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Abstract. Temperature models that directly predict eco-
logically important thermal attributes across spatiotempo-
ral scales are still poorly developed. This study developed
an analytical method based on Fourier analysis to estimate
seasonal and diel periodicities, as well as irregularities in
stream temperature, at data-poor sites. The method extrap-
olates thermal attributes from highly resolved temperature
data at a reference site to the data-poor sites on the assump-
tion of spatial autocorrelation. We first quantified the ther-
mal attributes of a glacier-fed stream in the Swiss Alps us-
ing 2 years of hourly recorded temperature. Our approach
decomposed stream temperature into its average tempera-
ture of 3.8 ◦C, a diel periodicity of 4.9 ◦C, seasonal period-
icity spanning 7.5 ◦C, and the remaining irregularity (vari-
ance) with an average of 0.0 ◦C but spanning 9.7 ◦C. These
attributes were used to estimate thermal characteristics at up-
stream sites where temperatures were measured monthly, and
we found that a diel periodicity and the variance strongly
contributed to the variability at the sites. We evaluated the
performance of our predictive mechanism and found that our
approach can reasonably estimate periodic components and
extremes. We could also estimate the variability in irregu-
larity, which cannot be represented by other techniques that
assume a linear relationship in temperature variabilities be-
tween sites. The results confirm that spatially extrapolating
thermal attributes based on Fourier analysis can predict ther-
mal characteristics at a data-poor site. The R scripts used in
this study are available in the Supplement.

1 Introduction

Temperature is a fundamental determinant of physical and
biogeochemical patterns and processes in ecosystems. Or-
ganisms respond to temperature via different adaptations and
distinct life history strategies across various spatial and tem-
poral dimensions (Cossins and Bowler, 1987). More broadly,
global biodiversity has tracked external temperature transi-
tions over millennia (Mayhew et al., 2012). In the Anthro-
pocene, unprecedented rapid transitions in thermal regimes
owing to changes in land use and climate are a global con-
cern (IPCC, 2014). Consequently, adequate characterization
of thermal regimes is an important prerequisite for under-
standing the role of temperature in ecosystems and for eco-
logical conservation.

Thermal attributes (seasonal and diel periodicity patterns
and irregular extremes), as representations of variability,
have attracted a growing interest in recent climate-relevant
ecological studies (e.g., Thompson et al., 2013). The com-
bination of seasonal and diel periodicity cycles in temper-
ature promotes diverse behaviors and spatial distributions
of exothermic organisms according to respective life history
strategies and life cycle stages (e.g., Vannote et al., 1980).
In contrast, irregular extremes such as heatwaves can induce
physiological exposure and vulnerability (Paaijmans et al.,
2013) as well as causing abrupt shifts in biogeochemical
processes (Frank et al., 2015) and ecological assemblages
(Thompson et al., 2013). Hence, the variability in thermal
periodicities and irregular extremes need to be distinguished
from average temperatures.

In freshwaters, ecological responses to thermal regime
shifts may be less understood than in marine and terrestrial
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ecosystems (Thompson et al., 2013), even though freshwa-
ter biodiversity has experienced major decreases in recent
decades (WWF, 2014). Progress in understanding response
patterns has been delayed partially because the quantification
of thermal attributes is difficult for running waters. Physi-
cal disturbance in streams can be considerable due to peri-
odic flow pulses (Poff et al., 1997). Particularly where flashy
flows carry debris such as driftwoods or mobilize gravel
riverbeds, e.g., braided rivers, the installation of data loggers
for long-term time series monitoring can be logistically dif-
ficult. For natural floodplains acting as biodiversity hot spots
(Tockner and Stanford, 2002), frequent time series temper-
ature data (daily or sub-daily) recorded throughout a year
or longer are difficult to acquire because the floodplain mo-
saic changes frequently and dramatically (Van der Nat et al.,
2003). In these cases, researchers often rely on spot measures
of temperature or the use of reference temperature time se-
ries at stations along the streamline. Both approaches have
caveats (a lack of time series information or likely bias in the
data) when estimating the thermal attributes at a data-poor
site, thereby limiting understanding of the ecological conse-
quences in freshwaters. Estimating thermal stream attributes
using both spot measurements at study sites and time series
measures at the nearest hydrological station would likely be
a more robust approach.

There is still much room for improvement of statistical
models for stream temperature (see review in Benyahya et
al., 2007). Regression models employ correlative relation-
ships with air temperature (e.g., Pilgrim et al., 1998) and
streamflow (Webb et al., 2003), but correlative approaches
considering water temperature at a nearby hydrological sta-
tion along the streamline have not been implemented to
date. Autoregressive models take into account the autocor-
relation structure within water temperature time series data
and also the correlation with external variables (Kothandara-
man, 1971; Cluis, 1972; Long, 1972). To deal with sea-
sonally changing parameters in regression and autoregres-
sive models, periodic autoregressive models were introduced
(Benyahya et al., 2007). However, temperature patterns at
multiple temporal scales, particularly the combination of sea-
sonal and diel periodicity patterns, are still rarely considered
(Steel and Lange, 2007). Moreover, temperature models that
directly predict ecologically important thermal attributes as
response variables do not exist presently, as many models
focus solely on temperature numeric values at a given time.
Considerable error and bias in ecologically relevant attributes
can arise if they are calculated using a modeled time series
environmental condition (e.g., hydrologic indices calculated
from a simulated river discharge; Ryo et al., 2015). Directly
estimating ecologically relevant thermal attributes, therefore,
is required for reliably predicting associated ecological re-
sponses.

Fourier analysis (Fourier, 1878) is well suited for analyz-
ing combined multi-temporal patterns and predicting ther-
mal attributes. Unfortunately, the use of Fourier analysis

for assessing stream temperature patterns has slowed since
its early emergence in 1970 (Kothandaraman, 1971; Cluis,
1972; Long, 1972; but see Maheu et al., 2015). This is sur-
prising given the high potential for Fourier techniques to de-
tect and describe periodicity at multiple scales in time series
data, and water temperature data in particular. Here, we in-
vestigate the application of Fourier analysis to the assessment
of thermal patterns in running waters.

We developed an analytical method to estimating average,
seasonal, and diel periodicities in stream temperature, as well
as irregular extremes at data-poor sites (i.e., spot measures)
using Fourier analysis. We first quantified these thermal at-
tributes with 2 years of hourly recorded time series temper-
ature data from an Alpine glacial-fed stream in Val Roseg,
Switzerland (see Ward and Uehlinger (2003) for a synthesis
of research conducted in this catchment). Using those results,
we predicted thermal patterns at sites along the same stream,
where monthly spot measures of temperature were taken dur-
ing the same 2 years. We compared the performance of the
method with that of a linear regression model to underscore
the advantages.

2 Methods

2.1 Compositional variables in stream temperature

We assume that hourly stream temperature T (t) at a given
time t is composed of its long-term average value T̄ , a sea-
sonal periodicity pattern S(t), and diel periodicity pattern
D(t). The seasonal and diel periodicity patterns are driven
by meteorological (e.g., solar radiation and precipitation) and
hydrological (e.g., discharge and snowmelt/ice melt) condi-
tions. The remaining unexplained component of variance in
the temperature time series results from multiple external
factors such as sub-daily changes in weather conditions and
a week-long heat waves: we call this component an irregu-
larity ε(t). A distinctive high/low value in the irregularity in-
dicates thermal extremes that strongly disturb the periodicity
patterns in temperature. Consequently, hourly stream temper-
ature is expressed as

T (t)= T̄ + S (t)+D(t)+ ε(t). (1)

2.2 Fourier analysis for temperature decomposition

Fourier transformation converts a function of time T (t) into a
function of frequencyG(f ) by transforming time series data
into a sum of trigonometric curves. Both forward (Eq. 2) and
backward transformations (Eq. 3) are identically reversible:

G(f )=

∞∫
−∞

T (t)e−i2πf tdt, (2)
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T (t)=

∞∫
−∞

G(f )ei2πf tdf. (3)

As measured stream temperature is a discrete variable, we
used the fast Fourier transformation algorithm to perform the
transforms. The algorithm searches for a single solution to
identically explain a time series variable T (t) by summing
the trigonometric curves (ei2πf t ) of different frequency f
amplified by a corresponding spectral intensity G(f ):

G(f )=
∑N−1

t=0
T (t)e−i2πf t , (4)

T (t)=
1
N

∑N−1
t=0

G(f )ei2πf t , (5)

where N is the length of the time series (rounded to
the nearest power of 2) and equivalent to the number of
summed curves. As seen in Eq. (5), the time series variable,
hourly stream temperature T (t), is formulated with summed
trigonometric curves (with frequencies f = 0,1,2, . . .,N −
1) with magnitudes amplified by a corresponding spectral in-
tensity G(f ). Frequencies with high spectral intensities are
the most important contributors to variability of the time se-
ries. Stable patterns often dominate the variance of the time
series and result in strong spectral intensities at frequencies
close to 24 h and 1 year.

As the time series temperature T (t) is formulated by
Eqs. (1) and (5), we consider that all of the terms in Eq. (1) re-
sult from a sum of a subset of the terms in Eq. (5). Although
our intention is to explain time series temperature with the
four components above, Fourier analysis decomposes it into
N components based on a series of trigonometric curves.
Terms in Eq. (5), therefore, need to be “classified” as be-
longing to the terms in Eq. (1). The mismatch in the num-
ber of components requires summing some of the trigono-
metric curves to best represent seasonal and diel periodicity
patterns. However, it is unknown which curves at what fre-
quencies and spectral intensities are required to sufficiently
express these periodicity patterns. For selecting curves to be
summed, we considered the condition that the seasonal and
diel periodicities consist of their period lengths (inverse of
frequency, 1/f ) within the ranges of 1–365 days and 1–24 h,
respectively. Moreover, we introduced a threshold value in
spectral intensity in order to select only the dominant com-
ponents as well as to avoid mixing noise with the periodic-
ity patterns. The irregular component accounts for all fre-
quencies with a spectral intensity below the (a) threshold
value. Consequently, the shape of functions S(t) and D(t)
depends on a spectral threshold value. We set the threshold
value at 0.1 ◦C, a minimal unit of temperature measurement
in the case study system (see Sect. 2.4). The analysis was
performed using the fast Fourier transform (fft) function of
the “stats” library in R 3.1.2 (R Core Team, 2014).

2.3 Extrapolation to spot-measured temperature data

Assuming that thermal attributes are autocorrelated in space
along the river continuum, we can extrapolate time series
data from reference locations to spot-measured data at sites
along the same stream. For simplicity, we do not include ex-
ternal information (e.g., discharge and air temperature). Af-
ter decomposing the time series temperature T0 as Eq. (1)
at a reference site, the decomposed factors are used to esti-
mate temperature Ta at spot-measured site A along the same
stream network. We assume that the four temperature com-
ponents in Eq. (1) are linearly correlated between sites when
other factors (e.g., major tributary or groundwater inputs) af-
fecting stream temperature along the network are low enough
to maintain the spatial-autocorrelation temperature patterns
between sites. The temperature at site A is formulated as

Ta (t)= T̄a + Sa (t)+Da (t)+ εa(t) (6)

= β1T̄0+β2S0 (t)+β3D0 (t)+β4ε0(t)+β5, (7)

where coefficients β1−4 are the weighting parameters for
each component (> 0) and β5 is a parameter to adjust sys-
tematic bias. The following procedures are performed to esti-
mate each parameter. First, linear regression between Ta and
T0 corresponding to temperatures at the measurement time
of Ta is conducted to estimate β1 (slope) and β5 (intercept).
Second, β2 and β3 are estimated by minimizing the mean
square error value based on the linear regression between
an estimated β4ε0 = Ta−

{
β1T̄0+β2S0 (t)+β3D0 (t)+β5

}
and εa at the corresponding measurement times. Third, β4 is
numerically estimated similarly to the second step based on
Ta and the estimated Ta . Note that this approach will require
a reasonably high density of spot measurements, covering the
diel range – ideally including minimum and maximum – in
different seasons.

To highlight the benefits of the extrapolation method, we
compared the component extrapolation approach to a linear
regression model that simply extrapolates time series tem-
perature based on the linear regression between Ta and T0.
Importantly, if the coefficients β1−4 have the same value as
the slope of the linear regression and β5 is the intercept, the
Fourier approach is equivalent to the linear regression model.
The R scripts used in this study are available in the Supple-
ment.

2.4 The case study: an Alpine glacier-fed stream (Val
Roseg, Switzerland)

The method was applied in the Roseg catchment, an Alpine
valley located in the Bernina Massif of the Swiss Alps
(Fig. 1). The catchment area is 66.5 km2 and ca. 30 %
glaciated (Swiss National Hydrological and Geological Sur-
vey (OFEV); year of record 2010). Elevations range from
1766 to 4049 m a.s.l. The Roseg River is fed by meltwaters of
the Tschierva and Roseg glaciers. The Roseg glacial runoff
first drains into the pro-glacial lake Roseg before merging
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Figure 1. Location of the Val Roseg catchment in Switzerland.
Study and reference (i.e., Pontresina hydrological station) sites are
indicated by black dots and labeled A and B, and R, respectively.
Glaciers are shown as shaded areas with the pro-glacial lake shown
below the Roseg Glacier (modified from Uehlinger et al., 2003).

with the flow from the Tschierva Glacier (Fig. 1). The ther-
mal attributes of the glacial meltwaters and runoff from the
lake strongly influence the seasonal and diel periodic ther-
mal patterns in this river. Mean annual discharge at the end
of the catchment was 2.8 m3 s−1 (discharge record averaged
for 1955–2013), and daily discharge ranged from 3.3 to
19.6 m3 s−1 in July and August and from 0.2 to 2.0 m3 s−1

between November and March 2013 (OFEV). The study sys-
tem comprises (i) a long proglacial reach below the Tschierva
Glacier, exhibiting extremely low temperatures due to glacial
runoff (kryal); (ii) a single-thread channel downstream of
the confluence of the proglacial reach and the Roseg lake
outlet; (iii) a complex braided floodplain; and (iv) a con-
strained reach extending to the end of the catchment where
the Pontresina hydrological station is located (see Tockner et
al. (1997) and Uehlinger et al. (2003) for a detailed descrip-
tion).

Hourly time series temperature was recorded at a ref-
erence site, the Pontresina hydrological station (site R in
Fig. 1: 46◦29′23.6′′ N, 09◦53′53.3′′ E; 1766 m a.s.l.) in 2012
and 2013 (Fig. 2a: provided by OFEV). Spot-measured wa-
ter temperature was taken monthly at two sites, one lo-
cated within the proglacial reach (site A: 46◦24′38.3′′ N,
09◦51′31.2′′ E; 2106 m a.s.l.) and one below the lake out-
let confluence reach (site B: 46◦25′05.9′′ N, 09◦51′27.1′′ E;

Table 1. Frequency f , period 1/f , and spectral intensity G(f ) of
trigonometric curves (threshold of G(f )> 0.1) composing the fol-
lowing thermal attributes: average T̄ , seasonal periodicity pattern
S(t), and diel periodicity pattern D(t).

Attribute f 1/f G(f )

[Hz] [h] [days] [◦C]

T̄ 0 – 3.78

S(t) 2 8760 365 2.01
4 4380 183 0.11
6 2920 122 0.19

D(t) 728 24.1 1 0.27
730 24 1 0.59
732 23.9 1 0.28
734 23.9 1 0.10

1458 12.0 0.5 0.12
1460 12 0.5 0.21

2054 m a.s.l.) (Fig. 1). For both sites, stream temperature was
measured using a conductivity meter (WTW LF323, Weil-
heim, Germany) at different daily times on each visit from
April to October 2012 and 2013 (in total 14 times).

3 Results

3.1 Thermal attributes at the reference site

By converting the time series temperature data at the refer-
ence site R (Fig. 2a) to the frequency domain, we identi-
fied frequency ranges with high spectral power (Fig. 3). Nine
trigonometric curves exceeded the threshold of 0.1 ◦C (Ta-
ble 1). Based on period length (Table 1), these curves were
allocated to seasonal and diel components: three curves for
seasonal periodicity patterns (Fig. 2b) and six curves for diel
periodicity patterns (Fig. 2c). The time series temperature at
the reference site R (Fig. 2a) was thus decomposed into an
average of 3.8 ◦C, a seasonal cycle spanning 7.5 ◦C (Fig. 2b),
a diel cycle spanning 4.9 ◦C (Fig. 2c), and an irregularity
spanning 9.7 ◦C with an average of 0.0 ◦C and standard de-
viation of 0.92 ◦C (Fig. 2d). Hourly stream temperatures ex-
cluding the irregularity (i.e., T̄ + S (t)+D(t); Fig. 2e) ex-
plained 92 % of the data variability (r2), indicating a suc-
cessful decomposition of the time series data and a high re-
liability of the approach to characterize stream temperature
components at the reference site. The irregularity had a nor-
mal distribution (no inferred bias), indicating that the sea-
sonal and diel periodicity patterns were extracted accurately
from the original time series data.
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Figure 2. Hourly time series temperature at the reference site decomposed using Fourier decomposition analysis. (a) The observed record Ta
in 2012–2013 is decomposed into an average value (a), seasonal periodicity pattern Sa (b), diel periodicity patternDa (c), and the irregularity
εa (d). The comparison between the observed and measured temperature excluding εa at the reference site (e).

3.2 Estimating time series temperature for
spot-measured stream sites

Temperature at site A was approximately twofold lower than
at site B during the study period. Temperature at site A had
an average of 2.3 ◦C and spanned 0.4–4.8 ◦C; temperature at
site B had an average of 5.4 ◦C and spanned 0.8–9.2 ◦C. Tem-
peratures at site A and B were linearly correlated to tempera-
ture at the reference site R (r2

= 0.60 and 0.92, respectively;
Fig. 4). This result indicates that spatial autocorrelation of
the thermal attributes exists between them, even though a
thermal influence from the pro-glacial lake differentiates the
thermal patterns between sites A and B (Fig. 1).

For Eq. (7), the proposed method estimated
that the weighting parameters at site A (β1−4 =

{0.32,0.32,0.50,0.70}) showed higher heterogeneity in
the relative contributions of the components than those
at site B (β1−4 = {0.97,0.97,0.99,0.93}). For site A, the
relative contribution of diel variability and irregularity to the
estimated temperature (β3 = 0.50, β4 = 0.70) was higher
than the average and seasonal variability (β1 = β2 = 0.32).
This result indicates that our approach can accurately
estimate periodic components and extremes, including the
variability in irregularity that cannot be represented by linear

regression focusing on an average estimate. At site B, the
parameter composition was less variable (0.93–0.99), and
therefore the performance of the decomposition approach
was similar to the performance of the linear model. Using
the developed method, the temperature at site A was esti-
mated better than the estimated temperature using linear
regression (r2

= 0.66 and 0.60, respectively). For site B,
both approaches performed equivalently (r2

= 0.92). These
differences between sites A and B indicate that the thermal
attributes at site A are more different from the reference site
R than those at site B. The thermal attributes at site A are
not affected by a thermal effluence from the pro-glacial lake
(Fig. 1).

Based on the obtained parameters, time series tempera-
tures at sites A and B were inferred (Fig. 5). At site A, due
to relatively high contributions of diel cycles and irregular-
ities (β3 = 0.50, β4 = 0.70), higher hourly variability was
estimated by the proposed approach than the linear regres-
sion (Fig. 5a). The maximum values estimated by the pro-
posed approach and linear regression were clearly distinct
at 5.9 and 4.0 ◦C, respectively, while an average of 1.1 ◦C
was equivalent for both estimates. The linear model clearly
underestimated (< 4.0 ◦C) the high temperatures recorded at
4.4 ◦C on 30 May 2012 and 4.8 ◦C on 5 June 2013. In con-
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Figure 3. Frequency and spectral intensity of trigonometric curves
converted from the 2 years of temperature data at the reference site.
Trigonometric curves whose spectral intensity was higher than the
threshold value are found in Table 1.

Figure 4. Linear regression of stream temperature at site A and B
with the reference site temperature R.

trast, the proposed approach inferred a possibility of tem-
perature reaching 5.9 ◦C, having a 97.5 % percentile value
of 4.0 ◦C. This difference between approaches indicates the
ability of the proposed approach to estimate extreme thermal
pulses and their occurrence probability.

Figure 5. Hourly stream temperatures estimated using Fourier de-
composition (red) and linear regression (purple) at site A and B
(plots (a) and (b), respectively) and temperature at the reference
site (grey). Horizontal red line represents the maximum tempera-
ture recorded from the monthly spot measures (4.8 ◦C on 5 June
2013 at site A, and 7.9 ◦C on 9 July 2013 at site B).

4 Discussion

Currently, no stream temperature models explicitly predict
ecologically important thermal attributes (seasonal and diel
periodicity patterns and irregular extremes) because of the
difficulty in capturing the combined patterns at multiple tem-
poral scales in stream environments (Benyahya et al., 2007).
This study developed a regression approach that predicts
these thermal attributes at data-poor sites based on the pre-
analysis of time series temperature data at a data-rich ref-
erence site along the stream. The method merges a Fourier
transformation technique into a linear regression model to
better represent periodic patterns at multiple temporal scales.
The approach could estimate the relative composition of ther-
mal attributes from a limited number of spot-measured data
(see Eq. 7), while linear regression weighted the composi-
tion equally. The results emphasized the significance of de-
veloping further ecologically based thermal prediction mod-
els, aiming at deeper understandings in ecological responses
to thermal attributes (Paaijmans et al., 2013; Thompson et
al., 2013; Frank et al., 2015).

The developed prediction method confirmed its potential
to evaluate the relative contribution of thermal attributes at
a data-poor site. The method is somewhat comparable with
multiple linear regressions (Y = β0+β1X1+ . . .) in terms of
the assumption that the thermal attributes are independent of
each other and autocorrelated between sites, and their relative
contributions change according to location. The unique dif-
ference is that the developed method can directly use the pe-
riodicity patterns and irregularities for prediction as Eq. (7).
This type of model was not addressed in a recent review on
temperature models (Benyahya et al., 2007). As the statisti-
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cal expression of our approach is linear (Eqs. 1 and 6), it can
be easily coupled with approaches in the review; i.e., using
other regression models employing air temperature (e.g., Pil-
grim et al., 1998) and streamflow (Webb et al., 2003). Adding
such information has the potential to increase accuracy, espe-
cially if these factors contain unique information that is un-
explained by the spatial correlation of water temperature be-
tween sites. For example, if discharge represents a volume of
snowmelt water that can influence the correlative relationship
of water temperature between sites, inclusion of discharge
into the model’s structure would increase accuracy.

The advantage of Fourier decomposition analysis at mul-
tiple temporal scales is the ability to evaluate the possible
range maxima for each thermal attribute of time series data
(Fig. 2). Fourier analysis clearly detected strong periodicity
patterns in time series temperature data (Fig. 3) and repre-
sented them with a small number of trigonometric curves
(Table 1). By doing so, we found that the irregularity had a
broader range (9.7 ◦C) than the spanning ranges of seasonal
and diel periodicity patterns (7.5 and 4.9 ◦C, respectively) at
the study stream. This high irregularity may be an important
thermal attribute in glacier-fed streams. Further, our results
clearly showed that seasonal trends existed in the amplitudes
of diel periodicities and irregularities, both having lower vari-
ability in winter and greater variability in spring (Fig. 2c, d)
(Hopkins, 1971). Importantly, these characteristics are dif-
ficult to detect without coupling the periodicity patterns at
multiple temporal scales. By decomposing the time series
temperature data at the reference site as a pre-analysis for
prediction, this decomposition method (see Sects. 2.1 and
2.2) can be useful for quantifying thermal attributes in eco-
logical studies.

The proposed method is highly promising towards eval-
uating potential changes in thermal variability due to cli-
mate change or anthropogenic thermal effluents in rivers and
streams (Caissie, 2006; Webb et al., 2008). For instance, en-
vironmental change could modify each component of stream
temperature with a different degree of severity such as in-
creasing the average, shifting the peak timing in seasonality,
reducing diel variability, or amplifying the irregularity. In ad-
dition, as thermal regimes play a key role in aquatic ecosys-
tem structure and functioning (e.g., environmental niches de-
termining community composition, biogeochemical cycles;
Vannote et al., 1980), each component of stream temperature
can be used to better understand ecosystem dynamics and re-
sponses (Thompson et al., 2013).

While demonstrating the broad applicability of this ap-
proach, we caution over some of its limitations. First, the
analysis connecting Eqs. (1) and (7) is threshold dependent.
We first estimated an appropriate range of threshold value vi-
sually so as to capture a handful of trigonometric curves (i.e.,
the three major peaks were shown in Fig. 3). Then, we com-
pared the patterns modeled based on some threshold values.
Too-low threshold value results in high sensitivity to noise,
while too-high threshold value results in high insensitivity

to periodic patterns. We compared the performance of the
models based on a set of threshold values (0.05, 0.1, 0.2 ◦C,
etc.) and determined the threshold graphically as the value
0.1 ◦C clearly separated periodicity patterns and irregulari-
ties (Fig. S1; Supplement). Therefore, a threshold value must
be carefully chosen, and it needs to be evaluated whether the
irregularity attribute is unbiased. Second, although the con-
cept is feasible, complete validation was limited due to the
low number of sample sites. To obtain more robust estima-
tion, the model needs additional validation as well as cali-
bration. Third, if a systematic shift in thermal pattern is ob-
served during a target period, the method needs adjustment.
Our target 2-year period was short enough to neglect long-
term trends in temperature. For example, some studies us-
ing long-term records (> 20 years) detected an interannual
increasing trend in mean temperature due to anthropogenic
thermal discharge and land-use change (Beschta and Taylor,
1988; Hostetler, 1991). In such cases, the proposed equation
in Eq. (1) must be modified because it assumes constant av-
erage temperature over a target period for analysis; i.e., T̄
should be a function of time as T̄ (t). Lastly, the assump-
tion of linearly related components between the reference site
and other sites is not always met in all cases. For instance,
glacier-fed and groundwater-fed streams can be composed of
different seasonal and diel periodicity patterns (Brown and
Hannah, 2008). In our target system, flow from the Roseg
pro-glacial lake differentiated thermal patterns of sites A and
B (Fig. 1). Even though our analysis confirmed that the linear
assumption was apparent in this system (r2

= 0.60; Fig. 4),
incorporation of the thermal pattern at the lake outlet into the
analysis would certainly increase estimation accuracy.

The Supplement related to this article is available online
at doi:10.5194/hess-20-3411-2016-supplement.
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