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Figure S1. Regressions between discharge (Q) and stream water level for the (a) up-stream, (b) mid-

stream and (c) down-stream sites during the period 2010-2012. Circles are data from slug additions 

and lines are the regression models. The R2 values are also shown for each case. n = 57, 60 and 61 for 

the up-, mid- and down-stream sites, respectively. These regressions were used to infer stream 

discharge at 15 min intervals. 675 
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Figure S2. Comparison of stream water chemistry measured by grab samples vs auto-samplers. The 

samples collected with auto-samplers were taken in the same day than the manual ones, but the formers 680 

were then kept in the auto-sampler between 1-10 days. Data is shown for (a) chloride, (b) ammonium 

and (c) nitrate. The line 1:1 is also shown. The relative root-mean-square error was 3.1, 2.7 and 1.1% 

for chloride, ammonium and nitrate concentrations, respectively. The good match between the two 

types of samples suggest that biogeochemical transformation was minimal within the auto-sampler 

bottles.  685 
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Figure S3. Relationship between values measured at the three main tributaries of the main steam and 

those measured at the up-stream site for (a) discharge and concentrations of (b) chloride, (c) nitrate, 

and (d) ammonium. Data was collected on the same day for a set of 11 synoptic field campaigns during 690 

the period 2010-2012 (Bernal et al., 2015). The line indicates the best fit (logarithmic model) and R2 

values are shown for each case. The regressions models were used to infer mean daily discharge and 

daily solute concentrations at each tributary from values measured at the upstream site, which were 

then used for mass balance calculations.  
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Table S1. Measured and predicted concentrations of riparian groundwater concentrations for chloride 695 

(Cl-), nitrate (NO3
-) and ammonium (NH4

+) at the headwater reach during the study period. The relative 

difference between measured and concentrations predicted from mass balance are also shown. 

Groundwater concentrations were measured during a parallel study conducted in the catchment, and 

are shown as the median value for the 7 wells installed along the headwater reach (< 2 m from the 

stream) (Bernal et al., 2015). The concentrations predicted from the mass balance approach showed a 700 

good match with measured concentrations, differing < 5%, 7%, and 10% for Cl-, NO3
-, and NH4

+, 

respectively. This relative difference between measured and predicted groundwater concentrations at 

the headwater reach was used as a threshold to determine when observed and predicted concentrations 

at the down-stream site differed significantly from each other. 

  Cl- (mg L-1) NO3
- (µg N L-1) NH4

+ (µg N L-1) 

Day Measured Predicted Diff (%) Measured Predicted Diff (%) Measured Predicted Diff (%) 

24/08/2010 6.8 6.5 4 246 230 7 21 20 5 

27/10/2010 6.3 5.7 5 428 404 6 43 39 9 

22/11/2010 7.3 7 4 99 92 7 27 28 -4 

19/01/2011 6.9 6.9 0 229 218 5 13 11 10 

1/3/2011 6.9 6.6 4 360 351 3 28 27 4 

12/4/2011 7 6.8 3 129 131 -2 31 30 3 

26/05/2011 6.2 6.1 2 80 78 3 16 17 -6 

9/8/2011 9.1 8.6 5 97 102 -5 26 25 4 

13/09/2011 8.7 8.5 2 111 110 1 20 20 0 

26/10/2011 6.2 5.9 5 223 212 5 24 25 -4 

14/12/2011 7.2 7.4 -3 166 175 -5 18 16 10 

 705 
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Table S2. Annual precipitation (P), annual potential evapotranspiration (PET), P/PET ratio, percentage 

of riparian area within the catchment (Rip Area) and riparian water depletion (RWD) for different 710 

catchments across climatic regions. This data set was used to build Figure 6 of the main manuscript.  

 

Climate P (mm yr-1) PET (mm yr-1) P/PET Rip Area (%) RWD (%) Source 

Arid 250 2280 0.11 8.4 33 Dahm et al., 2002 

Arid 300 1800 0.17 11.7 36 Doble et al., 2006 

Arid 400 1400 0.29 3-11 22 Contreras et al., 2011 

Arid 255 693 0.37 --- 20 Goodrich et al., 2000 

Arid 570 900 0.63 --- 13 Springer et al., 2006 

Mediterranean 1296 1911 0.68 8.2 9 Scott, 1999 

Mediterranean 780 1055 0.72 3.0 12 Folch and Ferrer, 2015 

Mediterranean 850 1170 0.73 15.0 7 Wine and Zou, 2012 

Mediterranean 750 990 0.77 2.1 5 Sabater and Bernal, 2011 

Mediterranean 925 1100 0.84 6.0 3.6 Present Study 

Temperate 1780 1400 1.27 8.4 4 Dunford and Fletcher, 1947 

Temperate 858 590 1.45 8.0 3 Petrone et al., 2007 

Temperate 1523 1011 1.51 --- 2.5 Salemi et al., 2012 

Temperate 1800 900 2.00 11.0 1.2 Dunford and Fletcher, 1947 

Tropical 4370 1825 2.39 2.5-6.6 1.4 Cadol et al., 2012 
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