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Abstract. This study develops a new error modelling method
for ensemble short-term and real-time streamflow forecast-
ing, called error reduction and representation in stages
(ERRIS). The novelty of ERRIS is that it does not rely on
a single complex error model but runs a sequence of sim-
ple error models through four stages. At each stage, an er-
ror model attempts to incrementally improve over the pre-
vious stage. Stage 1 establishes parameters of a hydrologi-
cal model and parameters of a transformation function for
data normalization, Stage 2 applies a bias correction, Stage 3
applies autoregressive (AR) updating, and Stage 4 applies a
Gaussian mixture distribution to represent model residuals.
In a case study, we apply ERRIS for one-step-ahead fore-
casting at a range of catchments. The forecasts at the end of
Stage 4 are shown to be much more accurate than at Stage 1
and to be highly reliable in representing forecast uncertainty.
Specifically, the forecasts become more accurate by applying
the AR updating at Stage 3, and more reliable in uncertainty
spread by using a mixture of two Gaussian distributions to
represent the residuals at Stage 4. ERRIS can be applied to
any existing calibrated hydrological models, including those
calibrated to deterministic (e.g. least-squares) objectives.

1 Introduction

Streamflow forecasts have long been used to support man-
agement of river conditions, such as flood emergency re-
sponse and optimal water allocation. Recently, much re-
search has been carried out on ensemble streamflow forecast-
ing (e.g. Alfieri et al., 2013; Bennett et al., 2014a; Demargne
et al., 2014; Thielen et al., 2009), encouraged by research

communities such as the Hydrological Ensemble Prediction
Experiment (HEPEX – http://hepex.org/). In recognition that
streamflow forecasts can be subject to significant errors, fore-
cast ensembles are used to represent forecast uncertainty. In
producing ensemble forecasts, one aims to reduce forecast
uncertainty as much as possible to give the most accurate
forecasts. One also aims to represent the remaining forecast
uncertainty reliably to give the right distribution among en-
semble members.

Streamflow forecasts are usually made by initializing hy-
drological models (e.g. conceptual rainfall–runoff models)
and then forcing them with forecast rainfall. There are a
number of sources of errors in streamflow forecasts, includ-
ing errors in measurement of rainfall and streamflow, er-
rors in hydrological model structure, errors in model param-
eters, and errors in forecast rainfall. Ideal hydrological er-
ror quantification would account for each individual source
of errors explicitly and reliably, such that all sources of er-
rors would accumulate to accurately represent overall er-
rors in the streamflow forecasts. Various attempts have been
made to identify and decompose the sources of errors, us-
ing methods such as sequential optimization and data assim-
ilation (Vrugt et al., 2005), sequential assimilation (Morad-
khani et al., 2005), the Bayesian total error analysis (BATEA)
(Kavetski et al., 2006a, b; Kuczera et al., 2006), and the in-
tegrated Bayesian Uncertainty estimator (IBUNE) (Ajami et
al., 2007). Such methods are useful for attempting to sep-
arate the major sources of errors, identifying deficiencies
of model structure, performing parameter sensitivity anal-
yses and comparing different hydrological models, without
confounding input and output errors. However, because of a
lack of information on the different sources of errors and on
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how they interact with each other, it is highly challenging to
apply an error decomposition approach to arrive at statisti-
cally reliable overall errors in streamflow forecasts (Renard
et al., 2010).

An alternative approach is to consider only the overall er-
rors of forecasts, without attempting to explain the sources
of errors. An estimate of the overall error of a forecast is
the residual, defined as the difference between modelled
streamflow and observations. We now concentrate our dis-
cussion on residuals, but we will continue to refer to mod-
els of residuals as “error models”, following common prac-
tice. Residuals of a series of forecasts form a time series.
The most traditional and simplest error model, related to
the classical least-squares calibration, is based on the as-
sumption of uncorrelated homoscedastic Gaussian residuals
in the time series of residuals (Diskin and Simon, 1977).
This assumption is generally not valid for hydrological ap-
plications, where residuals are frequently autocorrelated, het-
eroscedastic and non-Gaussian (Kuczera, 1983; Sorooshian
and Dracup, 1980). More sophisticated error models have
been developed to address correlation, variance structure and
the distribution of residuals. Autoregressive models have
been widely used to account for autocorrelation of residu-
als (e.g. Bates and Campbell, 2001; Xiong and O’Connor,
2002). Heteroscedasticity may be explicitly dealt with by de-
scribing the variance of residuals as a function of some state-
dependent variables (e.g. observed streamflow, dry/wet sea-
sons) (e.g. Evin et al., 2013; Pianosi and Raso, 2012; Schaefli
et al., 2007; Yang et al., 2007). Non-Gaussianity of resid-
uals may be explicitly represented by non-Gaussian prob-
ability distributions (e.g. Marshall et al., 2006; Schaefli et
al., 2007; Schoups and Vrugt, 2010). Heteroscedasticity and
non-Gaussianity of residuals may also be dealt with implic-
itly, and often more conveniently, by using data transforma-
tion to normalize the residuals and stabilize their variance,
such as the normal quantile transform (Kelly and Krzyszto-
fowicz, 1997; Krzysztofowicz, 1997; Montanari and Brath,
2004), the Box–Cox transformation (Thyer et al., 2002) and
the log–sinh transformation (Wang et al., 2012). Solomatine
and Shrestha (2009) presented an alternative method of pre-
dicting residual error distributions using machine learning
techniques. They built a non-linear regression model to pre-
dict the forecast quantiles at each lead time. Their method is
not based on an autoregressive model but captured recent in-
formation about the model error with a non-linear regression.

Broadly, previous attempts to model residuals can be di-
vided into “post-processor” methods that separate the estima-
tion of hydrological model parameters from the estimation
of error model parameters, and “joint inference” methods
that estimate all parameters at once. Post-processor methods
(e.g. Evin et al., 2014) are often held to be less theoretically
desirable than joint inference methods (e.g. Kuczera, 1983;
Bates and Campbell, 2001). This is because joint inference
methods aspire to a complete description of the behaviour of
errors, including behaviours that arise from interactions be-

tween parameters from hydrological and error models (see
discussion in Evin et al., 2014). Unfortunately, joint infer-
ence methods can have serious limitations for operational
forecasting of streamflows. Li et al. (2015) showed that a
joint inference method caused poor performance in the hy-
drological model when it was isolated from the error model
(we will call this the “base” hydrological model). Error mod-
els that account for autocorrelated residuals usually have
less influence on forecasts as lead time increases. Thus, as
lead time increases, and the influence of the error model de-
creases, the quality of the forecast relies on the performance
of the base hydrological model and the quality of meteoro-
logical forecasts (Bennett et al., 2014a). Evin et al. (2014)
demonstrated another (and perhaps more egregious) limita-
tion of joint inference methods: joint estimation can result in
deleterious interference between error model and hydrologi-
cal model parameters, leading to poor out-of-sample stream-
flow predictions. In our experience, interactions between pa-
rameters of the hydrological model and the error model can
make it very difficult to calibrate the models jointly. The
shape of the distribution of forecast residuals can change
markedly after hydrological model forecasts are updated, for
example with an autoregressive error model. Despite consid-
erable progress in hydrological uncertainty modelling, few
studies in the literature present model forecasts (or simula-
tions) that are practically reliable when error updating is ap-
plied (e.g. Gragne et al., 2015; Schoups and Vrugt, 2010).

This paper develops a new error modelling method, called
error reduction and representation in stages (ERRIS), for
real-time and short-term streamflow forecasting applications.
ERRIS is a further development of the restricted autore-
gressive model (Li et al., 2015) and a seasonal error model
developed by Li et al. (2013). ERRIS is a post-processing
method developed to deal with the overall errors of stream-
flow forecasts resulting from hydrological uncertainty only.
We assume that errors in streamflow forecasts due to weather
forecasts (precipitation in particular) will be considered sep-
arately by using ensemble weather forecasts (Bennett et
al., 2014a; Robertson et al., 2013; Shrestha et al., 2013), and
we do not consider these in this paper. For convenience, in
this study we use the term streamflow forecast to mean one-
step-ahead model prediction of streamflow, given observed
weather and streamflow up to just before the forecast start
time and assuming a one-step-ahead weather forecast that
turns out to perfectly match observations. In future work, we
will extend ERRIS to multiple-step-ahead streamflow fore-
casting.

In this study we use the term “ensemble” to mean a set of
equally probable realizations of future streamflow that repre-
sents the hydrological model uncertainty. The forecasts based
on ERRIS are not typical probabilistic forecasts (Gneiting
and Katzfuss, 2014), which explicitly provide the predictive
distribution of future streamflow. For ERRIS, the probability
distribution may be theoretically derived for one-step-ahead
forecasts based on the distributional assumption of model
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residuals. However, we can only obtain the predictive dis-
tribution of ERRIS forecasts at multiple step by means of
Monte Carlo simulation.

The novelty of ERRIS is that it does not rely on a sin-
gle complex error model but runs a sequence of simple error
models through multiple stages. We start with a very simple
model of independent Gaussian residuals after data trans-
formation to determine hydrological model parameters. At
each subsequent stage, an error model is introduced to im-
prove over the previous stage and to finalize the representa-
tion, including associated parameter values, of one particu-
lar statistical feature (bias, correlation in residuals or a non-
Gaussian distribution). ERRIS progressively refines model
features, focusing only on a small number of model parame-
ters at each stage. This is achieved by estimating the values
for a core set of parameters at each stage and holding them
constant at subsequent stages. In doing so, ERRIS avoids the
problems associated with parameter interactions that can oc-
cur under joint inference methods.

This paper is organized as follows. The ERRIS method
is described in detail in Sect. 2. A case study is introduced
in Sect. 3. Major results are presented in Sect. 4, followed
by discussion and further results in Sect. 5. Conclusions are
made in Sect. 6.

2 The error reduction and representation in stages
(ERRIS) method

2.1 Model formulation

2.1.1 Stage 1: transformation and hydrological
modelling

We start from a simplified version of the seasonally invariant
error model described by Li et al. (2013) to calibrate the hy-
drological model in the ERRIS method. At Stage 1, we apply
the log–sinh transformation (Wang et al., 2012)

f (Q)= b−1 log
{

sinh(a+ bQ)
}
, (1)

where a and b are transformation parameters, to the raw
values of streamflow Q. We assume at this stage that hy-
drological model forecast residuals are independent and,
in the transformed space, follow a Gaussian distribution
with a constant variance. The forecast variance in the orig-
inal (untransformed) space is not a constant but is depen-
dent on the magnitude of simulated streamflow through the
back-transformation. The log–sinh transformation has been
applied to a wide range of hydrological data (e.g. Li et
al., 2013; Peng et al., 2014; Robertson et al., 2013; Shrestha
et al., 2015; Zhao et al., 2015) including extreme daily
streamflow values (Bennett et al., 2014b) to normalize data
and stabilize variance, and has been shown to perform at least
as well as other commonly used transformations (Del Giu-
dice et al., 2013; Wang et al., 2012).

We denote the observed and simulated streamflows at day
t by Q(t) and Q̃(t), respectively. The error model at Stage 1
is mathematically specified as

Z(t)= f (Q(t)) , (2)

Z̃1(t)= f
(
Q̃(t)

)
, (3)

Z(t)∼N
(
Z̃1 (t) ,σ

2
1

)
, (4)

whereN denotes a Gaussian distribution of the model residu-
als in the transformed space at Stage 1, with mean Z̃1 (t) and
standard deviation σ1. We will use similar notations (e.g. Q̃,
Z, Z̃ and σ ) for all stages in the ERRIS method, with stages
distinguished by subscripts (i.e. 1, 2, 3, 4). No autocorrela-
tion within the forecast residuals is assumed at Stage 1. This
avoids the potential parameter interference between the au-
tocorrelation parameter and hydrological model parameters
(e.g. parameters describing time persistence of the hydro-
graph) when the hydrological model is jointly calibrated with
the error model. Stage 1 of the ERRIS method is summarized
in Table 1. At the end of Stage 1, the simulated streamflow
Q̃(t) is taken as the forecast median of the ensemble stream-
flow forecast.

2.1.2 Stage 2: linear bias correction

At Stage 1, we assume that the hydrological simulation
is overall unbiased. However, the hydrological model of-
ten overestimates low flows and underestimates high flows.
At Stage 2, we adopt a simple but effective bias-correction
scheme firstly introduced by Wang et al. (2014) to revise the
forecast value made at Stage 1. This bias correction describes
the forecast bias in the transformed domain by a linear func-
tion. Because the bias correction is applied to transformed
data, it is able to cope with conditional biases (biases that
vary with flow magnitude) that are often present in hydro-
logical model simulations, even if these vary in a strongly
non-linear way. We express the specific error model structure
of Stage 2 as

Z̃2(t)= c+ dZ̃1(t), (5)

Z(t)∼N
(
Z̃2(t),σ

2
2

)
, (6)

where c and d represent the intercept and slope parameters
of the bias correction and σ2 denotes the standard deviation
of the residuals at Stage 2. The slope parameter d allows
much flexibility in the bias correction. When d equals 1, this
bias correction becomes a simple additive correction. When
d equals 0, the bias correction forces the forecast to approach
a constant (in additional to uncertainty). This may happen
when the hydrological forecast performs worse than clima-
tology (i.e. long-term average). When d is greater than 1, the
bias correction can correct the very strongly conditional bi-
ases, as might be found in ephemeral catchments.
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Table 1. Summary of the ERRIS method.

Stage 1 Stage 2 Stage 3 Stage 4

Purpose Transformation and hydrological Linear bias correction AR updating Residual distribution
model simulation refinement

Calibrated parameters Hydrological model parameters, Bias-correction AR parameters Distribution parameters
transformation parameters parameter

Correlation structure Independent Independent Autocorrelated with lag one Autocorrelated with lag-1
Residual distribution Transformed-Gaussian Transformed-Gaussian Transformed-Gaussian Transformed-Gaussian mixture

At the end of Stage 2, the forecast median in the original
space is revised to

Q̃2(t)= f
−1 (Z̃2(t)

)
, (7)

where f−1(x)= b−1arsinh {exp(bx)− a} is the back-
transformation of the log–sinh transformation given in
Eq. (1).

2.1.3 Stage 3: AR updating

At Stage 3, we no longer assume that forecast residuals are
independent, and use an AR-based error model to describe
the correlation structure of forecast residuals. The AR-based
error model enables the ERRIS method to correct forecast
residuals based on the latest available observations of stream-
flow. Specifically, we assume that the forecast residuals at
Stage 2 follow a restricted AR error model described by Li
et al. (2015). The error model at Stage 3 can be written as

Z̃3(t)=

Z̃2(t)+ ρ
(
Z(t − 1)− Z̃2(t − 1)

)
if

∣∣Q̃∗3(t)− Q̃2(t)
∣∣≤ ∣∣Q(t − 1)− Q̃2(t − 1)

∣∣
f
(
Q̃2(t)+Q(t − 1)− Q̃2(t − 1)

)
otherwise,

(8)

Z(t)∼N
(
Z̃3(t),σ

2
3

)
, (9)

where Q̃∗3(t)= f
−1 (Z̃2(t)+ ρ

(
Z(t − 1)− Z̃2 (t − 1)

))
is

the updated streamflow without applying the restriction, and
ρ and σ3 are the lag-1 autocorrelation parameter and the stan-
dard deviation of the residuals at Stage 3, respectively. Li et
al. (2015) demonstrated that when AR models are applied
to normalized residuals without restriction, overcorrection of
forecasts can occur, particularly at the peak or on the rise of a
hydrograph. Equation (8) uses the restricted AR error model
to reduce the tendency to overcorrect forecasts. In Eq. (8) the
forecast median, denoted by Q̃3(t), is given by

Q̃3(t)=



Q̃∗3(t)

if
∣∣Q̃∗3(t)− Q̃2(t)

∣∣≤ ∣∣Q(t − 1)− Q̃2(t − 1)
∣∣

Q̃2(t)+Q(t − 1)− Q̃2(t − 1)
otherwise.

(10)

The forecast at Stage 3 updates Q̃2(t) based on the latest ob-
served streamflowQ(t−1) and its difference from Q̃2(t−1).
Therefore, more information (i.e. streamflow observations at
the previous time step) is required to generate streamflow
forecasts at Stage 3 than at the previous two stages.

2.1.4 Stage 4: residual distribution refinement

In Sect. 4, we will demonstrate that the residuals after
Stages 1 and 2 are well described by Gaussian distributions,
but the shape of the residual distribution after Stage 3 dramat-
ically changes. In particular, the distribution of the residuals
after Stage 3 looks more peaked and has longer tails than a
Gaussian distribution. The reason for the non-Gaussian resid-
uals after Stage 3 is as follows. The AR updating at Stage 3 is
very effective in correcting small residuals especially at hy-
drograph recession and therefore reducing residuals to very
small values. The updating, however, is not very effective
around peaks, where the residuals remain large even in the
transformed space. This results in a centrally peaked and
long-tailed distribution of residuals after Stage 3.

At Stage 4, we use a non-Gaussian distribution to de-
scribe the model residuals from Stage 3. Several long-
tailed distributions have been used in hydrological modelling
studies, such as the finite mixture distribution (Schaefli et
al., 2007; Smith et al., 2010), the exponential power distri-
bution (Schoups and Vrugt, 2010) and Student’s t distribu-
tion (Marshall et al., 2006). In this study, we assume that the
model residuals can be grouped into two categories with re-
spect to variance and thus choose a two-component Gaussian
mixture distribution. It is possible to use more than two com-
ponents, but we will show in our case study that two compo-
nents are sufficient. We discuss the possibility of using other
long-tailed distributions in Sect. 5.1.

Using a two-component Gaussian mixture distribution, we
express the residual model at Stage 4 as

Z̃4(t)= Z̃3(t) (11)
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Z(t)∼MN
(
Z̃4(t),σ

2
4, 1,σ

2
4, 2,w

)
, (12)

where MN
(
Z̃4(t),σ

2
4, 1,σ

2
4, 2,w

)
represents a mix-

ture of two Gaussian distributions N
(
Z̃4(t),σ

2
4, 1

)
and N

(
Z̃4(t),σ

2
4, 2

)
with weights w and 1−w.

The corresponding probability density func-
tion of MN

(
Z̃4(t),σ

2
4, 1,σ

2
4, 2,w

)
, denoted by

PDF
(
Z(t)|Z̃4(t),σ

2
4, 1,σ

2
4, 2,w

)
, can be explicitly writ-

ten as a weighted sum of two Gaussian probability density
functions:

PDF
(
Z(t)|Z̃4(t),σ

2
4, 1,σ

2
4, 2,w

)
= wφ

(
Z(t)|Z̃4(t),σ

2
4,1

)
+ (1−w)φ

(
Z(t)|Z̃4(t),σ

2
4, 2

)
, (13)

where φ is the probability density function (PDF) of a Gaus-
sian distribution. We assume that σ4, 1 < σ4, 2 to make the
two components identifiable. This assumption implies that w
represents the probability associated with the mixture com-
ponent that has a smaller variance.

2.2 Model estimation

The maximum likelihood estimation (Li et al., 2013; Wang
et al., 2009) is used to estimate model parameters at all four
stages. Denote the parameter set as θS for Stage S. The like-
lihood functions for the four stages are given by

LS (θS)=
∏
t

Jz→Qφ
(
Z(t)|Z̃S(t),σ

2
S

)
(14)

for S= 1, 2, 3, and

L4 (θ4)=
∏
t

Jz→QPDF
(
Z(t)|Z̃4(t),σ

2
4, 1,σ

2
4, 2,w

)
, (15)

where Jz→Q = 1/ tanh {a+ bQ(t)} is the Jacobian determi-
nant of the log–sinh transformation.

At Stage 1, the hydrological model parameters, transfor-
mation parameters (a and b) and the residual standard devia-
tion (σ1) are jointly estimated by maximizing the likelihood
function. It is also possible to use a set of parameters already
calibrated for the hydrological model (using a different ob-
jective, such as the least of the sum of squared errors) and
estimate at Stage 1 only the transformation parameters and
the residual standard deviation (see discussion in Sect. 5.2).
At the end of Stage 1, the values of the hydrological param-
eters and the transformation parameters are concluded, with-
out further changes in subsequent stages.

At Stage 2, the bias-correction parameters (c and d) and
the residual standard deviation (σ2) are estimated by max-
imizing the likelihood function. At the end of Stage 2, the
values of the bias-correction parameters are concluded. At
Stage 3, the autocorrelation coefficient (ρ) and the residual

standard deviation (σ3) are estimated. At the end of Stage 3,
the value of the autocorrelation coefficient is concluded. At
Stage 4, the model residual parameters (σ4, 1, σ4, 2 andw) are
finalized. The variances at Stages 1–3 (i.e. σ1, σ2 and σ3) are
not used to generate forecasts but only for estimating param-
eters at corresponding stages. We use maximum likelihood
at each stage to estimate parameters, and this requires us to
specify the variance of residuals at each stage.

The shuffled complex evolution (SCE) algorithm (Duan et
al., 1994) is used to maximize the log likelihood function at
Stage 1, where a number of parameters are required to be
calibrated. The simplex algorithm (Nelder and Mead, 1965)
is used in the likelihood-based calibration at other stages,
where fewer parameters are present. We use different opti-
mization algorithms because the simplex algorithm is more
computationally efficient when the number of parameters is
small.

2.3 Model verification

We use several performance measures to evaluate the ensem-
ble forecasts derived at each stage. The evaluation criteria
suggested by Engeland et al. (2010) are used to test for im-
portant attributes of ensemble forecasts including reliability,
sharpness and efficiency.

Reliability is often described as the property of statistical
consistency, which allows ensemble forecasts to reproduce
the frequency of an event. Reliability can be checked by the
forecast probability integral transform (PIT) of streamflow
observations, defined by

πt = Ft (Q(t)) , (16)

where Ft is the forecast cumulative distribution function of
the streamflow at time t . In the case of zero flows, we use the
pseudo-PIT (Wang and Robertson, 2011), which is randomly
generated from a uniform distribution with a range [0,πt ]. If
a forecast is reliable, πt follows a uniform distribution over
[0, 1]. We graphically examine πt with the corresponding
theoretical quantile of the uniform distribution using the PIT-
uniform probability plot (or simply PIT plot; also called the
predictive quantile–quantile plot; Renard et al., 2010). The
PIT plot is closely related to the rank histogram (Gneiting et
al., 2005; Hamill, 2001). From our experience, the PIT plot
is more suitable than the rank histogram for the experiments
where observations are abundant (such as daily or sub-daily
forecasting verification). A perfectly reliable forecast follows
the 1 : 1 line. A Kolmogorov–Smirnov significant band can
be included in the PIT plots to as a test of uniformity (Laio
and Tamea, 2007). In addition, PIT plots can be summarized
by the α index (Renard et al., 2010), defined by

α = 1−
2
n

n∑
t=1

∣∣∣∣π∗t − t

n+ 1

∣∣∣∣ , (17)

where π∗t is the sorted πt in increasing order. The α index
represents the total deviation of π∗t from the corresponding
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uniform quantile (i.e. the tendency to deviate from the 1 : 1
line in PIT diagrams). The range of the α index is from 0
(worst reliability) to 1 (perfect reliability).

Sharpness is a measure of the spread of the forecast proba-
bility distribution. Sharp forecasts with narrow forecast inter-
vals are usually preferred by forecast users as they reduce the
range of possible outcomes that are anticipated – that is, it is
easier to make decisions with sharp forecasts. However, if a
sharp forecast is unreliable, it is overconfident and is likely
to lead to poor decisions. Thus, sharp forecasts are desirable,
but only if the forecasts are also reliable. We use the aver-
age width of the 95 % forecast intervals (AWCI) to indicate
forecast sharpness (Gneiting et al., 2007). Wider forecast in-
tervals suggest less sharp forecasts. In order to compare the
sharpness across different catchments, we define a score rel-
ative AWCI with respect to a reference forecast:

Relative AWCI=
AWCIREF−AWCI

AWCIREF
, (18)

where AWCIREF is AWCI calculated from the reference fore-
cast. The reference forecast in this study is generated by re-
sampling historical streamflows. To issue a reference forecast
for a given month/year (e.g. February 1999), we randomly
draw a sample of 1000 daily streamflows that occur in that
month (e.g. February) from other years (e.g. years other than
1999) with replacement. As only 14 years of data are used
in this study, the reference forecast for each month is more
robust than the similar reference forecast for each day. The
relative AWCI is unitless and the maximum is 1, correspond-
ing to the sharpest forecast.

The efficiency (or accuracy) of a forecast is commonly
used to assess deterministic (single-valued) forecasts. For the
ensemble forecasts we generate here, we measure the effi-
ciency with the well-known Nash–Sutcliffe efficiency (NSE)
(Nash and Sutcliffe, 1970), calculated for the forecast mean.
A greater value of NSE indicates a more accurate forecast
mean and thus better forecast efficiency. We also use relative
bias to assess how the forecast mean deviates from observa-
tions.

We evaluate the overall forecast skill with a skill score
derived from the widely used continuous ranked probabil-
ity score (CRPS) (Gneiting and Katzfuss, 2014; Grimit et
al., 2006; Wang et al., 2009) (denoted by CRPS_SS). CRPS
is a negatively oriented score: a smaller value of CRPS in-
dicates a better forecast. As with the relative AWCI, the
skill score CRPS_SS is defined as the normalized version of
CRPS with respect to a reference forecast:

CRPS_SS=
CRPSREF−CRPS

CRPSREF
, (19)

where CRPSREF is CRPS calculated from the reference fore-
cast (already defined for Eq. 18, above). The maximum of
CRPS_SS is 1, corresponding to a perfectly skillful forecast.

While a decomposition of CRPS is available that gives an
indication of reliability (Hersbach, 2000), we do not use this.

PIT plots are a stronger test of reliability (Candille and Tala-
grand, 2005), and accordingly we focus on PIT plots to dis-
cuss reliability.

3 Case study

3.1 Study region and data

We select six catchments in southeastern Australia and three
catchments in the United States (US) for this study (Fig. 1),
from a range of climatic and hydrological conditions. The
streamflow data for the Australian catchments are obtained
from the Catchment Water Yield Estimation Tool (CWYET)
data set (Vaze et al., 2011). The rainfall and potential evapo-
ration data for the Australian catchments are taken from the
Australian Water Availability Project (AWAP) data set (Jones
et al., 2009). All data for the US catchments are taken from
the Model Intercomparison Experiment (MOPEX) data set
(Duan et al., 2006). The Abercrombie and Emu catchments
have many instances of zero flow (Table 2), and accurate
streamflow forecasting is particularly challenging for such
dry catchments. AWCIREF and CRPSREF for each catchment
are given in Table 3.

3.2 Cross-validation

Daily streamflow is simulated with the GR4J rainfall–runoff
model (Perrin et al., 2003) and then forecasted with ERRIS as
described in Sect. 3. GR4J is a widely used conceptual model
that was designed to be as parsimonious as possible. Its four
parameters describe the depth of a production store (X1),
groundwater exchange (X2), the depth of a routing store (X3)
and the length of unit hydrographs (X4). Forecasts are gen-
erated from “perfect” (observed) deterministic rainfall fore-
casts at a lead time of 1 day (i.e. one time step ahead). All
results reported in this study are based on cross-validation
unless specified. Cross-validation allows us to generalize the
forecast skill to data outside the sample period. Because of
data availability, we choose different study periods for Aus-
tralian and US catchments. For Australian catchments, data
from 1990 to 1991 are used to warm up the hydrological
model and the data from 1992 to 2005 are used to gener-
ate a leave-two-years-out cross-validation (i.e. effectively 14-
fold cross-validation). For a particular year, we remove the
streamflow data from this year and the following year and
apply ERRIS to forecast the streamflow for the year. The re-
moval of the data from the following year aims to minimize
the impact of streamflow memory on model performance.
For US catchments, the data from 1979 to 1980 are used in
the warm-up period and the data from 1981 to 1998 are used
for a leave-two-years-out cross-validation (i.e. effectively 18-
fold cross-validation).
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Figure 1. Map of the catchments used in this study.

Table 2. Basic catchment characteristics (1992–2005).

Name Country Gauge site Area Rainfall Streamflow Runoff Zero
(km2) (mmyr−1) (mmyr−1) coefficient flows

Abercrombie Aus Abercrombie River at Hadley no. 2 1447 783 63 0.08 14.4 %
Mitta Mitta Aus Mitta Mitta River at Hinnomunjie 1527 1283 261 0.20 0
Orara Aus Orara River at Bawden Bridge 1868 1176 243 0.21 0.6 %
Tarwin Aus Tarwin River at Meeniyan 1066 1042 202 0.19 0
Emu Aus Mount Emu Creek at Skipton 1204 641 23 0.04 0
Hope Aus Mount Hope Creek at Mitiamo 1646 436 11 0.02 23.3 %
Amite US 07378500 3315 1575 554 0.35 0
Guadalupe US 08167500 3406 772 104 0.13 1.7 %
San Marcos US 08172000 2170 844 165 0.20 0
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Table 3. AWCI and CRPS calculated from the reference forecast for each catchment.

Abercrombie Mitta Mitta Emu Hope Orara Tarwin Amite Guadalupe San Marcos

AWCIREF (m3 s−1) 18.00 49.68 9.41 5.04 62.83 38.81 409.63 70.25 59.69
CRPSREF (m3 s−1) 2.20 6.42 0.79 0.46 10.25 4.65 41.69 9.29 7.64

Figure 2. An example of streamflow time-series plots for the Mitta Mitta catchment in the period between 1 July 2000 and 31 December
2000.

4 Results

Figure 2 compares forecasts at different stages for an exam-
ple period. In this example, we generate daily streamflow
forecasts for the Mitta Mitta catchment in the period between
1 July 2000 and 31 December 2000. The forecast mean and
the 95 % forecast interval are plotted against observations.
The forecast at Stage 1 (the base hydrological model fore-
cast) frequently overestimates low flows, such as in the pe-
riod between July and September. For high-flow periods (e.g.
October), the forecast mean is generally more accurate but
virtually all observations lie within the 95 % forecast inter-
vals, suggesting that the forecast intervals are too wide (i.e.
the forecasts may be underconfident). The forecast mean at

Stage 2 is closer to the observations and the 95 % forecast
intervals tend to be narrower. Stage 2 tends to overestimate
high flows less than Stage 1, but introduces the problem of
underestimating high flows in some instances (e.g. Septem-
ber).

The AR error updating applied in Stage 3 significantly re-
duces the forecast residuals, as we expect given that stream-
flows are usually heavily autocorrelated. The forecasts at
Stage 3 are not only more accurate but also more certain,
indicated by the considerably narrower 95 % forecast inter-
vals. The differences between Stage 3 and Stage 4 are not
evident in the time-series plots, in essence because Stage 4 is
an attempt to address issues of reliability, which is difficult to

Hydrol. Earth Syst. Sci., 20, 3561–3579, 2016 www.hydrol-earth-syst-sci.net/20/3561/2016/



M. Li et al.: ERRIS for ensemble streamflow forecasting 3569

Figure 3. Comparison of performance metrics for each catchment and each stage.

see when forecast intervals are so narrow. We give a detailed
view of changes to reliability at each stage below.

Figure 3 summarizes the performance at each stage for all
catchments, and generally confirms the improvements in per-
formance at each stage observed in Fig. 2. In general, Stage 1
and Stage 2 are similarly efficient (Fig. 3b), skillful (Fig. 3c),
sharp (Fig. 3d) and reliable (Fig. 3e). As we expect, Stage 2
forecasts are consistently less biased than Stage 1 (Fig. 3a)
(except for the Hope catchment, where many instances of
zero flow occur; see Table 2). Stage 3 is generally much more
efficient and skillful than Stages 1 and 2. A partial exception
to this is the Abercrombie catchment, which is less efficient
at Stage 3 than Stage 2. The Abercrombie catchment expe-
riences low (to zero) flows, but is also punctuated by abrupt
high flows. Stage 3 is based on the time persistence of the
residuals and may introduce more errors when flows change
abruptly, which sometimes occurs in the Abercrombie catch-
ment. In addition, residuals tend to be larger at higher flows
and because NSE is a measure of squared residuals, it tends
to give more weights to residuals at high flows. This causes

the Abercrombie Stage 3 forecasts to be less efficient than
those of Stage 2.

As we expect, Stage 3 forecasts are notably sharper than
those at Stage 2 (Fig. 3d). However, this sharpness is not sup-
ported by reliability: Stage 3 forecasts tend to be much less
reliable than all other stages (Fig. 3e). Figure 4 illustrates
the reliability of the forecasts at each stage in more detail
with the PIT plots. As PIT values are highly autocorrelated,
we have to “thin” them in order to make the Kolmogorov–
Smirnov significant band applicable (Zhao et al., 2015). We
generate PIT plots from every 30th forecast to eliminate the
autocorrelation. The PIT plots show that the forecasts at the
first two stages are reliable (as with the α index in Fig. 3e).
However, for Stage 3 the points on the PIT plots deviate sub-
stantially from the 1 : 1 line, with a clear S-shape pattern
for almost all catchments (the exception is the Tarwin catch-
ment). A traditional interpretation of this S shape is that the
forecasts are underconfident (Laio and Tamea, 2007). How-
ever, in this case, the S shape is caused by the high level of
kurtosis in the distribution of the residuals, as we will show
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Figure 4. Comparison of the cumulative probability distribution of the PIT at different stages (light-blue shaded strips indicate the 95 %
significant band of the Kolmogorov–Smirnov test).

below. The α index from Stage 3 is smaller than those indices
from Stages 1 and 2 (the Tarwin catchment is the only excep-
tion), confirming the lack of the reliability at Stage 3. Stage 4
consistently improves the reliability of the forecast after the
AR updating. The PIT plot at Stage 4 is much closer to the
1 : 1 line than that at Stage 3, and this is reflected by the α in-
dex, which increases for all catchments. Stage 4 corrects the
underconfident forecasts from Stage 3 and slightly decreases
the sharpness from Stage 3 (Fig. 3d).

At Stage 3, unreliable forecasts are caused by represent-
ing the model residual by an inappropriate (Gaussian) proba-
bility distribution. We compare the underlying density of the
model residuals at Stage 3, ε(t)= Z3(t)−Z̃3(t) (fitted by the
nonparametric density estimation), with the fitted parametric
densities for different distributions in Fig. 5. The fitted Gaus-
sian density is flatter than the underlying density of ε(t) in
order to match the tails for each catchment. This suggests
that the residual distribution is more peaked and has longer
tails than the Gaussian distribution. As we have seen above,

forecast residuals are, in general, dramatically reduced by the
AR error updating. Unfortunately, this reduction in residuals
does not occur at all events, especially where abrupt changes
in flow occur (and hence the assumption of strong autocor-
relation breaks down). Thus, the magnitude of the forecast
residuals at Stage 3 for a small proportion of events is large
relative to the majority of events. As we have seen, the practi-
cal implication of the dichotomous behaviour of the residuals
is that their distribution is still bell-shaped and symmetric but
is peakier and has a much longer tail than the Gaussian distri-
bution. The Gaussian mixture distribution treats model resid-
uals as two groups with different variances. The Gaussian
mixture distribution is able to capture the peak and tails of
the underlying residual density for all catchments, resulting
in reliable ensemble forecasts that also have a highly accu-
rate forecast mean. As we note in the introduction, however,
other distributions have also been used to describe “peaky”
data, and we explore these in the next section.
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Figure 5. Comparison of the different probability density functions fitted to the model residuals at Stage 3 for each catchment.

To provide a basis for any future comparisons with this
study, we include example parameter values for each stage
in Table 4 (derived by calibrating each stage to the full set
of data – i.e. without cross-validation). We note that (1) the
variance parameter at Stage 3 is always much smaller than at
Stage 1 and Stage 2, which leads to the dramatic reduction in
the width of forecast intervals at this stage, and (2) that the w
parameter that weights the component of the Gaussian mix-
ture distribution with smaller variance is always greater than
0.5, confirming that the majority of residuals take a narrow
range of values as we have described.

5 Further results

5.1 Testing an alternative residual distribution

It is possible to use long-tailed distributions other than the
Gaussian mixture distribution at Stage 4. For example, Stu-
dent’s t distribution is a simple long-tailed distribution that

has been used in hydrological modelling (e.g. Marshall et
al., 2006). In this section we investigate whether Student’s
t distribution is a viable alternative to the Gaussian mixture
distribution at Stage 4. To do this, we modify the model resid-
ual in Eq. (12) as follows:

Z(t)= Z̃4(t)+ rξ(t), (20)

where ξ(t) is assumed to independently follow a Student’s
t distribution with ν degrees of freedom, and r is a scale
parameter describing the spread and variation of the model
residuals.

We first examine how well Student’s t distribution can fit
the residual distribution at Stage 4 for all nine catchments
(Fig. 5). High peaks and long tails of the residual densi-
ties can be captured reasonably well by Student’s t distri-
bution for nearly all catchments. The fitted densities of Stu-
dent’s t distribution appear more “peaked” for most catch-
ments than those of the Gaussian mixture distribution, which
is originally used at Stage 4. Figure 6 further investigates how
Student’s t distribution can fit the upper quantile of the model
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Table 4. The calibrated error model parameters for the selected catchments.

Stage Parameter Catchment

Abercrombie Mitta Mitta Emu Hope Orara Tarwin Amite Guadalupe San Marcos

x1 551.26 1319.05 485.73 561.36 481.28 672.24 1279.63 763.15 906.72
x2 −0.41 −3.13 −3.22 −0.06 0.49 −2.20 −2.59 0.92 1.66
x3 7.94 65.63 12.40 1.10 28.71 20.24 44.67 23.67 39.93

1 x4 12.29 9.39 25.86 89.21 20.33 27.54 15.59 8.80 11.76
log(a) −10.55 −9.70 −14.95 −11.80 −9.08 −11.55 −21.48 −10.38 −23.75
log(b) −9.46 −9.49 −7.51 −8.68 −9.01 −9.35 −9.95 −9.89 −9.89
σ1 5298.92 5233.01 1790.99 4523.05 4490.65 5271.08 8885.27 8366.75 6843.48

c 6997.90 −14 341.19 −373.84 946.83 −3153.26 −3282.81 1117.29 24 909.80 10 653.89
2 d 1.06 0.85 0.98 1.02 0.95 0.96 1.01 1.16 1.07

σ2 5290.04 4924.38 1789.96 4540.44 4468.17 5244.14 8884.12 8025.35 6767.15

3
ρ 0.86 0.95 0.96 0.97 0.95 0.94 0.86 0.83 0.82
σ3 3289.50 1765.58 592.12 1611.67 1656.96 2154.72 5155.51 4661.31 4058.23

w 0.73 0.69 0.77 0.70 0.75 0.64 0.55 0.86 0.87
4 s1 1006.22 492.91 186.56 792.99 558.05 678.15 1481.79 1417.63 1246.49

s2 6238.76 3092.35 1192.76 2693.45 3159.56 3473.87 7487.62 9573.92 10 673.07

residuals. There is a clear tendency of Student’s t distribu-
tion to overestimate the upper quantile (e.g. 98 % or higher)
of the model residuals (especially for the Australian catch-
ments). These upper quantiles are more accurately estimated
by the Gaussian mixture distribution. This implies that Stu-
dent’s t distribution often has tails that are too long. We note,
however, that if the ERRIS method is tested on other catch-
ments, it is possible that Student’s t distribution may describe
the residuals better than the Gaussian mixture distribution in
some cases.

A disadvantage of the very long tail of Student’s t distribu-
tion is that it can be problematic for operational forecasting.
The degrees of freedom, ν, determine how heavy the tails
of Student’s t distribution are. Table 5 presents the two cali-
brated parameters (i.e. ν and r) for all catchments. Calibrated
ν values are less than 2 for eight out of nine catchments. The
exception is the Hope catchment, and even here the calibrated
ν is very close to 2. It is well known that for degrees of free-
dom less than 2, Student’s t distribution is so heavy-tailed
that the variance is infinite (if 1< ν ≤ 2) or even undefined
(if ν ≤ 1). This is obviously undesirable for operational fore-
casting: it can cause a few forecast ensemble members to be
so large that the forecast mean becomes implausibly large.
Figure 7 compares the forecast mean with observations if
the model residual is revised as Eq. (19). In all catchments,
in some cases forecast mean values are unrealistically large
even as observations are relatively small. Student’s t distri-
bution is thus prone to being too long-tailed to be practically
implemented. Therefore, we do not recommend using Stu-
dent’s t distribution to describe the residual distribution at
Stage 4, and advocate the Gaussian mixture distribution as a
practical alternative.

5.2 Testing an alternative calibration of the
hydrological model

In this study, we apply a likelihood-based calibration at
Stage 1 to derive the distribution of the forecast residuals.
However, in operational practice forecasters may prefer to
use their own methods for calibrating hydrological models
(or it may be onerous to recalibrate large numbers of hydro-
logical models, whatever method is used). It is possible to
simply “bolt on” the ERRIS method to existing hydrological
models. We simply need to calibrate the transformation pa-
rameters and the model residual standard deviation at Stage 1
while fixing the hydrological parameters to those already cal-
ibrated. We demonstrate this by first calibrating hydrological
models with a simple least-squares objective. We then apply
the ERRIS method and repeat the cross-validation analysis.

Figure 8, an analog to Fig. 3, summarizes forecast perfor-
mance when the hydrological model is calibrated to a least-
squares objective. The least-squares calibration essentially
maximizes NSE as an objective, but the corresponding cross-
validated NSE is not necessarily always greater than that of
the likelihood-based calibration. The forecast performance
from the two different calibrations can differ markedly at
Stage 1 but is largely similar after the AR error updating at
Stages 3 and 4. Thus, ERRIS is flexible enough to accommo-
date existing hydrological models.

Figure 9, an analogue to Fig. 4, compares the PIT plots for
different catchments when the hydrological model is least-
squares-calibrated. The main change is that the forecasts at
Stage 1 are no longer reliable in many instances. This is
caused by the least-squares calibration, which does not en-
sure the forecast residuals are Gaussian (even after the log–
sinh transformation). The PIT plots derived from Stage 2 and
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Figure 6. Comparison of the upper quantile of the model residuals fitted by different distributions for each catchment.

Table 5. The calibrated parameters when Student’s t distribution is used to describe the residual distribution at Stage 4.

Abercrombie Mitta Mitta Emu Hope Orara Tarwin Amite Guadalupe San Marcos

r 1058.36 487.30 163.52 875.77 547.63 824.62 2033.78 1148.71 836.18
ν 1.44 1.25 1.33 2.31 1.53 1.58 1.62 1.36 1.54

Stage 3 in Fig. 9 show a very similar pattern to their counter-
parts in Figure 4. It suggests that poor reliability at Stage 3
occurs irrespective of the calibration strategy employed for
the hydrological model. As with Fig. 4, Fig. 9 shows the
Gaussian mixture distribution used at Stage 4 effectively
ameliorates the problems with the reliability of Stage 3.

6 Discussion

There are several advantages of using a multi-stage error
model compared to a single complex error model. (1) The pa-
rameter estimation in ERRIS is relatively simple, and hence

computationally efficient. Only a small number of parame-
ters are estimated at each stage. Joint parameter estimations
associated with a single complicated error model are often
more computationally demanding. (2) Interference between
parameters is minimized. The parameters of a single com-
plex model can confound each other and the contribution of
one parameter can sometimes be explained by others. For
example, the hydrological model parameters describing soil
moisture storage capacity may interfere strongly with the er-
ror parameters describing bias. Interference between param-
eters can make the parameter estimation unstable, because
more than one set of parameters can achieve a similar ob-

www.hydrol-earth-syst-sci.net/20/3561/2016/ Hydrol. Earth Syst. Sci., 20, 3561–3579, 2016



3574 M. Li et al.: ERRIS for ensemble streamflow forecasting

Figure 7. Comparison of streamflow observations with streamflow forecast mean for each catchment when the residual distribution is fitted
by Student’s t distribution.

jective function value, and thus over-fit parameters. (3) In
operational forecasting it is often important that individual
components of the forecasting model can function indepen-
dently. For example, if forecasts are issued to long lead times,
the influence of an AR model diminishes as lead time ex-
tends. Thus forecasts at long lead times rely strongly on the
hydrological model (and, in our case, a bias correction) to
be plausible, even with perfect meteorological forcings. If all
parameters are estimated jointly, it is difficult to guarantee
that each component of a forecasting model can operate in-
dependently. In addition, because stages are independent, it
is possible to change a stage without affecting other stages,
making the ERRIS approach easy to extend or modify.

This paper is aimed at developing a staged error model
suitable for eventual use in an operational ensemble fore-
casting system. We have focused on presenting the theoreti-
cal underpinnings of this approach, and have limited its test-
ing to forecasting with “perfect” (observed) rainfall forecasts

at a lead time of 1 day. Operational systems routinely fore-
cast to long lead times, and use uncertain rainfall forecasts to
force hydrological models. In future work we will extend the
validation of this model to forecast multiple lead times, and
couple the ERRIS approach with reliable ensemble rainfall
forecasts (Robertson et al., 2013; Shrestha et al., 2015).

The staged approach of ERRIS sets it apart from several
predecessors, for example the hydrological uncertainty pro-
cessor (HUP) and the dynamic uncertainty model by regres-
sion on absolute error (DUMBRAE). HUP is a Bayesian
forecasting system to produce probabilistic streamflow fore-
casts (Kelly and Krzysztofowicz, 1997; Krzysztofowicz,
1999, 2001; Krzysztofowicz and Kelly, 2000; Reggiani et
al., 2009; Todini, 2008). HUP and ERRIS have some simi-
larities: (1) both are post-processors of deterministic hydro-
logical models for hydrological uncertainty quantification,
(2) both apply transformation to normalize data, (3) both
use a linear regression in the transformed space for bias
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Figure 8. Same as Fig. 3 but the hydrological model is calibrated by the least-squares method.

correction, and (4) both use an autoregressive model to up-
date hydrological simulation. However, ERRIS differs fun-
damentally from HUP by being implemented in stages. As
we have noted, the staged approach avoids unwanted inter-
action between parameters, and ensures the base hydrologi-
cal model performs as strongly as possible. In addition, some
other technical advances distinguish ERRIS from HUP. For
instance, ERRIS applies a restricted autoregressive model in
order to avoid the possible overcorrection from the ordinary
autoregressive model used in HUP. ERRIS uses a mixture
of two Gaussian distributions for the residual distribution,
which is more flexible than a Gaussian distribution used in
HUP to describe the peak, shoulder and tail of the distribu-
tion.

Pianosi and Raso (2012) developed DUMBRAE to quan-
tify predictive uncertainty of deterministic hydrological
models. Unlike ERRIS, DUMBRAE does not apply data
transformation and considers an error model in the original

space. To deal with heteroscedastic residual errors, DUMB-
RAE explicitly formulates the error variance as a function of
time series of absolute hydrological model errors and several
independent predictors (such as precipitation). The dynamic
variance model of DUMBRAE is an interesting alternative
to the method we have presented here. As with HUP, another
major difference between ERRIS and DUMBRAE is staged
error modelling that allows ERRIS to characterize the fore-
cast error in stages and to avoid potential parameter interfer-
ence and ensure robust performance of the base hydrological
model.

7 Summary and conclusions

In this study, we introduce the error reduction and represen-
tation in stages (ERRIS) method to update errors and quan-
tify uncertainty in streamflow forecasts. The first stage of

www.hydrol-earth-syst-sci.net/20/3561/2016/ Hydrol. Earth Syst. Sci., 20, 3561–3579, 2016



3576 M. Li et al.: ERRIS for ensemble streamflow forecasting

Figure 9. Same as Fig. 4 but the hydrological model is calibrated by the least-squares method.

ERRIS employs a simple error model that assumes indepen-
dent Gaussian residuals after the log–sinh transformation.
The second stage applies a bias correction that is able to
correct conditional and unconditional biases, including the
sometimes strongly non-linear biases that occur in ephemeral
catchments. The third stage exploits autocorrelation in resid-
uals with an AR model to dramatically reduce forecast resid-
uals, but this results in unreliable ensemble forecasts. In the
fourth stage a Gaussian mixture distribution is used to de-
scribe the residuals, resulting in ensemble forecasts that are
both highly accurate and very reliable. Based on extensive
validation of ERRIS, the accuracy of the forecast mean is
slightly improved by the bias correction at Stage 2 and is
considerably improved by the updating at Stage 3. The relia-
bility of the forecasts at Stage 3 becomes a problem, because
the shape of the residual distribution dramatically changes.
The revision of the residual distribution at Stage 4 is effec-
tive for representing non-Gaussian residuals and leading to
highly reliable forecasts. The Gaussian mixture distribution

is showed to be more suitable than the Student’s t distribu-
tion for describing the residuals after updating. ERRIS was
designed with operational forecasting in mind, and we have
shown that it is flexible enough to adapt to existing calibrated
hydrological models.

8 Data availability

All data for the US catchments are taken from the MOPEX
data set, which are available at http://www.nws.noaa.gov/
ohd/mopex/mo_datasets.htm. All data for the Australian
catchments are available from the corresponding author,
Ming Li (ming.li@csiro.au), upon request, because the un-
derlying data sets CWYET and AWAP (see Sect. 3.1) are not
publicly available.
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