

Supplement of

A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya

David R. Rounce et al.

Correspondence to: David R. Rounce (david.rounce@utexas.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 Supplementary Materials

Lake	Freeboard	Steep glacier calving	Total
Chamlang North Tsho	None	Yes	2/2
Chamlang South Tsho	None	Yes	2/2
Dig Tsho	None	Yes	2/2
Imja Tsho	None	No	1/2
Lower Barun Tsho	None	Yes	2/2
Lumding Tsho	None	Yes	2/2
Thulagi Tsho	None	No	1/2
Tsho Rolpa	None	Yes	2/2

2 Table S.1. Results of O'Connor et al. (2001) hazard assessment.

3 4

5 Table S.2. Results of Costa and Schuster (1988) hazard assessment.

	Ice-cored	Unstable young moraine,	Steep slope	Rock/ice avalanche	
Lake	moraine	no vegetation	moraine (> 40°)	into lake	Total
Chamlang North Tsho	No	Yes	Yes	Yes	3/4
Chamlang South Tsho	Yes	Yes	No	Yes	3/4
Dig Tsho	No	Yes	No	Yes	2/4
Imja Tsho	Yes	Yes	No	No	2/4
Lower Barun Tsho	Yes	Yes	No	Yes	3/4
Lumding Tsho	No	Yes	No	Yes	2/4
Thulagi Tsho	Yes	No	No	Yes	2/4
Tsho Rolpa	Yes	Yes	No	Yes	3/4

6 7 8

Table S.3. Results from Wang et al. (2008) hazard assessment.

				Dam	Slope of			Lake-	
	Top width	Distal flank	Ice-	width :	glacier	Temp &	Freeboard :	glacier	
	ofdam	steepness*	cored	height	snout	precip	dam height	proximity	
Lake	(< 600 m)	(> 20°)	moraine	(< 2)	(> 8°)	(hot & wet)	(0)	(< 500 m)	Total
Chamlang North Tsho	530	41.5°	No	5.4	27.4°	Yes	0	0	6/8
Chamlang South Tsho	1050	39.7°	Yes	6.2	26.6°	Yes	0	270	6/8
Dig Tsho	460	30.1°	No	7	37.6°	Yes	0	960	5/8
Imja Tsho	650	31.7°	Yes	11.1	1.7°	Yes	0	0	5/8
Lower Barun Tsho	1000	26.7°	Yes	15	7.0°	Yes	0	0	5/8
Lumding Tsho	530	31.3°	No	13.7	12.4°	Yes	0	0	6/8
Thulagi Tsho	1000	28.1°	Yes	22.7	5.7°	Yes	0	0	5/8
Tsho Rolpa	530	39.2°	Yes	3.4	3.0°	Yes	0	0	6/8

9 *maximum slope on terminal moraine was used

1 Table S.4. Results of Bolch et al. (2011) hazard assessment

	Lake	Risk of					Contact	Lake					
	area	ice	Rick of	Ice	Debris	Flash	with	area	Glacier	Glacier	Stagnant		
Lake	change	avalanche	rockfall	core	flow	flood	glacier	(km^2)	shrinkage	slope	glacier	Hazard	Score
Chamlang North Tsho	No	Yes	Yes	No	Yes	-	No	0.90	No	27.4°	No	Medium	0.45
Chamlang South Tsho	No	Yes	Yes	Yes	Yes	-	No	0.82	No	26.6°	Yes	Medium	0.57
Dig Tsho	No	Yes	Yes	No	No	Yes	No	0.40	No	37.6°	No	Medium	0.41
Imja Tsho	Yes	No	No	Yes	No	Yes	Yes	1.22	Yes	1.7°	Yes	High	0.63
Lower Barun Tsho	Yes	Yes	Yes	Yes	No	Yes	Yes	1.61	Yes	7.0°	Yes	High	0.89
Lumding Tsho	Yes	Yes	Yes	No	No	Yes	Yes	1.09	Yes	12.4°	Yes	High	0.79
Thulagi Tsho	Yes	No	Yes	Yes	No	Yes	Yes	0.95	Yes	5.7°	Yes	High	0.71
Tsho Rolpa	Yes	Yes	Yes	Yes	Yes	-	Yes	1.59	No	3.0°	Yes	High	0.89

Table S.5. Results from Wang et al. (2011) hazard assessment

		Distance	Slope		Mother		
	Area of	between	between	Slope of	glacier		
	mother	lake and	lake and	downstream	snout		
	glacier	glacier	glacier	face of dam	steepness		
Lake	(km^2)	(m)	(°)	(°)	(°)	Hazard	Score
Chamlang South Tsho	7.5	270	45	10.4	26.6	Very High	0.84
Chamlang North Tsho	0.01	0	27.5	12.2	27.5	Very High	0.85
Dig Tsho	23.9	600	31.3	8.9	37.6	High	0.72
Imja Tsho	2.12	0	1.7	6.8	1.7	Low	0.49
Lower Barun Lake	55	0	7	4.9	7	Medium	0.51
Lumding Lake	29.1	0	12.4	10.5	12.4	Medium	0.61
Thulagi Tsho	56.8	0	5.7	7.1	5.7	Medium	0.51
Tsho Rolpa	61.5	0	3	16.4	3	Medium	0.6

1 Table S.6. Results from Emmer and Vilímek (2014) hazard assessment

	Chamlang Chamlang				Lower			Lumding			Tsho
	North	South	Dig	Imja	Barun	Seto	Lumding	Teng	Thulagi	Tsho	Rolpa
	Tsho	Tsho	Tsho	Tsho	Tsho	Pohkari	Tsho	Tsho	Tsho	Rolpa*	Upper1
Terminal Moraine											
Dam Type	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine
Dam Freeboard (m)	0	0	0	0	0	0	0	0	0	0	0
Dam Width (m)	1770	1050	460	750	1000	900	490	475	1000	530	500
Dam Height (m)	330	169.8	66	69	66.6	50	32.3	200	44	165	50
Maximum slope of distal face of dam (°)	40	27.4	34.6	15	23.2	31.3	31.3	46.6	21.5	30	39
Remedial work	no	no	no	no	no	no	no	no	no	yes	no
Lake Characteristics											
Lake Area (m ²)	9.1E+05	8.2E+05	4.0E+05	1.2E+06	1.6E+06	3.6E+05	1.1E+06	3.3E+05	8.8E+05	1.6E+06	1.2E+05
Lake Perimeter (m)	6990	4920	3480	6540	8310	2850	7530	3260	7230	10140	2040
Maximum lake width (m)	650	550	450	690	800	430	510	475	830	600	240
Lake Volume (m ³)	3.7E+07	3.2E+07	1.2E+07	7.5E+07	8.1E+07	9.9E+06	4.7E+07	9.1E+06	3.5E+07	8.6E+07	2.1E+06
Lake Surrounding Characteristics											
Distance b/w lake and glacier (m)	0	200	600	0	0	500	0	500	0	0	240
Width of calving front (m)	175	0	0		700	0	510	0	575	240	0
Mean slope b/w lake and glacier (°)	27.5	30.6	31.3	1.0	7.0	46.1	12.4	30.0	5.7	3.0	45.2
Mean slope of last 500m of glacier tongue (°)	27.5	26.6	31.3	1.0	7.0	18.8	12.4	20.0	5.7	3.0	29.1
Max slope of moraine surrounding lake (°)	74.5	73.2	67.8	54.5	70.1	57.8	66.0	56.3	68.8	57.0	67.0
Mean slope of lake surroundings (°)	34.0	45.0	45.0	37.5	45.0	35.0	35.0	30.0	45.0	45.0	35.0
Results											
Dam overtopping from mass movement into lake	1.00	0.96	0.93	1.00	1.00	0.85	1.00	0.83	1.00	1.00	1.00
Dam overtopping from upstream GLOF	0.00	0.00	0.00	0.00	0.85	0.00	0.83	0.00	0.00	1.00	0.00
Dam failure from mass movement into lake	0.64	0.46	0.57	0.21	0.39	0.52	0.52	0.73	0.37	0.50	0.63
Dam failure from upstream GLOF	0.00	0.00	0.00	0.00	1.00	0.00	0.83	0.00	0.00	1.00	0.00
Dam failure from strong earthquake	0.03	0.03	0.02	0.01	0.00	0.00	0.00	0.18	0.00	0.10	0.10
Number of failures lake is susceptible to	2/5	1/5	2/5	1/5	3/5	2/5	4/5	2/5	1/5	4/5	2/5

*Tsho Rolpa has three sizeable glacial lakes upstream, but only one was used for this analysis as it gave the highest results for the upstream GLOF scenarios

Table S.7. Details concerning the satellite imagery, dates, bands, thresholds, and area (km^2) for each glacial lake in this study.

					Area (km ²)	[Threshold]			
	Imagery	Chamlang	Chamlang	Dig	Imja	Barun	Lumding	Tsho	Thulagi
Year Date	(Bands)	N. Tsho*	S. Tsho	Tsho	Tsho	Tsho	Tsho	Rolpa	Tsho
2000 09/12	L7(1,4)	-	0.815 [0.68]	0.400 [0.55]	-	-	0.773 [0.64]	-	
09/26	L7(1,4)	-	-	-	-	-	-	-	0.860 [0.56]
09/28	L7(2,4)	-	-	-	-	0.949 [0.43]	-	-	
10/14	L7(2,4)	-	-	-	0.835 [0.50]	-	-	-	
10/14	L7(1,4)	-	-	-	-	-	-	1.520 [0.43]	
10/30	L7(2,4)	-	-	-	-	Supp [0.25]	-	-	
2001 09/15	L7(2,4)	-	-	-	0.853 [0.55]	0.932 [0.45]	-	-	
09/29	L7(1,4)	-	-	-	-	-	-	-	0.864 [0.56]
10/07	L7(1,4)	-	-	-	-	-	0.797 [0.61]	1.541 [0.43]	
12/20	L7(2,4)	-	-	-	-	Supp [0.05]	-	-	
2002 10/04	L7(2,4)	-	-	-	0.863 [0.35]	0.974 [0.23]	-	-	
10/04	L7(1,4)	-	-	-	-	-	0.821 [0.41]	1.553 [0.27]	
10/20	L7(2,4)	-	-	-	-	Supp [0.43]	-	-	
12/05	L7(1,4)	-	-	-	-	-	-	-	0.887 [0.35]
2003 10/23	A(1,3)	-	-	-	-	1.022 [0.00]	-	-	
11/08	L7(2,4)	-	-	-	0.871 [0.50]	-	-	-	
11/08	L7(1,4)	-	-	-	-	-	0.818 [0.64]	-	
11/14	L5(1,4)	-	-	-	-	-	-	-	0.885 [0.54]
11/16	L7(1,4)	-	-	-	-	-	Supp [0.60]	-	
2004 10/09	A(1,3)	-	-	-	-	1.035 [0.00]	-	-	
10/17	L5(1,4)	-	-	-	-	-	0.851 [0.62]	1.536 [0.44]	
11/10	L7(2,4)	-	-	-	0.893 [0.35]	-	-	-	
11/16	L5(1,4)	-	-	-	-	-	-	-	0.912 [0.51]
2005 10/10	L7(2,4)	-	-	0.406 [0.12]	-	1.082 [0.45]	-	-	
10/28	L7(2,4)	-	-	-	0.898 [0.10]	Supp [0.15]	0.887 [0.20]	-	
11/03	L5(1,4)	-	-	-	-	-	-	-	0.923 [0.48]
11/05	L5(1,4)	-	0.822 [0.63]	-	-	-	Supp [0.34]	1.535 [0.41]	
2006 09/05	L5(1,4)	-	-	-	-	-	0.888 [0.57]	1.517 [0.44]	
10/15	A(1,3)	-	-	-	-	1.165 [0.45]	-	-	
11/16	L7(4,5)	-	-	-	0.943 [0.35]	-	-	-	
11/22	L5(1,4)	-	-	-	-	-	-	-	0.925 [0.50]
2007 09/22	L5(1,4)	-	-	-	-	-	-	-	0.940 [0.48]
10/02	L7(2,4)	-	-	-	0.947 [0.30]	-	-	-	
10/02	L7(1,4)	-	-	-	-	-	Supp [0.41]	Supp [0.25]	
10/18	L7(2,4)	-	-	-	-	1.213 [0.45]	-	-	
11/03	L7(2,4)	-	-	-	-	Supp [0.30]	-	-	
11/19	L7(1,4)	-	-	-	-	-	0.900 [0.48]	1.534 [0.25]	
2008 10/12	L5(1,4)	-	-	-	-	-	0.965 [0.65]	1.532 [0.41]	
10/20	L7(2,4)	-	-	-	0.992 [0.30]	-	-	-	
10/26	L5(1,4)	-	-	-	-	-	-	-	0.932 [0.47]
11/05	L7(2,4)	-	-	-	-	1.261 [0.45]	-	-	
2009 04/30	L7(2,4)	-	-	-	-	Supp [0.45]	-	-	
09/27	L5(1,4)	-	-	-	-	-	-	-	0.941 [0.45]
10/15	L5(2,4)	-	-	-	-	1.370 [0.15]	-	-	
10/15	L5(1,4)	-	-	-	-	-	0.977 [0.64]	1.541 [0.41]	
10/23	L7(2.4)	-	-	-	1.041 [0.30]	-	-	-	

1 Table S.7 (Continued)

2010 10/10 17/1 4)		0 200 50 6 41			0 [0.(7]	0 0 2 (1	
2010 10/10 L/(1,4) -	-	0.390 [0.54]	-	-	Supp [0.65]	Supp [0.36]	
10/26 L7(2,4) -	-	-	1.101 [0.30]	1.389 [0.30]	-	-	
10/26 L7(1,4) -	0.817 [0.48]	-	-	-	0.989 [0.54]	1.545 [0.29]	
12/03 L5(1,4) -	-	-	-	-	-	-	0.952 [0.43]
2011 01/14 L7(2,4) -	-	-	-	Supp [0.05]	-	-	
09/03 L5(1,4) -	-	-	-	-	-	1.542 [0.43]	
10/13 L7(2,4) -	-	-	-	1.432 [0.35]	-	-	
10/13 L7(1,4) -	-	-	-	-	Supp [0.44]	-	
10/19 L5(1,4) -	-	-	-	-	-	-	0.950 [0.43]
10/29 L7(2,4) -	-	-	1.139 [0.30]	Supp [0.35]	-	-	
10/29 L7(1,4) -	-	-	-	-	1.001 [0.45]	-	
2012 09/27 L7(1,4) -	-	-	-	-	-	-	Supp [0.28]
09/29 L7(4,5) -	-	-	1.187 [0.10]	-	-	-	
09/29 L7(2,4) -	-	-	-	1.525 [0.40]	-	Supp [0.18]	
10/13 L7(1,4) -	-	-	-	-	-	-	0.936 [0.28]
10/31 L7(2,4) -	-	-	-	Supp [0.40]	-	-	
10/31 L7(1,4) -	-	-	-	-	1.064 [0.44]	-	
11/16 L7(1,4) -	-	-	-	-	Supp [0.21]	1.538 [0.05]	
2013 10/08 L8(2,5) -	-	-	-	-	-	-	0.950 [0.05]
10/10 L8(3.5) -	-	-	1.206 [0.10]	1.595 [0.10]	-	-	
10/10 L8(2,5) -	-	-	-	-	1.071 [0.22]	1.571 [0.08]	
2014 09/27 L8(3.5) -	-	-	1.220 [0.15]	1.635 [0.08]	-	-	
09/27 L8(2.5) -	-	-	-	-	Supp [0.22]	-	
10/11 L8(2.5) -	-	-	-	-	- -	-	0.947 [0.04]
11/14 L8(2.5) -	-	-	-	-	1.094 [0.18]	1.589 [0.05]	
2015 05/25 L8(2.5) 0.910	0.051 -	-	-	-	-	-	
09/30 L8(2,5) -	0.818 [0.21]	0.396 [0.14]	1.265 [0.15]	1.670 [0.08]	1.115 [0.20]	1.588 [0.06]	
11/15 L8(2,5) -	-	-	-	-	-	-	0.948 [0.04]

*Required heavy manual editing to account for shadows

Note: Error in lake area as a percentage of lake area ranged from 4 to 14% with an average of 10%.

"Supp" stands for supplementary image used to fill in for clouds or stripping

"L5" stands for Landsat 5

"L7" stands for Landsat 7

"L8" stands for Landsat 8

2 "A" stands for ASTER

Figure S1. Hazards and downstream impact for Chamlang North Tsho: (A) avalanche trajectories,
(B) rockfall trajectories (C) lack of ponds on the moraine, (D) future lake expansion, and (E) the
extent of MC-LCP GLOF model (F) highlighting the impacts downstream. Background image
(A-E) is Landsat 8 from 30 September 2015 and (F) Google Earth.

Figure S2. Hazards and downstream impact for Chamlang South Tsho: (A) avalanche trajectories,
(B) rockfall trajectories (C) ponds on the moraine, (D) future lake expansion, and (E) the extent
of MC-LCP GLOF model (F) highlighting the impacts downstream. Background image (A-E) is

5 Landsat 8 from 30 September 2015 and (F) Google Earth.

Figure S3. Hazards and downstream impact for Dig Tsho: (A) avalanche trajectories, (B) rockfall
trajectories (C) ponds on the moraine, (D) future lake expansion, and (E) the extent of MC-LCP
GLOF model (F) highlighting the impacts downstream. Background image (A-E) is Landsat 8
from 30 September 2015 and (F) Google Earth.

1

Figure S4. Hazards and downstream impact for Lower Barun Tsho: (A) avalanche trajectories
and upstream GLOF, (B) rockfall trajectories (C) ponds on the moraine, (D) future lake
expansion, and (E) the extent of MC-LCP GLOF model (F) highlighting the impacts downstream.

5 Background image (A-E) is Landsat 8 from 30 September 2015 and (F) Google Earth.

Figure S5. Hazards and downstream impact for Lumding Tsho: (A) avalanche trajectories and
upstream GLOF, (B) rockfall trajectories (C) ponds on the moraine, (D) future lake expansion,
and (E) the extent of MC-LCP GLOF model (F) highlighting the impacts downstream.
Background image (A-E) is Landsat 8 from 30 September 2015 and (F) Google Earth.

Figure S6. Hazards and downstream impact for Thulagi Tsho: (A) avalanche trajectories, (B)
rockfall trajectories (C) ponds on the moraine, (D) future lake expansion, and (E) the extent of
MC-LCP GLOF model (F) highlighting the impacts downstream. Background image (A-E) is

5 Landsat 8 from 15 November 2015 and (F) Google Earth.

Figure S7. Hazards and downstream impact for Tsho Rolpa: (A) avalanche trajectories, (B)
rockfall trajectories (C) ponds on the moraine, (D) future lake expansion, and (E) the extent of
MC-LCP GLOF model (F) highlighting the impacts downstream. Background image (A-E) is
Landsat 8 from 30 September 2015 and (F) Google Earth.