a∗ Mean
Mollisol 3.18 1.22 24 1.03 0.11 0.539 0.00004 Linear
Oxisol n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗ n/a∗

Spodosol 2.68 2.10 4 3.45 −0.11 0.020 0.85919 Mean
Ultisol 2.82 2.33 6 0.28 0.20 0.229 0.33672 Mean
Vertisol 5.18 n/a∗ 1 n/a∗ n/a∗ n/a∗ n/a∗ n/a∗

All 3.16 1.58 61 1.68 0.09 0.183 0.00066 n/a∗

Figure 3. Derived 1 km resolution lattice water weight percent map
using the GSDE clay percent and regression analyses organized
by soil taxonomic classification. See Table 1 for estimates of the
mean, standard deviation, and linear regression vs. clay percent or-
ganized by taxonomic group. Black dots indicate 61 locations where
we have in situ composite/average samples for soil bulk density,
soil lattice water, soil organic carbon, and clay weight fraction col-
lected over a 12.6 ha circle and averaged over the top 30 cm (Ta-
ble S1). Missing areas indicate surface water bodies or soil taxo-
nomic groups with no or limited in situ lattice water sampling (see
Table 1).

the GrWDRVI. While the derived equations behaved well for
this limited validation dataset, the equations should be tested
at additional sites where other crop and soil types may in-
fluence the function coefficients. Overall, the equations and

Table 2. Top: summary of mean difference between in situ sam-
ples and GSDE values (Fig. 3) for bulk density, lattice water, and
organic carbon. Bottom: summary of covariance matrix of differ-
ence between in situ values and GSDE values. The mean difference
and covariance data were used in an error propagation analysis il-
lustrated in Fig. 6.

Bulk Lattice Organic
density water carbon

(g cm−3) (wt %) (wt %)

Mean difference of in situ
−0.10035 −0.05789 −0.07077

value−GSDE value

Covariance matrix of in situ value−GSDE value

Bulk density (g cm3) 0.0386 −0.0567 −0.2077
Lattice water (wt %) 1.6745 0.3624
Organic carbon (wt %) 3.5810

regression fits resulting in RMSE< 1 kg m−2 are within the
uncertainty of destructive biomass sampling in crops (Franz
et al., 2013, 2015). We note that 1 kg m−2 is approximately
equal to 1 mm of water or about 0.0033 cm3 cm−3 of SWC
over 300 mm. This indicates that for relatively small changes
in BWE it will be nearly indistinguishable from the noise in
the CRNP measurements. By having general SWB relation-
ships (for eastern Nebraska) through time using the 8-day
MODIS data, this could allow for reasonable biomass cor-
rections to N0 with minimal effects (< 0.01 cm3 cm−3) on
the overall estimation of SWC.
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Figure 4. Relationship between GrWDRVI and observed standing weight biomass for maize (a, c) and soybean (b, d) partitioned into green-
up (DOY< 210 for maize, DOY< 230 for soybean) and senescence. Destructive vegetation data are aggregated from three fields near Mead,
NE, between 2003 and 2013 (Table S2). The regression coefficients and equations are summarized in Table S3. Note that the maize and
soybean functions were subject to the constraints in order to provide realistic behavior at the observed GrWDRVI and destructive vegetation
sampling bounds. See main text for details.

Figure 5. Time series of standing wet biomass for two study sites
(irrigated maize and irrigated soybean) near Waco, NE, over the
2014 growing season. The graph contains the observed in situ sam-
pling in addition to the GrWDRVI estimates using the equations
summarized in Table S3. See Table 3 for GrWDRVI values and Ta-
ble 4 for in situ estimates.

3.3 Results of GSDE soil properties error propagation
analysis

In order to further assess the accuracy of our datasets, we
synthetically altered the parameters via a Monte Carlo er-
ror analysis. This was done using the GSDE soil parame-

ters (θLW, θSOC, and ρb) as compared to using local sam-
pling (Fig. 6). The analysis revealed that for the given bounds
of θLW, θSOC, and ρb, the maximum RMSE was around
0.035 cm3 cm−3 at a SWC= 0.40 cm3 cm−3. The asymmet-
ric shape of all the curves is expected given the nonlinear
calibration function given in Eq. (4) and the bounded nature
of soil moisture. We found that ρb was by far the most sen-
sitive parameter, followed by θLW and then θSOC. We expect
the influence of vegetation changes to be small on the overall
accuracy of SWC (< 0.01 cm3 cm−3) given the low RMSE
described in Sect. 3.2 (< 1 kg m−2, which is ∼ 1 mm of wa-
ter or 0.0033 cm3 cm−3 for a soil depth of 300 mm). We also
note the critical factor in the error propagation analysis is
the assumed range of ρb, given that it is directly multiplied
by the gravimetric water content in the calibration function.
Therefore, future sampling efforts or evaluations of available
datasets should seek to improve the accuracy of bulk den-
sity, meaning better estimates of the mean, standard devia-
tion, quantiles, and impact of land use practices on bulk den-
sity.
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Table 3. Summary of 2014 GrWDRVI and calculated standing wet
biomass for irrigated maize and irrigated soybean fields near Waco,
NE. Note that the senescence equation was applied to DOY 209 for
the irrigated maize field as planting date and development can vary
locally. The drop in GrWDRVI between DOY 201 and 209 is a clear
indicator of change in plant growth stage that can be used on a field-
by-field basis. ∗ Note that n/a stands for not applicable because of a
lack of data.

DOY (2014) GrWDRVI-, GrWDRVI- Calculated Calculated
irrigated irrigated standing standing
maize soybean wet biomass- wet biomass-

irrigated irrigated
maize soybean
(kg m−2) (kg m−2)

153 0.23 0.23 0.00 0.00
161 0.24 0.24 0.00 0.00
169 0.32 0.28 0.53 0.06
177 0.57 0.54 4.69 1.25
185 0.55 n/a∗ 4.33 n/a∗

193 0.63 0.63 5.63 1.91
201 0.61 0.71 5.34 2.48
209 0.55 0.73 6.50∗ 2.61
217 0.57 0.74 6.58 2.67
225 0.50 0.73 6.27 2.61
233 0.47 0.74 6.07 n/a∗

241 0.40 0.68 5.38 2.89
249 0.43 0.64 5.73 6.77
257 0.27 0.47 1.44 6.07
265 0.25 0.44 0.00 5.83
281 0.21 0.28 0.00 2.02
289 0.21 0.26 0.00 0.78
297 0.20 0.25 0.00 0.00

Figure 6. Propagation of error analysis using Monte Carlo simu-
lations of 100 000 soil parameter datasets of true soil parameters
(i.e., soil bulk density, lattice water, soil organic carbon) and per-
turbed parameters with matching mean differences and covariance
matrix between in situ samples and GSDE-derived parameters (see
Table 2). Three error metrics are presented across a range of neu-
tron counts (and thus SWC values). Note that soil bulk density was
constrained to 1.2–1.5 g cm−3, lattice water from 1 to 8 wt %, soil
organic carbon from 0 to 8 wt %, and soil water content from 0.03
to 0.45 cm3 cm−3. Simulated and calculated values outside of these
bounds were either reset to the minimum or maximum or removed
from the Monte Carlo statistics. A minimum threshold of 70 % of
simulated cases was used to compute error statistics.

Table 4. Summary of 2014 observed standing wet biomass for irri-
gated maize and irrigated soybean fields near Waco, NE. The obser-
vations represent the aggregation of 18 plants collected at 6 different
locations across the field on the sampling date.

DOY (2014), Observed DOY (2014), Observed
irrigated standing irrigated standing
soybean wet biomass- maize wet biomass-

irrigated irrigated
soybean maize
(kg m−2) (kg m−2)

167 0.19 161 0.13
196 1.63 183 2.40
211 1.81 217 6.22
259 1.63 259 0.30

4 Discussion

4.1 Global soil calibration parameters

The correlation between observed and GSDE clay content
was very strong (Fig. 2a) for all 61 sites in the CONUS ex-
cept for the site in south central Texas (29.9492,−97.9966◦).
The site occurred near a transition from Vertisol to Alfisol
soil taxonomic groups; the site may have been improperly
categorized (Table S1) or may have straddled a sharp gradi-
ent in clay contents. The strong correlation of the GSDE clay
content with the observed values allowed us to use the GSDE
clay content in understanding the correlation between clay
content and lattice water organized by US soil taxonomic
groups (Table 1). A strong correlation was only found for
clay content and lattice water for the Mollisol soil taxonomic
group (see Greacen, 1981; Zreda et al., 2012). This strong
correlation is significant because large areas of the Midwest
and Great Plains regions of the United States are made up of
Mollisol soils. Globally, Mollisol soils comprise about 7 %
of the land surface (United Nations, 2007) but contain some
of the most highly productive grassland and crop areas (i.e.,
central USA, Argentina, central Eurasia). As such, the rov-
ing CRNP method remains applicable within grassland agri-
cultural settings. No significant linear relationships with clay
content were found for Alfisol, Aridisol, Entisol, Inceptisol,
Spodosol, or Ultisol. Instead the mean value was assigned to
the Alfisol, Aridisol, Entisol, Inceptisol, Spodosol, and Ulti-
sol soil taxonomic groups when generating the CONUS map.
We found the differences in most of the soil taxonomic mean
values were statistically significant among different taxo-
nomic groups given the small standard errors of the means
(not shown but can be calculated from data in Table 1). The
current analysis did not contain enough samples for the soil
taxonomic groups of Andisol, Gelisol, Histosol, Oxisol, or
Vertisol to perform a linear regression or assign a mean value.
We recommend future work to consider repeating the analy-
sis for a larger dataset using the FAO 2007 (United Nations,
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2007) soil classification of all 25 groups (also classified for
our sites in Table S1). Given the widespread interest in both
the fixed and roving cosmic-ray technology, a database of lat-
tice water and clay content for each site could be developed.
In addition, warehouses like the Natural Resources Conser-
vation Service (NRCS) in Lincoln, NE, contain stored sam-
ples from around the USA. This warehouse, and other soil
repositories around the globe, could be sampled in order to
complete the global dataset for use by the cosmic-ray com-
munity. Finally, the NRCS regularly updates the Soil Sur-
vey Geographic Database (SSURGO), which contains higher
spatial resolution and vertically resolved estimates of soil
texture and structure (i.e., clay content and bulk density).
With the defined regression relationships and soil taxonomic
groups, better spatial maps of lattice water could be gen-
erated. This may become important for applications of the
rover at scales less than 1 km, such as using it for applications
in precision agriculture as well as increasing the reliability of
the calibration function.

The correlation between the observed and GSDE soil or-
ganic carbon was fairly poor, particularly at the high end
(> 4 wt %). The history of land use is critical in determining
carbon pools and how they change through time (Post and
Kwon, 2000) and may not be well represented in the GSDE.
For arable lands, we note that organic carbon has a relatively
small impact on the calibration function as it is multiplied
by several factors in the calibration equation and is relatively
low and homogeneously distributed in the A horizon due to
land management activities. However, in grassland and for-
est sites, high SOC amounts and strong SOC vertical gradi-
ents typically exist in the top soil and may need to be quan-
tified with local in situ sampling (e.g., Bogena et al., 2013).
For rover survey experiments in these areas, we suggest that
SOC be sampled with composite samples, particularly be-
tween sites with varying land use histories which can be iden-
tified using historical land cover maps.

Observed in situ soil bulk density and GSDE bulk den-
sity exhibited a positive relationship, albeit with low R2.
The poor fit and sensitivity of the parameter in the cali-
bration function increases the importance of identifying the
range and variability of bulk density within the rover sam-
ple domain. The variability shown here by the standard de-
viation of the bulk density for the individual point sam-
ples within the 28 ha sample domain varied between 0.1 and
0.2 g cm−3. Moreover, estimating the quantiles of bulk den-
sity at a site is key given the propagation of error analysis
presented in Sect. 3.3. Thus, this result supports direct sam-
pling at key locations (along gradients of land use, soil tax-
onomic groups, etc.) to constrain the quantiles of expected
bulk density values. We also suggest that, for rover sur-
veys in the USA (and regional elsewhere), additional higher-
resolution datasets like SSURGO and its derivatives (e.g.,
Polaris; Chaney et al., 2016) be used instead of the 1 km
GSDE (in particular bulk density data as a function of depth),
as significant small-scale variability may be averaged out.

This may be critical to account for in future roving CRNP
research areas, such as precision agriculture or small-scale
watershed monitoring where significant soil texture variation
may exist at short length scales. We note that this analysis is
a first step in the incorporation of existing soil databases that
will no doubt continue to increase in spatial resolution and
accuracy. Given the increasing use of the roving CRNP tech-
nology, we anticipate similar analyses and procedures will
be undertaken on regional and local scales from existing and
new databases as they become available.

4.2 Global remotely sensed vegetation calibration
parameters

The comparison of 11 years of destructive vegetation sam-
ples from maize and soybeans at 3 sites in eastern Nebraska
indicated that the GrWDRVI was able to predict SWB in
agricultural fields, especially when partitioned into green-
up vs. senescence and irrigated vs. rainfed (Fig. 4). How-
ever, as expected the GrWDRVI was unable to predict SDB.
The main reason is as the plants begin to dry out during the
late summer and early fall, leaves lose their chlorophyll and
leaf structure begins to collapse thereby increasing reflected
green and reducing near-infrared light (Ciganda et al., 2008;
Peng et al., 2011). This is exaggerated by a change in the allo-
cation of resources by the plant from leaves to grain, shifting
where the majority of mass is located and thus weakening
the capacity for the GrWDRVI to predict SDB. This biolog-
ical investment of resources is more pronounced for maize
than soybeans. As additional crops are included in this anal-
ysis, the location and development of the fruit and seed will
impact the predictive relationships using vegetation indices.
We refer to the reader to Duncan et al. (2015) and Kumar et
al. (2015) for a recent review of vegetation indices in remote
sensing.

While the developed regression relationships for maize
and soybean (Table S3) were tested against independent
biomass estimates from Waco, NE (Fig. 5), we note that fur-
ther validation is needed. In terms of a strategy for estimating
SDB, we suggest that proxies such as crop type and growth
stage be used. Franz et al. (2013, 2015) found that in early
stages, maize and soybean had canopy water contents from
75 to 90 wt %. By the end of senescence before harvest, the
canopy water contents were down to 25–35 wt %, and thus
very low BWE and minimal impact on the low-energy neu-
tron intensity. If growth stage is not directly known, local
meteorological observations, planting date, and crop vari-
ety can be used to compute proxies (e.g., growing degree
days) or simulated from crop models (Allen et al., 1998).
We note that having a reasonably accurate estimate of SWB
and thus BWE (within ∼ 1 kg m2) is all that is required to
have a relatively small impact (< 0.01 cm3 cm−3) on the es-
timated SWC. Finally, we note that this methodology is not
applicable to areas with woody biomass. Following Franz et
al. (2013), Hawdon et al. (2014), Baatz et al. (2015), and
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Coopersmith et al. (2014) we suggest other vegetation rela-
tionships (i.e., BWE vs. N0) be defined. However, given the
relatively small changes in BWE over the year in forests, we
would expect small changes in N0 through time. For a more
complete discussion of CRNP calibration in forests and esti-
mates of time-varying changes in N0, please see Bogena et
al. (2013) and Heidbüchel et al. (2016).

4.3 Roving CRNP survey recommendations

With the continuing use of the roving CRNP we make the
following recommendations for best calibration and use:

1. Collect a series of full calibration datasets (θLW, θSOC,
ρb, SWB, SDB) in different land use areas and soil types
in order to estimate the instrument-specific slope and
intercept for dependence of N0 with BWE.

2. In the rover sampling area, construct a map of land use
including descriptions of vegetation/crop type, planting
date, variety, rainfed vs. irrigated, and gravel vs. paved
roads vs. natural areas (see Chrisman and Zreda, 2013,
for a discussion of road influence on neutron counts).

3. Collect a series of aggregate soil samples for soil or-
ganic carbon and lattice water around the survey area.
The samples should be collected across land use, soil
texture, and soil taxonomic groups. The GSDE or more
local datasets like SSURGO and Polaris (Chaney et al.,
2016) in the USA can be used to select sites, cross vali-
date samples, and fill in data gaps.

4. Soil bulk density is the critical parameter in the calibra-
tion equations and overall accuracy of the cosmic-ray
neutron method. Bulk density should be collected lo-
cally wherever possible to determine reasonable quan-
tiles. More local datasets like SSURGO and Polaris in
the USA will likely perform better at smaller scales than
the 1 km GSDE.

5. SWC validation datasets should be collected to indepen-
dently assess the accuracy of the rover survey results.

5 Summary and conclusions

In this work, we developed a framework using globally avail-
able datasets for estimating four (θLW, θSOC, ρb, SWB) of
the five key soil and vegetation parameters needed by the
roving cosmic-ray neutron method for estimating SWC in
fast-growing vegetation areas such as row crop production
in agricultural areas. The remaining crop vegetation parame-
ter (SDB) can be fairly well approximated by crop type and
growth stage or simulated with crop models. The accuracy
of the GSDE soil database was tested against 61 calibration
datasets from the CONUS. We found that the 1 km GSDE
compares well against observed clay content (R2

= 0.68) but

much poorer against soil bulk density (R2
= 0.203) and soil

organic carbon (R2
= 0.175). Surprisingly, of the six soil

taxonomic groups we investigated, only Mollisols showed
a statistically significant correlation with clay content. The
remaining five soil taxonomic groups we investigated did
show statistically different mean values. These mean values
were used to generate a map (not complete) of lattice wa-
ter for the CONUS. From 11 years of destructive sampling
of maize and soybean fields in eastern Nebraska, we found
that the 8-day 500 m resolution MODIS-derived GrWDRVI
was highly correlated to SWB, particularly when partitioning
the fields into green-up vs. senescence and irrigated vs. rain-
fed (RMSE< 1 kg m−2). A propagation of error analysis in-
dicated that the range of bulk density values was the most
sensitive calibration parameter. For the selected ranges, we
found the GSDE vs. local sampling resulted in a maximum
RMSE of 0.035 cm3 cm−3 at a SWC= 0.40 cm3 cm−3. Fi-
nally, a list of best practices for future roving CRNP experi-
ments is provided.

6 Data availability

The 1 km global soil database used in this paper is provided
by Shangguan et al. (2014) and resources within. The 8 km
global soil taxonomy database is provided by United Na-
tions (2007) and resources within. The US soil taxonomy
information is provided by Soil Survey Staff (1999) and re-
sources within. The remaining datasets are provided in the
supplemental material associated with this paper. The com-
piled CONUS 1 km database can be requested directly from
the corresponding author.

The Supplement related to this article is available online
at doi:10.5194/hess-20-3859-2016-supplement.
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