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Abstract. Improving our ability to estimate the parameters
that control water and heat fluxes in the shallow subsur-
face is particularly important due to their strong control on
recharge, evaporation and biogeochemical processes. The
objectives of this study are to develop and test a new inver-
sion scheme to simultaneously estimate subsurface hydrolog-
ical, thermal and petrophysical parameters using hydrologi-
cal, thermal and electrical resistivity tomography (ERT) data.
The inversion scheme – which is based on a nonisothermal,
multiphase hydrological model – provides the desired sub-
surface property estimates in high spatiotemporal resolution.
A particularly novel aspect of the inversion scheme is the
explicit incorporation of the dependence of the subsurface
electrical resistivity on both moisture and temperature. The
scheme was applied to synthetic case studies, as well as to
real datasets that were autonomously collected at a biogeo-
chemical field study site in Rifle, Colorado. At the Rifle site,
the coupled hydrological-thermal-geophysical inversion ap-
proach well predicted the matric potential, temperature and
apparent resistivity with the Nash–Sutcliffe efficiency crite-
rion greater than 0.92. Synthetic studies found that neglecting
the subsurface temperature variability, and its effect on the
electrical resistivity in the hydrogeophysical inversion, may
lead to an incorrect estimation of the hydrological parame-
ters. The approach is expected to be especially useful for the
increasing number of studies that are taking advantage of au-
tonomously collected ERT and soil measurements to explore
complex terrestrial system dynamics.

1 Introduction

Shallow subsurface moisture and temperature are two pri-
mary variables that play key roles in hydrological and bio-
geochemical processes in terrestrial environments. For exam-
ple, watershed moisture content and temperature are the main
factors that control the partitioning of precipitation into evap-
otranspiration, infiltration and runoff (Merz and Bardossy,
1998; Brocca et al., 2010). For ecosystems, moisture content
and temperature conditions are closely linked to form, func-
tioning and organization of vegetation, which in turn influ-
ence ecological diversity (Rodriguez-Iturbe, 2000). Subsur-
face moisture and temperature largely influence microbial ac-
tivity in the subsurface, including respiration of greenhouse
gases (Boone et al., 1998; Luo et al., 2013). However, moni-
toring the variability of subsurface moisture and temperature
over spatiotemporal scales that are relevant to the local pro-
cesses yet informative for predicting watershed or ecosys-
tem functioning is challenging. Conventional point-sensing
approaches can provide subsurface moisture and tempera-
ture. However, due to labor and costs involved in installing
point-sensing systems and the invasive nature of the sensors,
the spatial support scale of point-sensing systems is typically
quite small compared to the scale of systems of interest.

Over the last 2 decades, many hydrogeophysical ap-
proaches have been developed to combine point and geo-
physical measurements for improved subsurface property es-
timation or process monitoring (see reviews provided by Ru-
bin and Hubbard, 2005; Hubbard and Linde, 2011; Binley et
al., 2015). Statistical approaches have been extensively used
to integrate point measurements with commonly geophysical
models/tomograms, such as ground-penetrating radar (GPR)
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and electrical resistance tomography (ERT). For example,
Hubbard et al. (2001) applied a Bayesian algorithm to inte-
grate surface and cross-hole GPR, seismic cross-hole tomog-
raphy, cone penetrometer, borehole electromagnetic flowme-
ter and pumping tests to estimate the spatial distribution of
subsurface hydraulic conductivity. Binley et al. (2002) esti-
mated shallow subsurface hydraulic conductivity using both
cross-well ERT and GPR. Doetsch et al. (2010) showed that
merging seismic, GPR and ERT data could significantly im-
prove the accuracy of aquifer zonation and associated zonal
parameter estimation. Dafflon and Barrash (2012) used a
stochastic approach to estimate the distribution of porosity
from well data and GPR data. Tran et al. (2015) combined
surface GPR and frequency domain reflectometry data to bet-
ter quantify the spatiotemporal dynamics of moisture along a
hillslope.

Coupled hydrogeophysical inversion approaches have also
been developed to estimate soil hydrological parameters,
which assimilate all geophysical and other key datasets into
a model that consider physical hydrodynamics (i.e., Darcy’s
law) and electromagnetic laws (i.e., Maxwell’s equations).
Because coupled inversion approaches permit direct use of
geophysical data for inversion, they avoid the errors typ-
ically associated with geophysical inversion process (e.g.,
Binley et al., 2002; Singha and Gorelick, 2005) and associ-
ated resolution issues (Day-Lewis and Lane, 2004). Kowal-
sky et al. (2005) and Lambot et al. (2009) developed coupled
inversion schemes and used time-lapse GPR data to estimate
hydraulic conductivity and matric potential functions. John-
son et al. (2009) jointly inverted time-lapse hydrogeologic
and ERT data without a priori assumptions about petrophys-
ical parameters. Using ERT data, Huisman et al. (2010) de-
veloped a coupled Bayesian hydrogeophysical inversion ap-
proach to determine the hydraulic properties and their un-
certainties of flood-protection dikes. Kowalsky et al. (2011)
employed time-lapse ERT, groundwater level and nitrate
concentration data to estimate hydrogeochemical parameters
and behavior of a contaminated subsurface system. Tran et
al. (2014) developed a data assimilation scheme that is based
on the maximum-likelihood ensemble filter technique to se-
quentially estimate the vertical soil moisture profile and pa-
rameters of water retention and hydraulic conductivity func-
tions using full-wave GPR data.

To date, ERT is the geophysical technique that is most
commonly collected in an autonomous manner for near-
surface applications. ERT provides information about the
distribution of subsurface electrical resistance; a review of
ERT theory and inversion procedures is given by Binley and
Kemna (2005). Due to the typically high sensitivity of electri-
cal resistivity to pore fluid conductivity and saturation, ERT
has been used widely for monitoring the vadose zone soil
moisture and other terrestrial system processes (e.g., Binley
et al., 2002; Kemna et al., 2002; McClymont et al., 2013;
Hubbard et al., 2013). However, because the electrical resis-
tivity is also sensitive to other subsurface properties (such

as porosity, tortuosity, pore-grain electrochemistry, mineral-
ogy and temperature), other measurements must be used with
ERT to avoid large estimation errors (Binley et al., 2002).
For example, dependence of subsurface electrical resistiv-
ity on temperature is well known but often not adequately
accounted for in hydrogeophysical approaches. The subsur-
face temperature directly influences the subsurface electri-
cal resistivity. It also controls the phase change of subsur-
face moisture, which ultimately affects the subsurface resis-
tivity. In some cases, subsurface temperature variations affect
subsurface resistivity more than moisture variations (Rein et
al., 2004; Musgrave and Binley, 2011). The conventional ap-
proach for correcting for temperature effects on ERT data in-
cludes inverting data and then performing correction on the
obtained resistivity/conductivity images (Hayley et al., 2007;
Ma et al., 2014). This approach is not suitable for the coupled
hydrogeophysical inversion, because the objective of the hy-
drogeophysical inversion is to estimate hydrological param-
eters (not electrical resistivity/conductivity image). Hayley
et al. (2010) proposed a temperature-compensation approach
that removes the temperature effect on the data before inver-
sion, which appeared to better resolve the temperature de-
pendence of the electrical resistivity. This approach can be
used for the hydrogeophysical inversion. However, this ap-
proach first requires the inversion of electrical resistance data
to obtain the correction factors. Secondly, the correction usu-
ally relies on temperature measurements at several specific
points in time, which may not suffice due to high variabil-
ity of moisture and temperature in space and time. To date,
few studies have incorporated and evaluated the effect of the
relationship between subsurface resistivity and temperature
within a coupled hydrogeophysical inversion scheme.

The opportunities and challenges identified above moti-
vate the three key objectives of this study: to (1) develop a
coupled hydrological-thermal-geophysical inversion scheme
that is capable of incorporating nonisothermal behavior of
the shallow subsurface as well as multiphase moisture into
hydrogeophysical inversion and that jointly uses different
thermal, hydrological and geophysical data for inversion in-
cluding ERT; (2) apply the developed inversion scheme to es-
timate hydrological (permeability and van Genuchten curve
parameters), thermal (thermal conductivity) and petrophysi-
cal parameters to assess the evaporation/infiltration processes
at a Department of Energy (DOE) experimental field site in
Rifle, Colorado; and (3) perform synthetic studies to explore
the importance of consideration of subsurface temperature
variability and its direct and indirect influence on the elec-
trical resistivity in the hydrogeophysical inversion. To our
knowledge, this is the first study that explicitly integrates
both direct and indirect dependence of electrical resistiv-
ity on temperature in the coupled hydrogeophysical inver-
sion. While it has been tested at the Rifle, CO site, we envi-
sion the new inversion approach being widely useful at other
study sites, particularly those that can take advantage of au-
tonomous ERT and other datasets.
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We organize this article as follows. Section 2 describes the
development of the hydrological-thermal-geophysical inver-
sion scheme. The application of the inversion scheme to the
Rifle site study is described in Sect. 3. Section 4 compares
two synthetic cases that perform geophysical inversion, with
and without considering the subsurface temperature’s influ-
ence. Section 5 offers a summary and concluding remarks.

2 Methodology

2.1 Hydrological forward model

In this study, we simulated the nonisothermal two-phase (gas
and liquid), three-component (air, water and heat) flow in
the vadose zone using the integral finite-difference simulator
TOUGH2 (Transport of Unsaturated Groundwater and Heat;
Pruess et al., 1999). TOUGH2 solves the mass and energy
balance equations for each component over an arbitrary vol-
ume V , confined by a closed surface 0 of the flow computa-
tional domain, which is written in the integral form as below:∫
V

Mkdv =

∫
0

F knd0+

∫
V

qkndv, (1)

in whichM is the mass or energy accumulation term for com-
ponent k; F represents the mass or heat flux; q denotes the
sink or source terms; and n is the normal vector on the sur-
face element d0. The mass accumulation term is defined as

Mk
= φ

∑
β

SβρβX
k
β , (2)

where φ is the porosity; Sβ and ρβ are, respectively, the sat-
uration and density of phase β; and Xkβ is the mass fraction
of phase β in component k. For simulating the nonisother-
mal problem, the heat accumulation component (Mh) is also
accounted for:

Mh
= (1−φ)ρRCRT +φ

∑
β

Sβρβuβ , (3)

where ρR and CR are, respectively, the grain density and
specific heat capacity of the soil/sediment particle materials;
T is the temperature; and uβ is the specific internal energy in
phase β.

The mass flux term F k of component k is the sum of all of
its phase fluxes:

F k =
∑
β

fβX
k
β , (4)

with

fβ =−K
krβ

µβ
ρβ
(
∇Pβ − ρβg

)
−φSkβd

k
β∇X

k
β . (5)

The first term in Eq. (5) represents the advection. The sec-
ond one describes the molecular diffusion. K is the abso-
lute permeability; krβ is the relative permeability of phase β;

Pβ =Pref+Pc denotes the pressure, in which Pref and Pc are
the reference gas pressure and matric potential; dkβ and
µβ are the molecular diffusion coefficient and viscosity of
phase β, respectively; and g is the gravitational acceleration.
For gas phase (air and vapor), the diffusion coefficient is a
function of pressure and temperature as

dkg = d
k
g (P0T0)

P0

P

[
T + 273.15

273.15

]1.8

, (6)

where dkg (P0 T0) is the gas diffusion coefficient at the stan-
dard condition P0= 1 atm, and T0= 0 ◦C. The relation-
ship between the matric potential, the relative permeability
and the water saturation is formulated by Mulem and van
Genuchten (van Genuchten, 1980) as

Pc =−
1
α

(
S
−1/m
e − 1

)1−m
, (7)

krl =
√
Se

[
1−

(
1− S1/m

e

)m]2
. (8)

The relative permeability of the gas phase is described by
Corey (1954) as

krg =

{
(1− Ŝ)2

(
1− Ŝ2

)
if Sgr > 0

1− krl if Sgr = 0
, (9)

where Se and Ŝ are defined as

Se =
Sl− Slr

Sls− Slr
, (10)

Ŝ =
Sl− Slr

1− Slr− Sgr
, (11)

in which Sls represents the saturated liquid saturation; Slr and
Sgr are the residual liquid and gas saturation, respectively;
m represents the pore size distribution of the soil/sediment;
and α is inversely proportional to the air-entry pressure. Heat
fluxes consist of conductive and convective components:

F h
=−λ∇T +

∑
β

hβfβ , (12)

where λ demotes the thermal conductivity and hβ is the spe-
cific enthalpy in phase β. It is worth noting that the evap-
oration was accounted for by the diffusion term in Eq. (5).
However, the current version of TOUGH2 does not consider
the root water uptake and transpiration from vegetation.

2.2 ERT forward model

The ERT forward model solves Poisson’s equation, which
describes the relationship between the potential field due
to a given input current and the electrical conductivity dis-
tribution. In this study, we used the forward model of the
Boundless Electrical Resistivity Tomography (BERT) pack-
age, developed by Rücker et al. (2006). BERT numerically
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Figure 1. Flowchart showing the steps involved in the coupled hydrological-thermal-geophysical inversion scheme. The objective function is
represented by Eq. (15). Estimated parameters consist of hydrological-thermal and petrophysical parameters (blue rectangles). The navy blue
rectangles denote the model inputs, including prior information about estimated parameters, and the top and bottom boundary conditions. The
purple rectangles denote the forward TOUGH2, geophysical and petrophysical models. The teal and indigo rectangles, respectively, denote
the simulation and measurement. Data for inversion in this study include matric potential, subsurface temperature and apparent resistivity.

solves Poisson’s equation using the finite-element method in
a three-dimensional, arbitrary topography. By incorporating
unstructured, tetrahedral meshes, the model enables efficient
refinement of the local mesh, and flexibly describes any ge-
ometry of the computational domain. The use of quadratic
shape functions also helps to improve the accuracy of the
simulation.

2.3 Petrophysical model

The bulk electrical conductivity (σb) includes contributions
from the electrical conductivity of pore water and the surface
conduction at the pore and water–mineral interface (Revil
et al., 2012). We employed the model proposed by Linde et
al. (2006), which was extended from Archie’s model (Archie,
1942), and is expressed below as

σb = φ
d
[
Snl σw+

(
φ−d − 1

)
σs

]
, (13)

where d is the cementation index; n is the saturation index;
and σw and σs are, respectively, the electrical conductivity of
water and soil/sediment surface conduction. Equation (13)
indicates that the cementation and saturation indexes closely
correlate. Hence, to reduce the number of unknown param-
eters and ameliorate nonuniqueness, we set the cementation
index at d = 1.3, which is commonly used for unconsolidated
sand (Archie, 1942). The electrical conductivity of pore wa-
ter, which does not vary significantly over time at the Rifle
site, was taken from the measurements at the nearby well and
is equal to 0.244 S m−1. In the case that the spatiotemporal

variation of solute concentration and resulting electrical con-
ductivity in pore water are significant, its dynamics should
be simulated by considering it as a component in TOUGH2.
A formula that links the solute concentration with the water
electrical conductivity also needs to be developed.

The relationship between temperature and electrical con-
ductivity can be formulated using linear (Sen and Goode,
1992) or exponential (Llera et al., 1990) equations. In this
study, we chose the linear form:

σ Tb = σb[1+ c(T − 25)], (14)

in which T is the temperature; σ Tb is the electrical resistivity
at temperature T ◦C; and c is the temperature-compensation
factor, corresponding to 25 ◦C. The value c= 0.0183 ◦C−1 as
suggested by Hayley et al. (2007) was used for our study.

2.4 Coupled hydrological-thermal-geophysical
inversion scheme

We developed the coupled hydrological-thermal-geophysical
inversion scheme within iTOUGH2 (see Finsterle, 1999; Fin-
sterle et al., 2012). Figure 1 presents the flowchart of the
scheme, which includes seven steps: (1) simulate subsurface
moisture content and temperature using the TOUGH2 model;
(2) transform the simulated moisture content to an electrical
conductivity image using petrophysical relationships; (3) ap-
ply the temperature correction for the electrical conductivity
using the simulated temperature, and convert the corrected
conductivity to a resistivity image; (4) interpolate the electri-
cal resistivity image from the TOUGH2 computational mesh
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to the BERT mesh; (5) execute the forward BERT model to
simulate the electrical resistance from the resistivity image;
(6) convert the electrical resistance to the apparent resistiv-
ity using geometric factors; and (7) minimize the misfit be-
tween simulation and measurement of the apparent resistivity
and other hydrological-thermal (matric potential and temper-
ature) data to estimate hydrological-thermal and petrophys-
ical parameters. The misfit is formulated by the objective
function as below:

8(p)= eTC−1e, (15)

where e= z∗− z(θ , p) is the residual vector quantifying the
difference between the modeled (z) and measured (z∗) data;
p and θ are, respectively, the vectors representing the model
parameters and input data; and C denotes the covariance ma-
trix of measurements errors. We assumed that there is no
correlation between measurement errors, and therefore the
covariance matrix C becomes a diagonal matrix in which the
main diagonal elements are the variances of measurement er-
rors. It is worth noting that the vectors z, z∗ and matrix C
can contain multiple data types. The difference in units as-
sociated with the different data types was removed by the
covariance matrix of the measurement errors. For parame-
ter estimation, we used the Levenberg–Marquardt algorithm
(Marquardt, 1963) for nonlinear optimization.

The agreement between measured and modeled data was
evaluated using the Nash–Sutcliffe efficiency coefficient:

NSE= 1−
eT e

n0σ
2
0
, (16)

where σ 2
0 is the variance of the measured data and n0 is

the number of measurements. The Nash–Sutcliffe coefficient
ranges from −∞ to 1. The modeled and measured data per-
fectly agree if this coefficient equals 1. A coefficient of 0
implies that the model prediction is as accurate as the mean
of the measured data; a value less than 0 indicates that the
model prediction is worse than the measured mean.

The uncertainties of estimated parameters are character-
ized by their standard deviation values, which are the square
root of the diagonal elements of the covariance matrix of the
estimated parameters:

σpi =
√

Cppii , (17)

where i= 1, . . . , np. The covariance matrix of the estimated
parameters is computed as

Cpp = s
2
(

JTC−1J
)−1

, (18)

where J is the Jacobian matrix and s2 is an estimate of the
error variance:

s2
=
eTC−1e

n0− np
. (19)

Good initial guesses can help to avoid local minima with
unrealistic solutions. As such, we implement the following
practical procedure to progressively approach an optimal so-
lution:

1. Invert the matric potential data to obtain the subsurface
hydrological parameters. In this step, we consider only
the one-dimensional isothermal hydrological model.

2. Use the subsurface temperature data to estimate the
thermal parameters of the one-dimensional nonisother-
mal hydrological model. The subsurface hydrological
parameters obtained in step 1 are fixed and are used to
simulate the hydrological processes.

3. Jointly invert the matric potential, temperature and
apparent-resistivity data to obtain the subsurface
hydrological-thermal and petrophysical parameters.
The hydrological-thermal parameters from steps 1 and 2
are used as the initial guesses for this step. In this step,
the inversion is performed for the two-dimensional non-
isothermal hydrological model.

In each step, global sensitivity analysis is performed to eval-
uate the sensitivity of the calibration data with respect to the
model parameters. The insensitive parameters (the sensitivity
coefficient is approximately equal to 0) are not considered in
inversion. We apply the global sensitivity analysis method re-
ferred to as one-step-at-a-time (OAT) Morris method, which
is available in iTOUGH2 (Wainwright et al., 2013). This
method is briefly described as follows: the parameter space
of np parameters is normalized to the np-dimensional domain
([0, 1]np). Each dimension of this normalized domain is dis-
cretized into ns− 1 equal segments, generating ns grid points
that take values in the set {0, 1/(ns− 1), 2/(ns− 1), . . . 1}.
The element effect (EEj (pi)) of parameter pi at an arbitrary
grid point with respect to model output z is defined as

EEj (pi )=
1
F

z
(
p
j

1 , . . .,p
j
i +1,. . .,p

j
np

)
− z

(
p
j

1 , . . .,p
j
i , . . .,p

j
np

)
1

,, (20)

in which pj ≤ 1−1, with 1= ns
2(ns−1) , and F is the scaling

factor for comparing the element effects of different mea-
surements z. The element effect quantifies the variation of
the model output with respect to variation of parameter pi at
a given point in the parameter space. To evaluate the param-
eter sensitivity, we need to calculate the element effects of
all parameters at all grid points, which requires a large com-
puting resource. To overcome this constraint, Morris (1991)
generated several random sample paths and computed the el-
ement effects of each parameter along these paths. The sen-

sitivity coefficient |EE(pi)| = 1
ns

j=ns∑
j=1
|EEj (pi)| determines

the sensitivity of parameter pi . A parameter with a higher
sensitivity coefficient is more sensitive than the other param-
eters.

www.hydrol-earth-syst-sci.net/20/3477/2016/ Hydrol. Earth Syst. Sci., 20, 3477–3491, 2016



3482 A. P. Tran et al.: Quantifying shallow subsurface water and heat dynamics

3 Field study

3.1 Study site and datasets

The newly developed approach was tested at a floodplain
adjoining the Colorado River, near Rifle, Colorado (USA)
(Fig. 2). The perched aquifer at the site overlies low-
permeability mud and siltstones of the Eocene Wasatch For-
mation. Above the Wasatch Formation is a Quaternary allu-
vial layer consisting of sandy, gravelly unconsolidated sedi-
ments. The uppermost layer is a silty clay fill with a thickness
of around 1.5–2 m, which replaced contaminated soils and
sediments removed from the site following uranium recla-
mation activities. Groundwater elevations fluctuate season-
ally with snowmelt infiltration and Colorado River stage, and
vary from around 3.5 to 2.4 m below ground surface.

The Berkeley Lab and others in the scientific community
have performed many studies at the Rifle site to explore com-
plex subsurface hydro-biogeochemical behavior and to test
the development of new characterization and modeling ap-
proaches. For example, Li et al. (2010) used reactive trans-
port modeling to investigate the influence of physical and
geochemical heterogeneities on the spatiotemporal distribu-
tion of mineral precipitates and biomass that formed during a
biostimulation experiment. Yabusaki et al. (2011) developed
a three-dimensional hydro-biogeochemical reactive transport
model of Rifle to improve understanding of the uranium
variability, hydrological conditions and soil properties under
the pulsed acetate amendment. Chen et al. (2013) developed
a data-driven biogeophysical approach to quantify redox-
driven biogeochemical transformations using geochemical
measurements and induced polarization data. Wainwright
et al. (2015) used induced polarization data and stochastic
methods to estimate the spatial distribution of naturally re-
duced zones in the subsurface, which served as biogeochem-
ical hot spots; the geophysical information was used to con-
strain simulations of biogeochemical cycles across the Rifle
floodplain. Arora et al. (2016) used reactive transport mod-
eling approaches to explore seasonal variations in biogeo-
chemical fluxes occurring from bedrock to canopy as well as
laterally to the Colorado River. They found that CO2 con-
centration in the unsaturated zone could not be accurately re-
produced without incorporating temperature gradients in the
simulations and that incorporating temperature fluctuations
resulted in an increase in the annual groundwater carbon
fluxes to the river by 170 %. They concluded that spatial mi-
crobial and redox zonation as well as temporal fluctuations of
temperature and water table depth contributed significantly
to subsurface carbon fluxes in the Rifle floodplain, and they
identified the need to represent temperature and moisture dy-
namics for accurate model simulations.

In this study, we tested our new approach using data
collected along a Rifle, CO ERT transect, which includes
112 electrodes with a distance between any two adjacent
electrodes of 1 m (Fig. 2). The ERT data were autonomously

Figure 2. Plan view of the Rifle floodplain of the Colorado River,
Colorado, and the location of the TT02 and TT03 wells and ERT
line.

collected every day from April through June 2013 using the
Wenner electrode array. These data were used for two pur-
poses: (1) determining subsurface stratigraphy to support
construction of the hydrological model and (2) estimating
hydrological-thermal and petrophysical parameters through
the coupled inversion approach.

For characterizing subsurface stratigraphy and specifying
the depths of the fill, alluvium and Wasatch layers, we used
the BERT inversion package (Günther et al., 2006) to in-
vert the ERT data that were collected on 20 May 2013. The
electrical resistivity image obtained by inversion is shown in
Fig. 3a. As expected, the clay-rich fill and Wasatch layers ex-
hibit less resistivity than the alluvium layer. To specify the lo-
cations of the fill–alluvium and alluvium–Wasatch interfaces
from ERT geophysical inversion, we used the depths of these
interfaces observed at the TTO2 and TTO3 wells as the refer-
ences to determine resistivity thresholds. Accordingly, a grid
cell with a resistivity greater than 1.52log10 (�m) and above
1.5 m depth belongs to the alluvium layer. The cells whose
resistivity values are smaller than 1.83log10 (�m) and below
5 m are assigned to the Wasatch layer. The remaining cells
are in the fill layers. The magenta and white lines in Fig. 3
represent the fill–alluvium and alluvium–Wasatch interfaces,
respectively.

We developed a computational domain that is a rectangle
centered at the TT02 well, with a width of 30 m, as shown
in Fig. 3b. Previous work at this site has suggested that the
spatial variability over the extent of the simulation transect
is not likely to be significant (Li et al., 2010). Consequently,
we assumed the computational domain includes two homo-
geneous layers: namely, fill and alluvium. The porosity is
0.4 for the fill and 0.2 for the alluvium layer (Tetsu K. Toku-
naga, personal communication, 2015). The top boundary of
the domain is the atmospheric layer, and the bottom is the
impermeable Wasatch layer. We set the depth of the bot-
tom boundary at the average depth of the Wasatch layer,
z= 6.5 m. The domain was divided into 30 equally spaced
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Figure 3. (a) The 2-D image of the soil electrical resistivity ob-
tained by inverting ERT data collected on 20 May 2013. The
magenta and white lines delineate the inferred fill–alluvium and
alluvium–Wasatch boundaries, respectively. Green square markers
denote the fill–alluvium boundary determined from the well logs of
TT02 and TT03 and adjacent wells, as recorded in the field dur-
ing drilling. The blue rectangular box indicates the hydrological-
thermal computational domain. (b) Computational domain for the
hydrological-thermal inversion with associated grid mesh. Blue and
orange regions represent the fill and alluvium layers, respectively.
The domain is situated below an atmospheric layer (top boundary)
and above the relatively impermeable Wasatch (bottom boundary).

columns, each with a size of 1 m in the horizontal direction.
In the vertical direction, the cell size is 0.05 m for the upper-
most 2 mm, 0.3 m for the next 1.5 m and 0.6 m for the last
3 m, for a total of 1560 cells. The BERT computational mesh
was automatically generated in BERT. We set the maximum
cell size which controls the mesh refinement at a small value
(0.2 m) to capture the local variation of the soil electrical re-
sistivity. Other parameters that determine the BERT compu-
tational mesh were kept as their default values. For more in-
formation about BERT mesh generation, we refer to Rücker
et al. (2006). The apparent resistivity was mapped from the
hydrological to the BERT mesh using the nearest-distance
method; i.e., a cell in the BERT mesh will get the resistivity
value of its nearest cell in the hydrological mesh. The electri-
cal resistivity of the Wasatch layer was set at its average value
obtained from geophysical inversion (ρWasatch

b = 45�m).
We performed the hydrological-thermal simulation dur-

ing the snow-free period from 4 May 2013 to 25 Novem-
ber 2013 (194 days). All meteorological data (atmospheric

pressure, temperature, humidity and rainfall) were measured
at a nearby meteorological station. The surface boundary
conditions include land surface temperature, atmospheric
pressure, air mass fraction and rainfall. The land surface
temperature was adjusted from the atmospheric tempera-
ture, based on a regression approach proposed by Zheng et
al. (1993), while the air mass fraction was calculated from
the atmospheric pressure and relative humidity data. The bot-
tom boundary condition of pressure was calculated from the
groundwater table data, and the bottom temperature was ap-
proximated from the land surface temperature. The initial
conditions were derived from the measured data at the be-
ginning of the simulation period. For more detailed informa-
tion about initial and boundary conditions, we refer to Tran
et al. (2016).

Data for inversion included time-lapse matric potential,
temperature and apparent-resistivity measurements. Assum-
ing that the lateral variation in subsurface temperature be-
tween TTO2 and TTO3 wells (see the TT03 location in
Fig. 2) was insignificant, we used temperature data at the
TTO3 well for inversion. Temperature was measured every
5 min at six depths below the surface: z= 0.75, 1, 1.5, 2.5,
4.6 and 6 m. The 5 min data were averaged to obtain daily
data. Using tensiometers, the matric potential was occasion-
ally measured at the TTO2 well at depths z= 0.5, 1, 1.5, 2,
2.5 and 3 m. As for the ERT data, we chose six datasets that
cover the most important variations of subsurface moisture
and temperature during the measurement period. For each
dataset, we selected 246 values obtained from 54 electrodes
in and around the computational domain for inversion. The
measurement errors were assumed to follow a standard Gaus-
sian distribution. The standard deviation of the errors for the
resistivity and matric potential data are 5 % of the measure-
ment values. For the temperature data, because the instru-
ment errors of the thermistors are from 0.1 to 0.4 ◦C, we as-
sumed that the standard deviation of the errors for this type
of measurement is 0.4 ◦C.

3.2 Results and discussion

All of the hydrological-thermal and petrophysical parame-
ters that were considered in this study are presented in Ta-
ble 1. The first and second columns present the parameter
names and ranges, respectively. From the third to the last col-
umn, we present the estimated parameters obtained from dif-
ferent inversion cases, namely hydrological inversion (HI),
thermal inversion (TI), and coupled hydrological-thermal-
geophysical inversion (HTGI).

3.2.1 Sensitivity analysis

The sensitivity coefficient of the matric potential data with
respect to the subsurface hydrological parameters at all mea-
sured depths (0.5, 1, 1.5, 2, 2.5, 3 m) is shown in Fig. 4a.
The figure indicates that the matric potentials are more sen-
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Figure 4. The sensitivity coefficients |EE| of matric potential, sub-
surface temperature and apparent-resistivity data with respect to dif-
ferent hydrological, thermal and petrophysical parameters. A pa-
rameter with a higher |EE| is more likely to be determined. (a) The
sensitivity coefficient |EE| of the matric potential at depths of 0.5,
1, 1.5, 2, 2.5 and 3 m, with respect to the hydrological parameters of
the fill and alluvium layers, and the gas diffusion coefficient stan-
dard conditions. (b) The |EE| of the temperature at depths of 0.75,
1, 1.5, 2.5, 4.63 and 6 m, with respect to the thermal conductivity of
fill and alluvium layers. (c) The temporal variations of the |EE| of
the resistivity data with respect to the soil hydrological-thermal and
petrophysical parameters of both fill and alluvium layers.

sitive to the parameters of van Genuchten’s retention curve
than to the absolute permeability. At the fill layer, the influ-
ence of parameter α on the matric potential is significantly
higher than the other parameters. The second-most-sensitive
parameter is m. At the alluvium layer, α and m are also the
two most sensitive parameters. The sensitivity coefficient of
the absolute permeability of the fill layer (|EE|matric potential

Kfill
)

is relatively small, and that of the alluvium permeability is
nearly equal to 0. This can be explained by the lack of infil-
tration during the simulation period. As a result, there is little
information for estimating the absolute permeability, which
controls the moisture dynamics. The retention curve param-
eters determine the shape of the matric potential profile, and
therefore the matric potential is more sensitive to them. Fig-
ure 4a also shows that the hydrological parameters of a given
layer are mostly sensitive to the matric potential measure-
ments at that layer. For example, the |EE|matric potential

αfill of α of

the fill layer on the matric potential is around 45–68 for the
fill layer and 0 for the alluvium layer (z> 1.5 m). By con-
trast, the |EE|matric potential

αfill of α of the alluvium layer on the
matric potential is 35–114 for the alluvium layer and 0 for the
fill layer. This implies that there was little moisture exchange
between the two layers during the simulation period.

Sensitivity of temperature with thermal parameters

The sensitivity of the subsurface temperature data with re-
spect to the thermal conductivity of the fill and alluvium lay-
ers at depths from 0.75 to 6 m is depicted in Fig. 4b. The
figure indicates that the sensitivity coefficient |EE|temperature

λfill
of the thermal conductivity of the fill layer on temperature
reaches its maximum at z= 1.5 m (|EE|temperature

λfill
= 6.5) and

its minimum at z= 6 m (|EE|temperature
λfill

= 0.2). This implies
that the temperature data at 1.5 m depth contain the most
valuable information for estimating the thermal conductiv-
ity of the fill layer. The temperature data at depth z= 4.6 m
are the most sensitive to the thermal conductivity of the al-
luvium layer |EE|temperature

λalluvium
= 2.3, while the temperature data

at depths 0.75, 2.5 and 6 m are the least sensitive, with the
|EE|temperature

λalluvium
roughly equal to 0.7. The figure also indicates

that the subsurface temperature data at depths 0.75, 1, 1.5 and
2.5 m are much more sensitive to the thermal conductivity of
the fill than to that of the alluvium layer. By contrast, be-
low 2.5 m, the sensitivity of the temperature data to the ther-
mal conductivity of the fill layer is slightly higher than to
that of the fill layer. This is because temperature at shallower
depths is more dynamic in both time and space than at deeper
depths. As a result, there is more information for estimating
the thermal conductivity of the shallower fill layer.

Sensitivity of apparent resistivity with
hydrological-thermal and petrophysical parameters

Based on the above sensitivity analysis with the matric po-
tential and temperature data, we selected the six most sensi-
tive hydrological-thermal parameters (α, m and λ, for both
fill and alluvium layers) for sensitivity analysis with the
apparent-resistivity data. We also considered three petro-
physical parameters, including n (fill, alluvium) and σs( fill)
(Eq. 13). Figure 4c presents the sensitivity coefficient |EE|
of the six apparent-resistivity datasets collected at differ-
ent dates with respect to nine parameters. The figure shows
that the apparent-resistivity data are much more sensitive
to the petrophysical parameters than to the hydrological-
thermal ones. Of the petrophysical parameters, the saturation
index (n) of the alluvium layer is the most sensitive param-
eter. Among all hydro-thermal parameters, apparent resistiv-
ity is the most sensitive to the thermal conductivity of the
fill layer, implying that for this study the influence of tem-
perature on electrical resistivity is larger than that of mois-
ture content. The apparent-resistivity data are more sensitive
to the hydrological-thermal parameters of the fill layer than
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Table 1. Constraints and estimated values of the hydrological-thermal and petrophysical parameters for different inversion cases. Hydrolog-
ical inversion used matric potential data to estimate hydrological parameters (m (fill, alluvium), α (fill, alluvium), K (fill) and D). Thermal
inversion used subsurface temperature data to estimate thermal conductivity of both fill and alluvium layers – λ (fill, alluvium). Coupled in-
version used all matric potential, temperature and apparent-resistivity data to estimate parametersm (fill), α (fill), λ (fill), n (fill), n (alluvium)
and σ (fill).

Parameter Range Hydrological inversion (HI) Thermal inversion (TI) Coupled inversion

m (fill) (–) 0.4–0.6 0.516 (±0.039, 7.5 %) From HI 0.464 (±0.005, 1.1 %)
α (fill) (Pa−1) 10−5–10−4 2.680× 10−5 (±2.030× 10−6, 7.6 %) From HI 3.054× 10−5 (±3.951× 10−7, 1.3 %)
K (fill) (m2) 10−15–10−13 8.684× 10−15 (±2.235× 10−15, 25.7 %) From HI From HI
m (alluvium) (–) 0.1–0.3 0.184 (±0.002, 1.2 %) From HI From HI
α (alluvium) (Pa−1) 10−4–10−1 0.039 (±0.003, 8.3 %) From HI From HI
D(P0, T0) (m2 s−1) 10−5–10−7 7.070× 10−5 (±2.893× 10−6, 4.1 %) From HI From HI
λ (fill) (Wm−1 ◦C−1) 1.2–2.7 – 2.409 (±0.016, 0.7 %) 2.447 (±0.015, 0.6 %)
λ (alluvium) (Wm−1 ◦C−1) 1.2–2.7 – 1.423 (±0.029, 2 %) From TI
n (fill) (–) 1.3–2.5 – – 2.222 (±0.574, 25.8 %)
n (alluvium) (–) 1.3–2.5 – – 1.437 (±0.007, 0.5 %)
σs (fill) (S m−1) 0.02–0.05 – – 0.043 (±0.010, 22.2 %)

m and α represent the pore size distribution of the soil and reciprocal of the air-entry pressure (Eq. 7). K is the absolute permeability (Eq. 5). D(P0, T0) is the gas diffusion coefficient at the standard condition
(P0 = 1 atm and T0 = 0 ◦C) (Eq. 6). λ is the thermal conductivity (Eq. 12). n and σs are the saturation index and soil surface conduction, respectively (Eq. 13).

those of the alluvium layer. The |EE| of all hydrological-
thermal parameters of the alluvium layer is mostly equal to
0. This is because moisture and temperature exhibit larger
variations in the fill than in the alluvium layer.

3.2.2 Inversion results

The estimated parameters and their associated uncertainties
based on hydrological, thermal and coupled hydrological-
thermal-geophysical inversions are presented in Table 1. For
the hydrological inversion, we used the matric potential data
to estimate six hydrological parameters: α (both fill and allu-
vium), m (both fill and alluvium), K (fill), and D(P0, T0).
Because the matric potential data are negligibly sensitive
with the permeability of the alluvium layer (K (alluvium)),
we did not consider K (alluvium) in hydrological inversion.
We set it at 7.95× 10−12 m2, which is the value averaged
from well measurements. For the thermal inversion, we es-
timated the thermal conductivity (λ) of the fill and alluvium
layers using temperature data. The specific heat capacity of
the soil/sediment particles of both fill and alluvium layers
was fixed at their typical value, CR = 870 kg−1 C−1 (Camp-
bell and Norman, 1998). For the coupled hydrological-
thermal-geophysical inversion, we estimated six parameters
including three hydrological-thermal parameters – m (fill),
α (fill) and λ (fill) – and three petrophysical parameters, n
(both fill and alluvium) and σs (fill), using the matric po-
tential, temperature and apparent-resistivity data. The sur-
face conduction of the alluvium layer was set to 0. Be-
cause the apparent-resistivity data show little sensitivity to
the hydrological-thermal parameters of the alluvium layer,
these parameters are not improved by the coupled inversion.
Therefore, they were fixed at the values obtained from the
hydrological and thermal inversion. The initial guesses for
the fill hydrological-thermal parameters were obtained from
the previous hydrological and thermal inversion.

The hydrological inversion reveals that, compared to the
other hydrological parameters, the uncertainty of the abso-
lute permeability (K) of the fill layer is highest, while that of
the parameter m of the alluvium layer is lowest. Their stan-
dard deviation are, respectively, equal to 26 and 1 % of the
corresponding estimated values. It is because the matric po-
tential data exhibit the lowest sensitivity withK (fill) and the
highest sensitivity with m (alluvium) (see Fig. 4). Table 1
also shows that the parameters α and K of the fill layer are
small, implying that this layer has a strong water-holding ca-
pacity, and water will move downward slowly.

Results of the thermal inversion show that the uncertain-
ties of the thermal conductivity (λ) of both fill and alluvium
layers are small. This indicates that the thermal-conductivity
parameter is reliably estimated, due to the dense subsurface
temperature measurements and the high sensitivity of tem-
perature to the parameter. Table 1 also shows that the ther-
mal conductivity of both fill and alluvium layers is relatively
high, which means that the variations of the temperature at
the land surface are rapidly propagated downward. The ther-
mal conductivity of the alluvium layer is lower than that of
the fill layer. This is because a large part of the alluvium layer
is saturated with water and thus has much lower thermal con-
ductivity than the drier fill layer.

The coupled inversion results are shown in the last column
of Table 1. Compared to the hydrological inversion, the cou-
pled inversion causes the parameter m (fill) to fall by 10 %
and α (fill) to rise by 14 %. However, it is worth noting that,
because parameters α and m in the retention curve are nega-
tively proportional, the retention curve does not change much
whenm decreases and α increases. The thermal conductivity
of the fill layer exhibits a negligible change. The table also
indicates that, while the uncertainty of the saturation param-
eter n (alluvium) is smaller (0.5 % of the estimated value),
the uncertainties of the parameters n (fill) and σs (fill) are
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significantly large (26 and 22 % of the estimated values, re-
spectively). This can be explained by the fact that the sat-
uration index (n) and soil/sediment surface conduction (σs)
closely correlate (see Eq. 13). As a result, when both of these
parameters of the fill layer are concurrently estimated, their
uncertainties are higher than in the case of the alluvium layer,
where only the saturation index is estimated (the surface con-
duction of the alluvium was fixed at σs= 0 S m−1).

Comparison of the measured and modeled matric potential
of all eight datasets is presented in Fig. 5. The figure shows
that there is good agreement between measured and modeled
data, with a Nash–Sutcliffe efficiency criterion of 0.92. We
also observe that the temporal variations of the matric poten-
tial over the simulation period mostly occur at the fill layer
(z≤ 1.5 m). When the depth is equal to or greater than 2 m,
the matric potential is nearly constant. This suggests that the
moisture of the alluvium layer is less dynamic, and the vari-
ations within the fill layer do not frequently propagate to the
alluvium layer during the simulation period.

The modeled and measured temperatures at depths from
0.75 to 6 m are shown in Fig. 6. The figure indicates the
model is capable of reproducing the spatial and temporal
variations of the subsurface temperature. The Nash–Sutcliffe
efficiency criterion is equal to 0.98. The figure also shows
that at the upper depths (0.75 and 1 m) the model slightly
underestimates the measurement. This can be explained by
the errors of simplification at the land surface boundary. The
heat and energy exchanges at the land surface between the
atmosphere and land surface were not fully considered. In-
stead, the land surface temperature was approximated based
on the historical data of atmospheric and land surface temper-
ature (see the Supplement). The evaporation was represented
by the upward flux from the land surface to the atmosphere.
The figure also shows that the temporal variation of the
measured and modeled temperature data decrease with in-
creasing depth. For example, while the temperature at depth
z= 0.75 m varies in a range 8–27 ◦C during the simulation
period, it only varies from 11 to 16 ◦C at depth z= 6 m. The
peaks of the subsurface temperature appear later at deeper
locations, as it takes time for heat to flow down.

The measured and modeled apparent-resistivity data on
8 May 2013 (when the modeled data were obtained through
inversion) are depicted in Fig. 7a. The figure indicates that
the coupled hydrological-thermal-geophysical simulation ef-
fectively reproduces the measured data. Particularly, the lat-
eral variation of the apparent resistivity is simulated with
high accuracy. Both measured and modeled data clearly indi-
cate that the upper part of the subsurface section is more con-
ductive (lower resistivity) than the deeper part. This is rea-
sonable, as the deeper section contains more sand and cob-
bles, while the upper section contains more clayey and silty
soils and therefore is more electrically conductive. Compar-
ison of the measured and modeled resistivity data obtained
from the whole simulation period is presented in Fig. 7b.
The Nash–Sutcliffe efficiency criterion is equal to 0.94. Both

Figure 5. Comparison of the measured and modeled matric poten-
tial data for all measurement occasions. The red symbols repre-
sents the modeling results obtained from the coupled hydrological-
thermal-geophysical inversion. The blue symbols denote the mea-
surements.

Fig. 7a and b indicate that the estimation is less accurate for
the high apparent-resistivity values. This can be explained by
the fact that the high apparent-resistivity values are more sen-
sitive to deeper locations and thus are harder to fit due to the
influence of above soil. Another possible reason is that, with
the same relative measurement error (5 %), the measurement
error variances of the high resistivity values are larger than
those of low resistivity values. As a result, their weights in
the objective function (Eq. 15) are smaller, and they are less
accurately estimated.

The water saturation and temperature versus time over
the simulation period at depths z= 0.025, 0.475, 0.975 and
1.525 m are shown in Fig. 8. For reference, the rainfall data
are also presented. The figure shows that the water satura-
tion at the surface layer rapidly responds to variations of the
temperature and rainfall. It is relatively wetter at the begin-
ning and the end of the simulation period due to high rainfall
and low temperature (i.e., low evaporation), and it is drier in
the middle due to low rainfall and high temperature. How-
ever, the magnitude of the variations of the water saturation
quickly decreases with increasing depth. Below z= 0.475 m,
the water saturation slowly changes with time and only grad-
ually increases with a relatively large amount of rainfall in
the end of the simulation. Similar to the water saturation, the
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Figure 6. Comparison of the measured and modeled temperatures at depths of 0.75, 1, 1.5, 2.5, 4.63 and 6 m during the simulation period.
The black line denotes the modeling results obtained from the coupled hydrological-thermal-geophysical inversion. The red line represents
the measurements.

Figure 7. Left panels: an example of “quantitative” plots of the modeled and measured apparent-resistivity data on 8 May 2013. Right
panel: comparison of all measured and modeled apparent-resistivity data in a 1 : 1 plot. The modeled data were obtained from the coupled
hydrological-thermal-geophysical inversion.

subsurface temperature exhibits a high temporal variation in
a range 1.8–29.8 ◦C at the surface but becomes more stable
at the deeper depths. At depth z= 1.525 m, the temperature
varies only from 9.6 to 22.2 ◦C.

The temporal variation of the water flux, which is the sum
of the vapor and liquid fluxes versus time over the simulation
period at depths from 0.025 to 1.525 m, is shown in Fig. 9.
Comparing Figs. 8 and 9, we observe that the temporal vari-
ation of the water flux is highly correlated with that of the
water saturation and temperature. The greatest variation oc-
curs at z= 0.025 m, with the flux ranging from −0.001 to
0.024 m day−1. At z= 1.525 m, the flux is constantly equal
to 0. The figure also indicates that the infiltration (positive

flux values) is observed at the beginning and the end of the
simulation period, when the soil is wet and rainfall occurs. At
the middle of the simulation period, when the air temperature
is high, the upward flux (negative flux values) occurs because
of evaporation. Under the control of the diffusion, the evapo-
ration can lead to upward flow starting at 1 m depth.

It is worth noting that our study assumed the Rifle subsur-
face was composed of two homogeneous layers, namely, fill
and alluvium. For studies where the spatial heterogeneity is
high, we suggest that users construct the model parameters as
spatially correlated random fields characterized by variogram
functions and then estimate the parameters (e.g., correlation
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Figure 8. Temporal variation of the simulated water saturation and
temperature at depths z= 0.025, 0.475, 0.975 and 1.525 m of the
TT02 well (center of the computational domain). For reference,
rainfall and soil surface temperature data are also plotted.

length, anisotropy value, variance) of these variogram func-
tions as proposed in Finsterle and Kowalsky (2007).

4 Effect of temperature dependence of resistivity on
hydrogeophysical inversion

In this section, we consider the effects of the temperature
dependence of the electrical resistivity on the estimated sub-
surface hydrological parameters, which are obtained by in-
verting apparent-resistivity data in synthetic isothermal and
nonisothermal scenarios. For the isothermal scenario, the
temperature was assumed to be constant in time and space
at the value averaged over the whole computational do-
main and over the simulation period. For the nonisother-
mal scenario, the spatial and temporal variability of the tem-
perature under the influences of the atmospheric tempera-
ture and hydrological-thermal parameters was fully consid-
ered. It is worth noting that the influences of temperature
variability on the electrical resistivity include both direct
(temperature–electrical-resistivity relationship) and indirect
(via changing the hydrological-thermal processes, e.g., gas–
liquid phase transition) effects. The synthetic experiment was
implemented as below:

Figure 9. Temporal variation of the simulated water flux at depths
z= 0.025, 0.475, 0.975 and 1.525 m of the TT02 well. The positive
and negative values indicate the downward and upward flows.

1. Run nonisothermal hydrological-thermal-geophysical
forward simulation to generate artificial apparent-
resistivity data. Add Gaussian white noise (mean of
0 and standard deviation of 5 % of artificial apparent-
resistivity data) to the artificial data to obtain the syn-
thetic data.

2. Invert the synthetic apparent-resistivity data to estimate
the subsurface hydrological parameters, assuming that
the subsurface temperature is spatiotemporally constant
(isothermal scenario).

3. Invert the synthetic apparent-resistivity data to estimate
the subsurface hydrological parameters considering the
nonisothermal process (nonisothermal scenario).

4. Compare inversion results of the two scenarios to eval-
uate the effect of the subsurface temperature variability
on the hydrogeophysical inversion.

The computational domain, model parameters, and initial
and boundary conditions for the synthetic forward simu-
lation were taken from the coupled hydrological-thermal-
geophysical inversion as presented in Section 3. Because
the variation of the water saturation mostly occurs in the
fill layer, we focused on estimating the hydrological pa-
rameters of this layer, including α, m and absolute perme-
ability K . For both isothermal and nonisothermal scenar-
ios, the initial guesses for the three parameters were set
at α= 1.8× 10−5 (Pa−1), m= 0.4 and K = 4.5× 10−15 m2.
To increase the sensitivity of the apparent-resistivity data
with the hydrological parameters, we selected four synthetic
apparent-resistivity datasets corresponding with high water
saturation values. The Gaussian noise, with a mean of 0 and
a relative standard deviation of 5 %, was added to the arti-
ficial apparent-resistivity data to generate synthetic data for
the hydrogeophysical inversion.

Comparison of the synthetic van Genuchten water reten-
tion curve and the ones obtained by the isothermal and
nonisothermal hydrogeophysical inversion is exhibited in
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Fig. 10a. Although the nonisothermal hydrogeophysical in-
version does not perfectly estimate the synthetic parameters
(due to the nonuniqueness and the correlation between pa-
rameters), its estimation is close to the synthetic ones. Mean-
while there is a large difference between the synthetic and
estimated curves obtained by the isothermal hydrogeophysi-
cal scenario.

Figure 10b presents the synthetic and modeled apparent-
resistivity data using a 1 : 1 plot. The figure shows that
the nonisothermal scenario better reproduces the synthetic
apparent resistivity than the isothermal does. Correlation,
bias and root mean square error (RMSE) between the syn-
thetic and simulated nonisothermal electrical resistivity data
are 0.98, 1 and 2.29, respectively, while these criteria for the
isothermal scenario are 0.96, 0.98 and 3.54. In brief, ignoring
temperature variability and its influence on electrical resistiv-
ity in the hydrogeophysical inversion is very likely to cause a
large error for the model parameter estimation and to reduce
agreement between modeled and measured geophysical data.

5 Summary and discussion

We developed a coupled hydrological-thermal-geophysical
inversion scheme that quantifies the dependence of the elec-
trical resistivity on both subsurface moisture and temper-
ature, instead of solely moisture, as has been typical for
previous hydrogeophysical inversion schemes. This scheme
permits simulation of nonisothermal, multiphase subsurface
heat and water fluxes, as well as the relationship between
temperature, moisture and electrical resistivity. It accounts
for the spatiotemporal variability of moisture and tempera-
ture in the shallow subsurface and can include multiple geo-
physical and non-geophysical measurement constraints. At
present, TOUGH2 cannot simulate the land surface processes
and energy balance at the land surface. To mitigate this disad-
vantage, this study approximated the top land surface temper-
ature boundary condition from the atmospheric temperature
using a regression approach. The evaporation was considered
via the gas phase of moisture. The evaporation rate was sim-
ulated as the water vapor fluxes moving upward from the top
layer to the atmosphere.

The new approach was applied to data collected at a field
site in Rifle, Colorado. The ERT data were used to char-
acterize subsurface stratigraphy and to constrain the com-
putational domain for the hydrological-thermal model. The
time-lapse ERT data were used with other hydrological and
thermal data to constrain the inversion. The inversion results
show that our developed scheme well reproduces the matric
potential, temperature and apparent-resistivity data. The ob-
tained results indicate that the temporal variation of the mois-
ture mostly occurs at the overlying fill layer, due to the rel-
atively small amount of rainfall and the high water-holding
capacity of this layer. The alluvium moisture exhibits a min-
imal change. Both fill and alluvium layers have high thermal

Figure 10. (a) Comparison of the synthetic and estimated
van Genuchten’s retention curve. (b) Comparison of synthetic and
modeled apparent-resistivity data. The red color represents the re-
sults obtained by the isothermal hydrogeophysical inversion scenar-
ios. The blue color denotes the nonisothermal scenario.

diffusivities, permitting the variation of the air temperature
to rapidly move down. The obtained results also indicate that
the thermal-conductivity and van Genuchten parameters of
both fill and alluvium layers are well estimated with low un-
certainties. However, due to limited temporal variations of
moisture content (and thus ERT data), it is difficult to obtain
the absolute permeability of the fill layer and the petrophysi-
cal parameters.

To evaluate the influence of the temperature dependence of
the electrical resistivity on the estimation of the hydrological
parameters in the hydrogeophysical inversion, we performed
a synthetic study. By comparing the results obtained from the
isothermal and nonisothermal scenarios, we determined that
ignoring the spatial and temporal variability of the subsurface
temperature may cause errors in the estimation of hydrolog-
ical parameters.

Our study documents the value of accounting for the de-
pendence of both moisture content and temperature on elec-
trical resistivity within a hydrological-thermal-geophysical
inversion framework. The inversion scheme presented here
can be widely applied to many studies striving to quantify
hydrological and thermal dynamics in the subsurface. We be-
lieve that this and other approaches (e.g., Kalman ensemble
filter, maximum likelihood ensemble filter, particle filter) that
permit rapid assimilation of autonomous monitoring datasets
will greatly improve our understanding of terrestrial system
properties and their behavior, including their response to en-
vironmental perturbations such as floods and droughts.

6 Data availability

Both the data and input files necessary to reproduce the
studies are available from the authors upon request (ap-
tran@lbl.gov).
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