
Supplement of

The influence of riparian evapotranspiration on stream hydrology and nitrogen retention in a subhumid Mediterranean catchment

Anna Lupon et al.

Correspondence to: Anna Lupon (alupon@ub.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

670

Figure S1. Regressions between discharge (Q) and stream water level for the (a) up-stream, (b) mid-stream and (c) down-stream sites during the period 2010-2012. Circles are data from slug additions and lines are the regression models. The R^2 values are also shown for each case. $n = 57, 60$ and 61 for the up-, mid- and down-stream sites, respectively. These regressions were used to infer stream discharge at 15 min intervals.

675

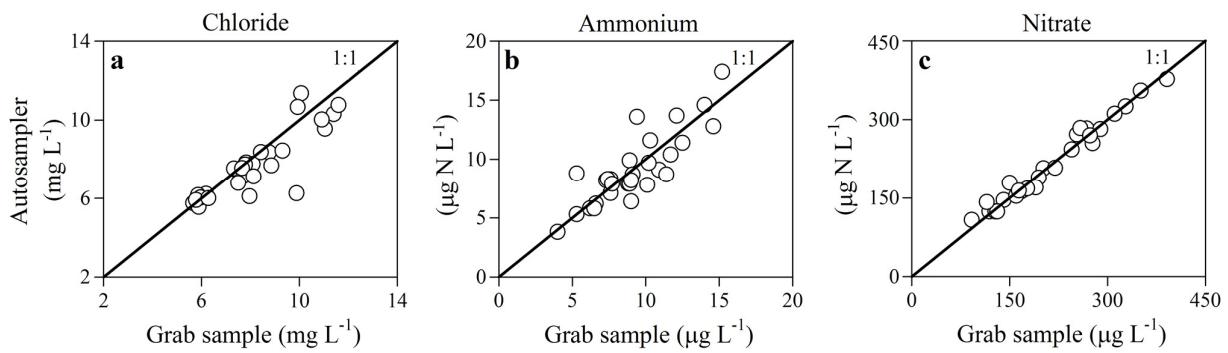
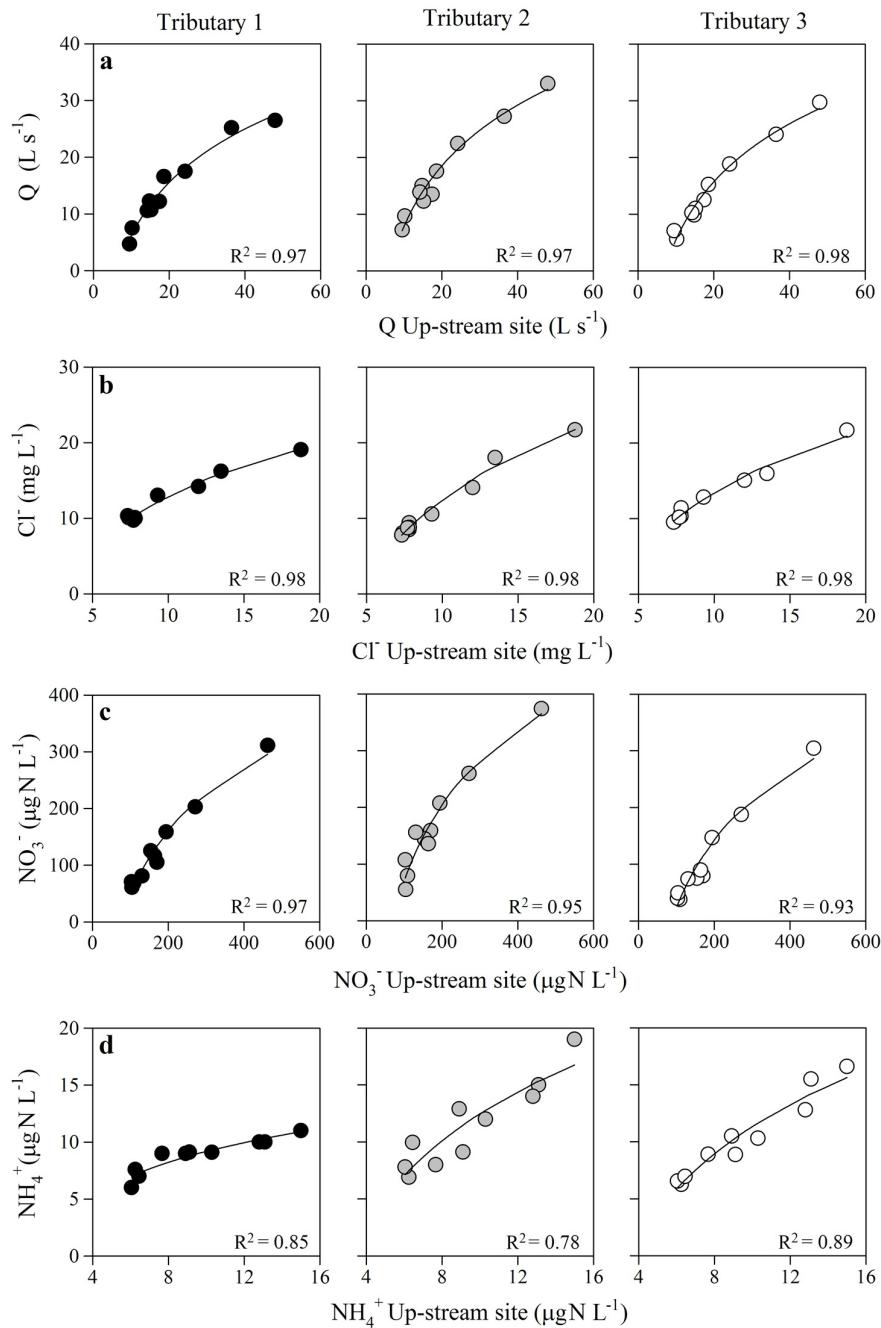



Figure S2. Comparison of stream water chemistry measured by grab samples vs auto-samplers. The samples collected with auto-samplers were taken in the same day than the manual ones, but the formers were then kept in the auto-sampler between 1-10 days. Data is shown for (a) chloride, (b) ammonium and (c) nitrate. The line 1:1 is also shown. The relative root-mean-square error was 3.1, 2.7 and 1.1% for chloride, ammonium and nitrate concentrations, respectively. The good match between the two types of samples suggest that biogeochemical transformation was minimal within the auto-sampler bottles.

Figure S3. Relationship between values measured at the three main tributaries of the main steam and those measured at the up-stream site for (a) discharge and concentrations of (b) chloride, (c) nitrate, and (d) ammonium. Data was collected on the same day for a set of 11 synoptic field campaigns during the period 2010-2012 (Bernal et al., 2015). The line indicates the best fit (logarithmic model) and R^2 values are shown for each case. The regressions models were used to infer mean daily discharge and daily solute concentrations at each tributary from values measured at the upstream site, which were then used for mass balance calculations.

695 **Table S1.** Measured and predicted concentrations of riparian groundwater concentrations for chloride (Cl⁻), nitrate (NO₃⁻) and ammonium (NH₄⁺) at the headwater reach during the study period. The relative difference between measured and concentrations predicted from mass balance are also shown. Groundwater concentrations were measured during a parallel study conducted in the catchment, and are shown as the median value for the 7 wells installed along the headwater reach (< 2 m from the stream) (Bernal et al., 2015). The concentrations predicted from the mass balance approach showed a good match with measured concentrations, differing < 5%, 7%, and 10% for Cl⁻, NO₃⁻, and NH₄⁺, respectively. This relative difference between measured and predicted groundwater concentrations at the headwater reach was used as a threshold to determine when observed and predicted concentrations at the down-stream site differed significantly from each other.

700

Day	Cl ⁻ (mg L ⁻¹)			NO ₃ ⁻ (μg N L ⁻¹)			NH ₄ ⁺ (μg N L ⁻¹)		
	Measured	Predicted	Diff (%)	Measured	Predicted	Diff (%)	Measured	Predicted	Diff (%)
24/08/2010	6.8	6.5	4	246	230	7	21	20	5
27/10/2010	6.3	5.7	5	428	404	6	43	39	9
22/11/2010	7.3	7	4	99	92	7	27	28	-4
19/01/2011	6.9	6.9	0	229	218	5	13	11	10
1/3/2011	6.9	6.6	4	360	351	3	28	27	4
12/4/2011	7	6.8	3	129	131	-2	31	30	3
26/05/2011	6.2	6.1	2	80	78	3	16	17	-6
9/8/2011	9.1	8.6	5	97	102	-5	26	25	4
13/09/2011	8.7	8.5	2	111	110	1	20	20	0
26/10/2011	6.2	5.9	5	223	212	5	24	25	-4
14/12/2011	7.2	7.4	-3	166	175	-5	18	16	10

705

710 **Table S2.** Annual precipitation (P), annual potential evapotranspiration (PET), P/PET ratio, percentage
of riparian area within the catchment (Rip Area) and riparian water depletion (RWD) for different
catchments across climatic regions. This data set was used to build Figure 6 of the main manuscript.

Climate	P (mm yr ⁻¹)	PET (mm yr ⁻¹)	P/PET	Rip Area (%)	RWD (%)	Source
Arid	250	2280	0.11	8.4	33	Dahm et al., 2002
Arid	300	1800	0.17	11.7	36	Doble et al., 2006
Arid	400	1400	0.29	3-11	22	Contreras et al., 2011
Arid	255	693	0.37	---	20	Goodrich et al., 2000
Arid	570	900	0.63	---	13	Springer et al., 2006
Mediterranean	1296	1911	0.68	8.2	9	Scott, 1999
Mediterranean	780	1055	0.72	3.0	12	Folch and Ferrer, 2015
Mediterranean	850	1170	0.73	15.0	7	Wine and Zou, 2012
Mediterranean	750	990	0.77	2.1	5	Sabater and Bernal, 2011
Mediterranean	925	1100	0.84	6.0	3.6	Present Study
Temperate	1780	1400	1.27	8.4	4	Dunford and Fletcher, 1947
Temperate	858	590	1.45	8.0	3	Petrone et al., 2007
Temperate	1523	1011	1.51	---	2.5	Salemi et al., 2012
Temperate	1800	900	2.00	11.0	1.2	Dunford and Fletcher, 1947
Tropical	4370	1825	2.39	2.5-6.6	1.4	Cadol et al., 2012

715 **References**

Cadol, D., Kampf, S. and Wohl, E.: Effects of evapotranspiration on baseflow in a tropical headwater catchment, *J. Hydrol.*, 462-463, 4–14, 2012.

Contreras, S., Jobbágy, E. G., Villagra, P. E., Nosetto, M. D. and Puigdefábregas, J.: Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina, *J. Hydrol.*, 397(1-2), 10–22, 2011.

Dahm, C. N., Cleverly, J. R., Coonrod E. Allred, J., Thibault, J. R., McDonnell, D. E. and Gilroy, D. J.: Evapotranspiration at the land/ water interface in a semi-arid drainage basin, *Freshw. Biol.*, 47(4), 831–844, 2002.

Doble, R., Simmons, C., Jolly, I. and Walker, G.: Spatial relationships between vegetation cover and irrigation-induced groundwater discharge on a semi-arid floodplain, Australia, *J. Hydrol.*, 329(1-2), 75–97, 2006.

Dunford, E. G. and Fletcher, P. W.: Effect of removal of stream-bank vegetation upon water yield, *Am. Geophys. Union*, 28(1), 105–110, 1947.

Folch, A. and Ferrer, N.: The impact of poplar tree plantations for biomass production on the aquifer water budget and base flow in a Mediterranean basin., *Sci. Total Environ.*, 524-525, 213–24, 2015.

Goodrich, D. C., Scott, R., Qi, J., Goff, B., Unkrich, C. L., Moran, M. S., Williams, D., Schaeffer, S., Snyder, K., MacNish, R., Maddock, T., Pool, D., Chehbouni, A., Cooper, D. I., Eichinger, W. E., Shuttleworth, W. J., Kerr, Y., Marsett, R. and Ni, W.: Seasonal estimates of riparian evapotranspiration using remote and in situ measurements, *Agric. For. Meteorol.*, 105(1-3), 281–309, 2000.

Petrone, R. M., Silins, U., and Devito, K. J.: Dynamics of evapotranspiration from a riparian pond complex in the Western Boreal Forest, Alberta, Canada. *Hydr. Proc.*, 21(11), 1391-1401, 2007.

Sabater, F. and Bernal, S.: Keeping healthy riparian and aquatic ecosystems in the Mediterranean: challenges and solutions through riparian forest management., in Water for Forests and People in the Mediterranean, edited by M. Boiro, Y., Gracia, C., Palahí, pp. 151–155., 2011.

Salemi, L. F., Groppo, J. D., Trevisan, R., Marcos de Moraes, J., de Paula Lima, W. and Martinelli, L. A.: Riparian vegetation and water yield: A synthesis, *J. Hydrol.*, 454-455, 195–202, 2012.

Scott, D. F.: Managing riparian zone vegetation to sustain streamflow: results of paired catchment experiments in South Africa, *Can. J. For. Res.*, 29, 1149– 1157, 1999.

Springer, A. E., Amentt, M. a., Kolb, T. E. and Mullen, R. M.: Evapotranspiration of two vegetation

745 communities in a high-elevation riparian meadow at Hart Prairie, Arizona, *Water Resour. Res.*, 42(3),
1–11, 2006.

Wine, M. L. and Zou, C. B.: Long-term streamflow relations with riparian gallery forest expansion
into tallgrass prairie in the Southern Great Plains, USA, *For. Ecol. Manage.*, 266, 170–179, 2012.