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Abstract. Application of digital terrain analysis (DTA),
which is typically a modeling process involving workflow
building, relies heavily on DTA domain knowledge of the
match between the algorithm (and its parameter settings) and
the application context (including the target task, the terrain
in the study area, the DEM resolution, etc.), which is re-
ferred to as application-context knowledge. However, exist-
ing DTA-assisted tools often cannot use application-context
knowledge because this type of DTA knowledge has not
been formalized to be available for inference in these tools.
This situation makes the DTA workflow-building process
difficult for users, especially non-expert users. This paper
proposes a case-based formalization for DTA application-
context knowledge and a corresponding case-based reason-
ing method. A case in this context consists of a series of
indices that formalize the DTA application-context knowl-
edge and the corresponding similarity calculation methods
for case-based reasoning. A preliminary experiment to de-
termine the catchment area threshold for extracting drainage
networks has been conducted to evaluate the performance
of the proposed method. In the experiment, 124 cases of
drainage network extraction (50 for evaluation and 74 for rea-
soning) were prepared from peer-reviewed journal articles.
Preliminary evaluation shows that the proposed case-based
method is a suitable way to use DTA application-context

knowledge to achieve a marked reduction in the modeling
burden for users.

1 Introduction

Digital terrain analysis (DTA) is a useful approach to extract-
ing topographic attributes and features from digital elevation
model (DEM) and has been widely used in geography and re-
lated fields (Wilson, 2012). More and more users, including
many with little knowledge of DTA, are becoming involved
in DTA applications. Use of DTA is typically a non-trivial,
workflow-building process consisting of organizing the vari-
ous DTA tasks and specifying the algorithm (including pa-
rameter settings) for each task (Hengl and Reuter, 2009).
This process relies heavily on knowledge of DTA workflow
building.

Knowledge used during DTA workflow building can be
classified into three types (Qin et al., 2011): (1) task knowl-
edge, which describes the relationship between DTA tasks
and their input/output; (2) algorithm knowledge, which is the
metadata of a DTA algorithm (including its parameters), such
as the data type of input/output file, the number of parame-
ters, and the valid range for each parameter; and (3) the so-
called application-context knowledge consisting of how to
specify the suitable algorithm and its parameter settings for
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a DTA task according to the application context (such as ap-
plication goals, study area characteristics, and DEM resolu-
tion) (Qin et al., 2013). This knowledge is called application-
matching knowledge in Lu et al. (2012). The best way to de-
termine the optimal algorithm and its parameter settings for
a specific application should be the evaluation based on the
field data. However, those field data might not be easy to ob-
tain at the beginning of the modeling, and the evaluation pro-
cess is often complicated for those non-expert users. Thus,
the application-context knowledge is crucial for building a
reasonable DTA model for a specific application.

Among the three types of DTA knowledge, both task
knowledge and algorithm knowledge have been formalized
by means of rule or semantic networks (Russell and Norvig,
2009) and hence can be used in existing DTA-assisted tools,
which include general purpose GIS packages with DTA func-
tionality (“Spatial Analyst“ toolbar in ArcGIS, r.∗ modules
in GRASS, “Terrain Analysis“ menu in SAGA, etc.) and
domain-specific software (Whitebox, TauDEM, etc.) (Hengl
and Reuter, 2009). For example, by using these two types of
DTA knowledge, the ModelBuilder module in ArcGIS can
aid connecting a set of DTA algorithms to be an executable
DTA workflow in an interactive visual way.

The application-context knowledge, which is crucial for
building a suitable DTA model for a specific application, is
more difficult to acquire than the other two types of knowl-
edge. Currently, there is no well-established formalization
method for application-context knowledge. Existing DTA-
assisted tools consequently cannot use this type of knowl-
edge to provide more effective support to DTA application
modeling process (Qin et al., 2011). It is therefore difficult
for users, especially those with little knowledge of DTA,
to use DTA correctly and effectively. This situation exists
mainly because this type of DTA knowledge is largely non-
systematic and tacit knowledge, and often exists only in doc-
uments for specific case studies (DTA application instances)
or even just in the experience of domain experts.

To solve this problem, this paper proposes a case-
based formalization for DTA case studies involving DTA
application-context knowledge and a corresponding case-
based reasoning method. A DTA-assisted tool can then use
this type of knowledge to reduce the difficulty of DTA appli-
cation modeling.

2 Basic idea

Cases are a commonly used way of formalizing non-
systematic knowledge in artificial intelligence. A case is a
record of an existing problem-solving instance and its con-
textual information, which has two requisite parts: the prob-
lem and the solution (Kaster et al., 2005). The problem de-
scribes the application purpose of the case and its contextual
information. The solution is a set of methods (including their
parameter settings) for achieving this purpose. Note that the

case is not the same as the concept of a prototype (Minda
and Smith, 2001), which can also use existing instances to
describe empirical knowledge and has been applied in the ge-
ographical domain (e.g., Qi et al., 2006; Qin et al., 2009). The
prototype highlights the representativeness of the instances,
whereas the case does not. Currently, most DTA application-
context knowledge is empirical knowledge that often exists
in application instances and is difficult to formalize as ex-
plicit rules or mathematical equations. In this situation, the
case is a suitable way to formalize DTA application-context
knowledge (Lu et al., 2012).

Case-based reasoning (CBR) (Schank, 1983) is a method
of solving problems by referring the solution of a new prob-
lem to the solutions of existing similar cases (Aamodt and
Plaza, 1994; Watson and Marir, 1994). Compared with tra-
ditional rule-based knowledge representation and reasoning
methods, the case-based method transforms knowledge ac-
quisition into case acquisition, with no need for an explicit
expression of domain knowledge (Watson and Marir, 1994).
Therefore, the case-based method is suitable for application
domains that lack a systematic expression of empirical do-
main knowledge. A case-based reasoning method could be
designed to use DTA application cases to reduce the dif-
ficulty of DTA application modeling for users (Qin et al.,
2015).

3 Methodology

According to the basic idea presented above, a case-based
formalization methodology is designed for DTA application
instances containing application-context knowledge and the
corresponding inferences (Fig. 1). Case formalization and
the corresponding case-based reasoning method are the two
main stages in the methodology.

3.1 Case formalization

Case formalization is the process of extracting and describ-
ing each individual case in a formal way, so that the case
can be retrieved by a corresponding case-based reasoning
method. Among the parts of a case, the case problem con-
sists of a set of factors describing the contextual information
associated with the case. This set of factors is quantified us-
ing a set of quantitative attributes that are directly involved
in case-based reasoning. It is of crucial importance to design
and quantify these factors properly for case-based reasoning.
The solution part of a case records the problem’s solution
used for this case, which could be provided as the result of
the case-based reasoning and does not participate in the rea-
soning procedure. The case output is an optional part of the
description that is used to record the status of factors de-
scribing the case problem after the case occurred (Kolodner,
1993). Therefore, the key to designing a case-based formal-
ization of DTA application-context knowledge is choosing
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Table 1. General composition of DTA application-context knowledge in a case-based formalization.

Part of case Composition of DTA application-context knowledge

Case problem

Application purpose
Data characteristics (spatial resolution, data source, etc.)
Study area characteristics (location, area, terrain condition, other
environmental conditions)

Case solution DTA algorithm used and its parameter settings

Case output (optional) (not considered in the current DTA application)

Figure 1. Structure of the case-based formalization and reasoning
method for DTA application-context knowledge.

and quantifying a set of factors influencing DTA algorithm
selection and parameter setting to describe the case problem
appropriately.

According to the characteristics of DTA application mod-
eling, the case problem can be described based on three
groups of factors that influence DTA algorithm selection
and parameter setting (Table 1): application purpose, data
characteristics, and study area characteristics. For example,
a single-flow-direction algorithm (e.g., the classic D8 al-
gorithm) is suitable for deriving flow accumulation from a
SRTM DEM (with a resolution of 90 m) for drainage net-
work extraction in high-relief areas, whereas a multiple-flow-
direction algorithm should be used with a 10 m DEM created
from a contour map for estimating detailed spatial distribu-
tion of flow accumulation and other related regional topo-
graphic attributes (such as topographic wetness index) in a
low-relief area. In this example, the choice between a single-
flow-direction algorithm and a multiple-flow-direction algo-
rithm is influenced by the application purpose (i.e., the DTA

task of drainage network extraction or deriving the spatial
distribution of regional topographic attributes), data char-
acteristics (i.e., a SRTM DEM with 90 m resolution or a
contour-originated DEM with fine resolution), and study area
characteristics (mainly terrain condition, e.g., high or low re-
lief). This example shows the typical content of application-
context knowledge in DTA application modeling.

Among these three groups of factors, the application pur-
pose can be formalized by an enumeration-type variable.
Data characteristics can be mainly described by the spatial
resolution of the DEM, the type of data source, etc. In par-
ticular, the spatial resolution, which is often indicated by the
grid-cell size for the widely used grid-based DTA, is the most
important factor among the data characteristics. The group
of factors describing the study area characteristics related to
DTA application-context knowledge could include location,
area, terrain condition, and other environmental conditions
(such as climate, geology, etc.). Generally, terrain condition
in a study area comprehensively reflects the influence of all
geographical processes on the landforms in the area. This
means that terrain condition might be one of the most im-
portant factors influencing the DTA algorithm selection and
parameter settings. Because of its comprehensiveness, the
terrain condition factor should be quantified by multiple at-
tributes during case-based formalization of DTA application-
context knowledge. Different designs of the quantitative at-
tributes will result in different case-based methods.

In a case-based formalization of DTA application-context
knowledge, the solution part of a case can be formalized
by recording the name of the DTA algorithm and the corre-
sponding parameter values used in this case, which is much
simpler than describing the case problem. The output part
of a case, which is optional in the case-based formalization
(Kolodner, 1993), is set to be null because normally there is
no change in the application context of a DTA application
problem when the solution of this case is applied to the ap-
plication problem.

3.2 Case-based reasoning method

Case-based reasoning is based on the principle that solutions
for similar problems are often similar, even identical. There-
fore, a new DTA application problem can be formalized in
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the same way as the case problem part in a prepared DTA
case base and then be used in case-based reasoning by cal-
culating the similarity between this new application problem
and the problem part of each case in the case base. The so-
lution of the case with the highest similarity (i.e., the most
similar application context considered) is retrieved as the so-
lution for the new DTA application problem. Note that in
the conceptual framework of a case-based reasoning method,
the solution of the retrieved case with the highest similarity
might be further revised to adapt to the new application prob-
lem when the final solution for the new application problem
is retained in the case base (Watson and Marir, 1994). How-
ever, the method developed in this preliminary study cur-
rently considers neither the revision nor the retention pro-
cess.

Calculating the similarity between a new DTA application
problem in case format and the problem part of each case in
the DTA case base consists of the following two steps:

– Step 1 requires calculating the similarity of each indi-
vidual attribute between the new application problem
and the problem description of an existing case. As
usual, the range of the similarity value is [0, 1]; the
larger the value, the more similar are the two cases. As
mentioned above, the attributes used to formalize the
problem part of a DTA application case may have differ-
ent value types, such as enumeration type (e.g., applica-
tion purpose), single-value type (e.g., spatial resolution
and area), or even a frequency distribution (e.g., hyp-
sometric curve). For each attribute, a similarity func-
tion should be designed correspondingly to quantify the
deviation on this attribute between the new application
problem and an existing case. The design is generated in
an empirical way and should match the domain knowl-
edge.

– Step 2 involves synthesizing the similarity values for ev-
ery individual attribute to calculate the overall similarity
between the new application problem and the problem
description of an existing case. In the geographical do-
main, a minimum operator based on the limiting factor
principle is often used to synthesize similarity values
on multiple attributes (Zhu and Band, 1994; Qin et al.,
2009). Other synthesis means such as weighted average
could also be considered.

4 Design of a detailed method

In this section, the methodology presented in the previous
section is concretized by designing a detailed case-based for-
malization method for DTA application instances containing
application-context knowledge and the corresponding infer-
ences. The key issue in method design is designing a set of
quantitative attributes describing the case problem and the
similarity function on each individual attribute. Because the

gridded DEM is widely used in practical applications, this
method is designed mainly for grid-based DTA, although
the methodology is available for both grid- and vector-based
DTA.

4.1 Selection of attributes

The set of quantitative attributes should be designed to ef-
fectively reflect the contextual information related to DTA
application modeling, and be fit for the case-based reasoning
to follow. The purpose of a DTA application case is naturally
described by an enumeration-type attribute, i.e., the name of
the target task. Here, cell size has been chosen as the attribute
to quantify the data characteristics of a DTA application case
(Table 2); other potential factors (such as type of data source)
for describing data characteristics are not currently consid-
ered.

To describe the study area characteristics of a DTA appli-
cation case, the area and the terrain condition of the case are
considered in the current method (Table 2). Like cell size,
area is an attribute with a single numeric value. Terrain con-
dition is an important and comprehensive factor indicating
the difference in study area characteristics between a new
DTA application problem and an existing case.

In this study, the three following attributes were designed
to describe the terrain condition factor empirically (Table 2):

1. Total relief attribute, which is calculated as the maxi-
mum minus minimum elevation within the study area,
is a commonly used value to describe the overall terrain
condition of a study area.

2. Slope distribution provides information on the propor-
tions of different intensities of local relief in the area,
which cannot be described by the total relief in the over-
all area and is useful for judging the reasonableness of
a DTA algorithm selection and its parameter settings.
To describe in detail the slope distribution in a study
area, we quantified it by an elevation–slope frequency
distribution. For this purpose, the slope gradient was di-
vided into seven classes: 0–3, 3–8, 8–15, 15–25, 25–35,
35–45, and 45–90◦ (Tang and Song, 2006). According
to the total relief within the study area, the elevation
within the study area was classified into 1 of 10 ele-
vation classes with equal elevation step. The elevation–
slope frequency distribution obtained in this way is a
two-dimensional table with 10 elevation class× 7 slope
class data items. Considering that the DEM resolution
has a strong influence on calculating the slope gra-
dient and its frequency distribution (Chang and Tsai,
1991; Grohmann, 2015), an elevation–slope cumula-
tive frequency distribution was used here instead of
the elevation–slope frequency distribution to provide a
quantitative description that reduces the DEM resolu-
tion effect. The elevation–slope cumulative frequency in
each elevation class is calculated by accumulating the
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Table 2. Attributes used in this study to formalize the case problem and the corresponding similarity functions for case-based reasoning
using DTA application-context knowledge.

DTA application context

Factor group Factor Attribute Similarity function

Application Target task Name of target
Boolean function

purpose type task

Data Spatial
Cell size (m) Si = 2−(2|lgRnew−lgRi |)

0.5

characteristics resolution

Area Area (km2) Si = 2−(|lgAreanew−lgAreai |/1.5)0.5

Total relief (m)
Si = 1− S′

i
/max(8848−Reliefnew,Reliefnew)

S′
i
= |Reliefnew−Reliefi |

Elevation–slope

Si =
Intersect(RlfSlpnew,RlfSlpi)
Union(RlfSlpnew,RlfSlpi)

cumulative
Characteristics frequency
of study area Terrain distribution

condition (describing
slope
distribution)

Hypsometric
curve
(quantifying Si = 1− S′

i
/max(1−HInew,HInew)

the landscape S′
i
= |HInew−HIi|

development
stage)

Note: Si is the similarity (value range: [0, 1]) of an individual attribute between a new application problem and the ith case; Rnew
and Ri are the DEM resolutions (m) of the new application problem and the ith case, respectively; Areanew and Areai are the
areas (km2) of the new application problem and the ith case, respectively; Reliefnew and Reliefi are the total relief (m) of the new
application problem and the ith case, respectively; RlfSlpnew and RlfSlpi are the histograms of the elevation–slope cumulative
frequency distributions of the new application problem and the ith case, respectively; and HInew and HIi are the hypsometric
integrals of the new application problem and the ith case, respectively.

number of cells within each slope gradient class from
low to high class in this elevation class. Note that the
10-class division of elevation considers only the rela-
tive relationship among the elevation classes inside the
study area. The elevation class might consist of a dis-
tinct elevation step for a study area, in which case the
total relief of the study area would be ignored for this
attribute. This proposed design appears to be not only a
convenient way to automate similarity calculations in
case-based reasoning but also reasonable because the
total relief attribute reflects the total relief information
throughout the study area.

3. Landscape development stage for the study area, which
can provide information on the geomorphic processes
(mainly hydrological erosion process) affecting terrain
conditions in a study area (often a watershed). This in-
formation is useful for judging the reasonableness of
a choice of DTA algorithm and its parameter settings
related to hydrological and erosion processes. In this
study, the hypsometric curve (Strahler, 1952), which is
normally used to analyze the landscape development

stage of river basins, was used as an attribute to quantify
this information.

In the proposed method, location is not used as a study area
characteristic. This decision was made because the influence
of the study area location in DTA application-context knowl-
edge could be reflected by the terrain condition of the study
area, which directly impacts the choice of DTA algorithm
and parameter settings and has already been considered in
the method. For similar reasons and for the sake of brevity,
in the proposed method, environmental conditions other than
terrain condition are not considered.

Table 2 lists the attributes used to formalize a case problem
in this method.

4.2 Similarity function on each individual attribute

The design of the similarity function for an individual at-
tribute should be compatible with the value type of the at-
tribute and in accord with domain knowledge regarding the
level of similarity due to the difference in the attribute value
between the new application problem and an existing case.
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Currently, the similarity function on individual attribute is
designed to be with a simpler form before more detailed re-
search could be conducted to improve it. For an attribute of
the enumeration type, its similarity value between a new ap-
plication problem and an existing case can be calculated by
a Boolean function (Fig. 2a). When the attribute values are
matched, the similarity value is 1, otherwise it is 0.

For an attribute of the single-numeric-value type, two
commonly used kinds of basic similarity function are con-
sidered in this study: the linear function and the bell-shaped
function (Fig. 2). Both kinds of similarity function are in ac-
cord with common sense in that the similarity is 1 for the
minimum difference (i.e., zero) of attribute value, and the
greater the difference in attribute value, the lower the sim-
ilarity is. With the linear function, the similarity value is
set to 0 or 1 when the absolute difference of the attribute
between a new application problem and an existing case
reaches its maximum or minimum value. The similarity can
be calculated for other difference values by linear interpo-
lation (Fig. 2b). The similarity function based on a linear
function fits the specification that the maximum difference
in attribute values can be preset.

With the bell-shaped function, the maximum difference in
attribute values is not easy to preset and does not need to
be. A simplified version of the commonly used bell-shaped
function (Shi et al., 2005; Qin et al., 2009; Fig. 2c) is

S = e−0.693×(|vnew−vcase|/w)0.5
, (1)

where S is the similarity between a new application problem
and an existing case; vnew and vcase are attribute values of
the new application problem and the existing case, respec-
tively; and w is the shape-adjusting parameter of the func-
tion. When the difference between vnew and vcase is equal
to w, the similarity S= 0.5 (Fig. 2c). Some sort of numerical
transformation on the attribute value could be necessary for
the similarity calculation to yield a reasonable reflection of
the similarity level due to differences in the attribute.

For an attribute of a more complex type (such as a fre-
quency distribution), a quantitative index should be designed
to quantify the difference in an attribute between a new appli-
cation problem and an existing case. Then the similarity on
this attribute can be calculated based on this index, similarly
to the single-numeric-value type.

Based on these kinds of basic similarity functions, similar-
ity functions for each individual attribute used for case-based
reasoning in this paper were designed as shown in Table 2.
The following discussion introduces them one by one.

4.2.1 Name of target task

The name of the target task is an attribute of the enumeration
type. The similarity value for this attribute between a new ap-
plication problem and an existing case can be calculated by a
Boolean function. When the names of two target tasks match,
the similarity value is 1; otherwise, it is 0. This is a strict limit

Figure 2. Basic kinds of similarity function: (a) Boolean function;
(b) linear function; (c) bell-shaped function.

which prevents the proposed method from determining a case
to be the solution case for a new application problem with a
totally different task. Although this limit could be relaxed
by developing more complicated classification of DTA target
task (such as hierarchical classification or fuzzy classifica-
tion), currently the boolean function is applied in a cautious
manner.

4.2.2 Cell size

Note that the numerical difference in cell size cannot well re-
flect the level of similarity between DTA applications. Taking
an application with 10 m resolution as example, another ap-
plication with a coarser resolution of 25 m is comparable to
it from a cell-size perspective, while a finer resolution with
same numerical difference does not exist because it cannot
be with less than or equal to 0 m.

The difference in the logarithmic value of cell size can bet-
ter reflect the level of similarity between DTA applications
than the numerical difference in cell size. The greater the
difference in the logarithm of cell size, the lower the sim-
ilarity is. According to this knowledge, a base-10 logarith-
mic transformation was applied to the cell size during the
similarity calculations for balancing the decrease of similar-
ity value for those situations with a coarser resolution or a
finer resolution. Because it is not easy to preset the maxi-
mum of the attribute value after logarithmic transformation,
the bell-shaped function based on Eq. (1) was used to calcu-
late similarity for cell size. Furthermore, w in Eq. (1) is set
to 0.5, which means that the similarity in cell size between a
new application problem and an existing case will decrease
to 0.5 when their difference in cell size reaches 1 order of
magnitude (e.g., 1 m vs. 10 m, or vice versa). The similarity
function used in the proposed method for cell size is shown
in Table 2.

Note that the similarity value of cell size by such a sim-
ilarity function will rapidly decrease to be about 0.58 when
the resolution is coarsened to be double the resolution of a
case or is refined to be a half of the case’s resolution. The
lower similarity value will deny the corresponding case to
be a credible solution provider for the new application prob-
lem. This means that the proposed method does not suggest a
large-step downscaling and upscaling application of existing
cases.
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4.2.3 Area

Like cell size, area of a study site is also an attribute of
the single-numeric-value type. The greater the difference in
magnitude between two areas, the lower their similarity is on
area. Similarly to the design for the cell-size attribute, a base-
10 logarithmic transformation is applied to the area attribute
and then the similarity function for this attribute is designed
based on the bell-shaped function. The w in Eq. (1) has been
set to 1.5 for the area attribute by trial and error (see Table 2).

4.2.4 Total relief

The greater the difference in total relief value between a new
application problem and an existing case, the lower the simi-
larity is. The maximum difference in total relief between two
DTA application areas can be preset due to the geometric na-
ture of the Earth. Hence, the similarity function for the total
relief attribute was designed as a linear function using the
absolute difference between the total relief of the new DTA
application problem and that of existing case. Corresponding
to a 0 similarity value, the maximum difference between two
total relief values is the larger of the total relief differences
between the new application problem values and each of two
extreme cases (a flat area with a total relief of 0, and an area
with relief from the 8848 m of Mount Everest to sea level).
The similarity function used in this method for the total relief
attribute is shown in Table 2.

4.2.5 Elevation–slope cumulative frequency
distribution (describing the slope distribution)

The elevation–slope cumulative frequency distribution is a
two-dimensional table with 10 class× 7 class data items.
This two-dimensional table can be viewed as a DEM having
a volume with a constant projected area. The greater the over-
lap in volume between the distribution of a new application
problem and that of an existing case, the higher the similarity
is. Therefore, the similarity function for the elevation–slope
cumulative frequency distribution was designed as the ratio
of the intersection volume to the union volume between two
distributions (Table 2).

4.2.6 Hypsometric curve (describing the landscape
development stage)

The hypsometric curve is often summarized as a single
numeric value, the hypsometric integral (HI, with a value
range of [0, 1]), which can be used to classify landscape
development into three stages: youth (HI > 0.6), maturity
(0.35 < HI < 0.6), and old age (HI < 0.35) (Strahler, 1952).
The HI was used to design a similarity function for the hyp-
sometric curve between a new application problem and an
existing case. Similarly to that of the total relief attribute,
it is a linear function using the absolute difference of their
HI values. When the absolute difference in HI is 0, the corre-

sponding similarity is 1. The similarity is 0 for the maximum
possible deviation from the HI of the new application prob-
lem (see Table 2).

4.3 Calculation of the overall similarity

The overall similarity between a new application problem
and an existing case is calculated as the minimum of all sim-
ilarity values for every individual attribute between the new
application problem and the existing case. The use of a min-
imum operator means synthesizing the similarity values on
every attribute in a cautious manner. On the one hand, the
overall similarity result by these means is lower (i.e., higher
uncertainty of reasoning result) than those from other syn-
thesis means such as weighted average. On the other hand, a
case with a low similarity value for any individual attribute
will not get a higher overall similarity result by the minimum
operator. This can prevent the proposed method from some
unreasonable performance. For example, two cases with sim-
ilar values of total relief and very different area sizes will
have a low overall similarity, because of their low similar-
ity on the area attribute and the overall similarity calculation
by the minimum operator. This means that these two cases
would not be credible solution provider for each other, which
is reasonable. Another example is that because of using the
minimum operator, a low similarity of cell size between two
cases will prevent a fake high similarity on an attribute due to
the DEM resolution effect (such as the attribute of elevation–
slope cumulative frequency distribution) driving the overall
similarity up. Therefore, the overall similarity calculation by
a minimum operator should be more effective than that by a
weighted-average operator.

5 Experiment

5.1 Experimental design

The extraction of a drainage network, one of the most impor-
tant DTA applications, was taken as an example to evaluate
the proposed method. The commonly used workflow of river
network extraction based on a gridded DEM includes the fol-
lowing three DTA tasks in sequence: (1) preparing a DEM by
filling in the artificial pits and removing absolutely flat areas;
(2) using a flow direction algorithm to derive the spatial dis-
tribution of flow accumulation; and (3) setting a catchment
area (CA) threshold to extract those positions with a flow ac-
cumulation larger than the CA threshold to be the drainage
network. Although there are some variants of this workflow
based on new algorithms (e.g., Metz et al., 2011), it does not
influence the following experimental design for evaluating
the proposed method.

In this DTA workflow, proper selection of the DTA al-
gorithms (such as the DEM preparation algorithm and the
flow direction algorithm) and parameter values (e.g., the
CA threshold) is based on DTA application-context knowl-
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Figure 3. Spatial distribution of the cases used in this study (the box in the map shows an example of a formalized case).

edge. In many geographical information systems (such as
ArcGIS), the DTA algorithm used for drainage network ex-
traction has often been set to a default selection (e.g., the
D8 algorithm as the default flow direction algorithm) in such
a way that the user cannot choose the DTA algorithm. The
CA threshold is an empirical parameter which varies with the
study area characteristics and affects the extraction results
directly. Current DTA-assisted tools often leave the choice
of CA threshold for drainage network extraction to the user.
However, it is difficult for users, especially non-expert users,
to determine the appropriate threshold for their applications.

Therefore, this experiment was designed to focus on us-
ing the proposed method to determine the CA threshold for
drainage network extraction. This means that the cases used
in this experiment have the same name as the target task, i.e.,
drainage network extraction. The core of the solution part of
the cases is the parameter value, i.e., the CA threshold. Al-
though this experiment is somewhat simplified, we believe
that it can evaluate the proposed method as effectively as an
experiment with a more complex design.

5.1.1 Preparation of a case base

The case base prepared for this experiment includes
124 cases of drainage network extraction (Fig. 3). Each case
originated from a peer-reviewed article related to the tar-
get task that was recently published in mainstream jour-
nals of related domains (such as Water Resources Research,
Hydrology and Earth System Sciences, Hydrological Pro-
cesses, Computers & Geosciences, and Advances in Water
Resources; see the Supplement for the list of the articles used
for cases). These articles were manually selected to be as reli-
able as possible. They are supposed to provide good solutions
(might not be optimal) for their specific study areas based on
experts’ experience and knowledge of the target task. When

a single-flow-direction algorithm (such as D8 algorithm) was
adopted by most of these articles (a few articles did not state
clearly the flow direction algorithm used), the CA threshold
values adopted in these articles were highly varied (about
10−3–103 km2).

Each case was manually prepared from a journal article.
The main work involved in preparing the case problem was
to specify each attribute of the study area, whereas the work
involved in preparing the case solution focused on recording
the CA threshold used in the article. Normally, the cell size
used is clearly stated in the article and can be filled in as the
corresponding case attribute. However, this is often not true
for other attributes. Given the study area of a case, an au-
tomatic program was applied to a free DEM data set of the
study area (mainly an SRTM DEM with a resolution of 90 m
and an ASTER GDEM with a resolution of 30 m) to derive
the other attributes (such as area, total relief, elevation–slope
cumulative frequency distribution, and hypsometric curve)
for each case. Original DEM adopted in some articles has
a finer resolution than that of ASTER GDEM (i.e., 30 m; see
the Supplement). However, those DEMs are often not easy to
collect. This experiment used open DEM data to derive above
case attributes and to make each of these attributes compara-
ble between different cases.

For the solution part of each case, the CA threshold
given explicitly in each article was recorded directly. If the
CA threshold was shown only implicitly in the drainage net-
work figure in an article, it was determined based on visual
comparison between the drainage network given in the arti-
cle and those extracted from the DEMs used to prepare other
attributes of this case using trial and error.
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5.1.2 Evaluation method

Among the 124 cases in the case base, 50 cases randomly
selected were used as independent evaluation cases, which
were assumed to be new application problems without a so-
lution and were solved by the reasoning method proposed.
The other 74 cases were set aside as the case base to be used
by the proposed case-based reasoning method.

To perform a quantitative evaluation of the highly var-
ied CA threshold results from the proposed method on the
50 evaluation cases, an index was used, specifically the rela-
tive deviation of river density (E):

E =
|RiverDensityreason

−RiverDensityorigin
|

RiverDensityorigin , (2)

where RiverDensityorigin and RiverDensityreason are the river
density values of a new application problem (i.e., an
evaluation case), obtained, respectively, from the original
CA threshold and the CA threshold solution obtained from
the 74-case base by the proposed reasoning method. E is
the relative deviation in river density for the evaluation case.
The smaller the value of E, the more reasonable the re-
sult obtained is for the evaluation case using the proposed
method. Four deviation levels of E were established empiri-
cally, i.e., E ∈ [0, 0.1), E ∈ [0.1, 0.25), E ∈ [0.25, 0.5), and
E ∈ [0.5, +∞). Then the relationship between E and the
similarity value of the solution case to the evaluation case
was analyzed to discuss the performance of the proposed
method. Representative cases were also selected to discuss
the reasonableness of its similarity result obtained using the
proposed method.

In this experiment, we also tested the effect of calculating
the overall similarity by a simple average operator instead
of the minimum operator used in the proposed method. The
simple average was selected for comparison because it is the
common representative of weighted average, and currently it
is difficult to suggest a more complex weighted average for
synthesizing similarity values on multiple attributes.

5.2 Experimental results and discussion

Table 3 lists the results of 50 evaluation cases solved by the
proposed method using the case base presented in the previ-
ous section. For six evaluation cases, the proposed method
arrived at the CA threshold result same as that originally
recorded in the evaluation case. The counts of evaluation
cases which got shorter and longer drainage networks (i.e.,
larger and smaller CA threshold, respectively) from the pro-
posed method are 16 and 28, respectively. The similarities
between every evaluation case and its most similar case as
reasoned by the proposed method were found in this exper-
iment to lie within a value range from 0.47 to 0.9. A larger
overall similarity value from the proposed method often cor-
responds to a smaller relative deviation of river density (E)
(Table 3). Note that the higher the similarity, the lower the

uncertainty of the result is from the proposed method. This
shows that the proposed method performs reasonably.

Table 4 summarizes the distribution of the similarity re-
sults of the evaluation cases from the proposed method
among the deviation levels of the drainage network results
using the solved CA thresholds. The counts of evaluation re-
sults with E ∈ [0, 0.1), E ∈ [0.1, 0.25), E ∈ [0.25, 0.5), and
E ∈ [0.5, +∞) are 26, 16, 3, and 5, respectively (Table 4).
For most of the evaluation cases, the results from the pro-
posed method are with lower deviation level of E, which
means that the proposed method performs effectively. All so-
lution cases with higher similarity (above 0.7) to the evalu-
ation cases produced drainage network results with smaller
E values, whereas solution cases with lower similarity (be-
low 0.7) often produced the drainage network results with
larger E values. This shows the effectiveness with which
similarity reflects uncertainty in the proposed method.

Taking the results of two evaluation cases, Go-
davari (1053) (the “(1053)” means that the original
CA threshold recorded in the Godavari case was 1053 km2)
and Burdekin (502) (“(502)” defined similarly) as examples,
their most similar cases in the case base as reasoned by
the proposed method were KrishnaRiver (908.08) and Ma-
hanadiRiver (891), respectively (Table 3). The CA thresh-
old values from the solution of the most similar cases
(908.08 and 891 km2) were applied, respectively, to the Go-
davari and Burdekin evaluation cases. The extracted drainage
networks are with close spatial distribution as those ex-
tracted with the original CA thresholds of the evaluation
cases (Fig. 4). Their values of relative deviation of river den-
sity are smaller (i.e., 0.07 and 0.24, respectively).

The evaluation results with larger E values also have lower
similarities. This means that there is no case in the current
case base that has an application context highly similar to that
of the evaluation case. Hence, the solution from the proposed
method has higher uncertainty and might lead to question-
able or even unreasonable application results for new appli-
cation problems. Taking the result for the YbbsRiver (1.01)
evaluation case (E= 0.43) as an example, the similarities be-
tween this evaluation case and other cases in the case base
depend mostly on the similarities on the cell-size attribute
during the case-based reasoning process proposed in this pa-
per (Table 5). Because the cell size of the YbbsRiver case
is 10 m, which is relatively unlike cell size (30 or 90 m) of
most other cases in the case base, the overall similarities be-
tween this evaluation case and these cases in the case base
are mainly limited by the individual similarity of cell size
when synthesizing the similarities on individual attributes by
the proposed method. Furthermore, Table 5 shows that the
CA threshold values of the cases with the top 10 highest sim-
ilarity values to the YbbsRiver evaluation case would make
a large E value of the application result for the evaluation
case (E: 0.33–21.73). The solution selected by the proposed
method achieved a relatively better application result.
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Table 3. Evaluation results of the proposed method (in order of E) and the corresponding results when a simple average operator was used
instead of the minimum operator.

Evaluation case Using a simple average operator instead of
(original CA threshold The proposed method (using a minimum operator) the minimum operator

(km2)) Most similar case Overall E Most similar case Overall E

(CA threshold (km2)) similarity (CA threshold (km2)) similarity

UpperRhone (81) KernRiver (81) 0.83 0 KernRiver (81) 0.92 0
MicaCreek1 (0.03) MicaCreek2 (0.03) 0.85 0 MicaCreek2 (0.03) 0.95 0
WillowRiver (40.5) Bowron (40.5) 0.89 0 Bowron (40.5) 0.94 0
YamzhogYumCo (12.15) CedoCaka (12.15) 0.75 0 CedoCaka (12.15) 0.86 0
Stanley (0.2) Pettit (0.2) 0.73 0 Pettit (0.2) 0.86 0
Alturas (0.2) Pettit (0.2) 0.68 0 Pettit (0.2) 0.85 0
WarregoSC2 (4.42) WarregoSC4 (4.33) 0.83 0.01 WarregoSC4 (4.33) 0.94 0.01
Toachi (3.13) SanPabloLaMana (3.07) 0.76 0.01 SanPabloLaMana (3.07) 0.88 0.01
FuRiver (0.009) CameronHighlands (0.0093) 0.64 0.02 CameronHighlands (0.0093) 0.84 0.02
Davidson (0.48) UpperMcKenzie (0.5) 0.59 0.02 Haean (0.55) 0.8 0.05
Komati (36.64) Bowron (40.5) 0.60 0.04 Bowron (40.5) 0.79 0.04
UpperTaninim (0.52) Bellever (0.59) 0.81 0.05 Bellever (0.59) 0.91 0.05
Crocodile (36.30) Bowron (40.5) 0.74 0.05 Bowron (40.5) 0.87 0.05
Cheakamus (8.1) LiWuRiver (9) 0.80 0.05 LiWuRiver (9) 0.87 0.05
Susquehanna (810) DoloresR_Cisco (763.17) 0.71 0.05 DoloresR_Cisco (763.17) 0.86 0.05
RoudbachPlaten (0.32) HJA (0.27) 0.80 0.06 HJA (0.27) 0.9 0.06
Godavari (1053) KrishnaRiver (908.08) 0.80 0.07 KrishnaRiver (908.08) 0.92 0.07
Gard (8.09) JuniataRiver (6.98) 0.69 0.07 Babaohe (18) 0.82 0.3
Urola (5.22) OitaRiver (6.48) 0.79 0.07 OitaRiver (6.48) 0.91 0.07
UpperDalya (0.45) Bellever (0.59) 0.82 0.08 Bellever (0.59) 0.94 0.08
WarregoSC3 (5.05) WarregoSC4 (4.33) 0.77 0.08 WarregoSC4 (4.33) 0.89 0.08
SanJuanR_Bluff (708.35) ColoradoR_Cameron (794) 0.87 0.08 ColoradoR_Cameron (794) 0.93 0.08
Monastir (3.47) Baba (4.19) 0.80 0.08 OitaRiver (6.48) 0.9 0.25
SouthPark (24.3) CooperRiver (29.34) 0.78 0.09 CooperRiver (29.34) 0.9 0.09
Rhone (398.97) PoRiver (486) 0.86 0.1 PoRiver (486) 0.94 0.1
Bishop_Hull (0.86) Brue (0.70) 0.78 0.1 Brue (0.70) 0.91 0.1
AlzetteEttel (0.23) Bellebeek (0.31) 0.76 0.12 SouthForkNew (2.7) 0.87 0.7
PedlerCreek (0.41) Bellever (0.59) 0.70 0.12 Bellever (0.59) 0.83 0.12
Fengman (243) UpperGuadiana (324) 0.66 0.14 CedoCaka (12.15) 0.79 3.21
Cauvery (1053) ColoradoR_Cameron (794) 0.77 0.15 ColoradoR_Cameron (794) 0.93 0.15
MiddleColorado (5.93) WarregoSC4 (4.33) 0.85 0.15 WarregoSC4 (4.33) 0.94 0.15
LuckyHills (6.3) SouthForkNew (2.7) 0.71 0.15 SouthForkNew (2.7) 0.88 0.15
Limpopo (987.22) DoloresR_Cisco (763.17) 0.61 0.16 DoloresR_Cisco (763.17) 0.85 0.16
LittlePiney (2.84) Blackwater (4.35) 0.86 0.17 Blackwater (4.35) 0.94 0.17
ChiJiaWang (0.34) ErhWu (0.23) 0.80 0.17 ErhWu (0.23) 0.89 0.17
Hailogou (2.03) SanPabloLaMana (3.07) 0.68 0.18 HunzaRiver (56.7) 0.79 0.79
Batchawana (0.75) ClearCreek (1.22) 0.58 0.2 XianNanGou (0.004) 0.81 17.16
Liene (5.37) LiWuRiver (9) 0.74 0.2 LiWuRiver (9) 0.85 0.2
Zwalm (0.36) Haean (0.55) 0.73 0.2 Haean (0.55) 0.87 0.2
TapajosRiver (2720) SaoFrancisco (5160) 0.67 0.23 SaoFrancisco (5160) 0.84 0.23
Burdekin (502) MahanadiRiver (891) 0.90 0.24 MahanadiRiver (891) 0.95 0.24
Garonne (247.68) PoRiver (486) 0.71 0.24 PoRiver (486) 0.87 0.24
NorthEsk (1.22) SanPabloLaMana (3.07) 0.63 0.33 UpperGuadiana (324) 0.82 0.98
YbbsRiver (1.01) Davidson (0.48) 0.69 0.43 CameronHighlands (0.0093) 0.84 11.44
Cordevole (0.68) SouthForkNew (2.7) 0.69 0.46 HJA (0.27) 0.83 0.67
NarayaniRiver (130) Durance (51.21) 0.51 0.52 HunzaRiver (56.7) 0.75 0.45
YaluTsangpo (81.56) SalmonRiver (486) 0.47 0.55 RhoneRiver (40.5) 0.68 0.41
Kasilian (0.08) Haean (0.55) 0.63 0.63 Haean (0.55) 0.83 0.63
UpstreamGarza (0.2) NorsmindeFjord (4.05) 0.69 0.74 Haean (0.55) 0.83 0.37
Zhanghe (33.11) Lonquen (7.29) 0.69 1.06 Lonquen (7.29) 0.89 1.06
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Table 4. Relationship between E and the similarity value (S) of the solution case to the evaluation case.

S ∈ [0.8, 1) S ∈ [0.7, 0.8) S ∈ [0.6, 0.7) S ∈ [0, 0.6) Total count
of cases

E ∈ [0, 0.1) 10 11 3 2 26
E ∈ [0.1, 0.25) 3 8 4 1 16
E ∈ [0.25, 0.5) 0 0 3 0 3
E ∈ [0.5, +∞) 0 0 3 2 5

Table 5. Top 10 similarity values between the YbbsRiver evaluation case and existing cases as reasoned by the proposed method.

Case name Similarity value on individual attribute Overall E

Cell Area Total Elevation– Hypsometric similarity
size relief slope curve

distribution

UpperMcKenzie 1 0.73 0.90 0.62 0.92 0.62 0.43
XianNanGou 0.58 0.61 0.88 0.59 0.76 0.58 21.73
NorsmindeFjord 0.58 0.74 0.84 0.64 0.91 0.58 0.44
Pettit 1 0.56 0.96 0.62 0.76 0.56 1.19
Bellebeek 0.54 0.69 0.83 0.54 0.81 0.54 0.73
Haean 0.51 0.65 0.94 0.78 0.93 0.51 0.33
MicaCreek2 0.51 0.53 0.89 0.62 0.75 0.51 5.23
SouthForkNew 0.51 0.69 0.89 0.76 0.52 0.51 0.35
Babaohe 0.51 0.57 0.88 0.73 0.90 0.51 0.73
ClintonRiver 0.51 0.59 0.85 0.56 0.55 0.51 0.79

Figure 4. Comparison between the original drainage network of an individual evaluation case and its extraction result using case-based
reasoning: (a) Godavari case with an underestimated CA threshold and (b) Burdekin case with an overestimated CA threshold.

As for the reasoning results on the Kasilian (0.08) evalua-
tion case (E= 0.63) using the proposed method, no individ-
ual attribute has a controlling effect on the overall similarity
between the Kasilian evaluation case and the other cases in
the case base (Table 6). The CA threshold values of the cases
with the top 10 highest similarity values to the Kasilian eval-
uation case would almost always lead to a larger E value of
the application result for the evaluation case (E: 0.48–0.92).
The similarities between this evaluation case and the cases in
the case base are lower (Table 6). This problem could be mit-

igated by extending the case base to contain cases with more
combinations of data characteristics and study area charac-
teristics.

The effect of calculating the overall similarity by a sim-
ple average operator instead of the minimum operator used
in the proposed method was also evaluated (Table 3). When
the minimum operator was replaced by the simple average
operator, the overall similarity for every case increased and
the lowest overall similarity among results for 50 evalua-
tion cases increased from 0.47 to 0.68. Among 50 evalua-
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Table 6. Top 10 similarity values between the Kasilian evaluation case and existing cases as reasoned by the proposed method.

Case name Similarity value on individual attribute Overall E

Cell Area Total Elevation– Hypsometric similarity
size relief slope curve

distribution

Haean 0.63 0.92 0.83 0.83 0.93 0.63 0.63
SanPabloLaMana 0.61 0.61 0.74 0.60 0.76 0.60 0.84
Brue 0.61 0.67 0.73 0.59 0.88 0.59 0.66
OitaRiver 0.61 0.57 0.95 0.73 0.96 0.57 0.91
Baba 0.61 0.55 0.98 0.83 0.97 0.55 0.87
JuniataRiver 0.63 0.55 0.78 0.64 0.86 0.55 0.92
NorsmindeFjord 0.54 0.74 0.71 0.72 0.95 0.54 0.87
Lonquen 0.61 0.52 0.82 0.73 0.93 0.52 0.92
HJA 0.63 0.90 0.86 0.51 0.64 0.51 0.48
Bellever 0.61 0.78 0.74 0.50 0.68 0.50 0.63

tion cases, the solutions for 13 evaluation cases from the pro-
posed method changed because the cases with the highest
similarity resulted by the simple average operator were dif-
ferent from those resulted by the minimum operator. Due to
the synthesis by the simple average operator instead of the
minimum operator, the relative deviation of river density (E)
increased for 10 of these 13 evaluation cases with differ-
ent solutions, when E slightly decreased for other 3 evalu-
ation cases. The increase of E even reached 20–80 times for
some cases (e.g., the evaluation cases YbbsRiver (1.01) and
Batchawana (0.75)) with the overall similarity values larger
than 0.8 (see Table 3). Because the overall similarity values
by the simple average operator were larger than 0.8 for most
of evaluation cases, there is no reasonable relationship be-
tween the overall similarity value and the E as the proposed
method with the minimum operator achieved. This shows
that the proposed method performed poorly when the simple
average operator was used instead of the minimum operator.
Therefore, the synthesis by a minimum operator is proper for
the proposed method.

6 Summary

Although DTA application-context knowledge is of key im-
portance in building an appropriate DTA application, cur-
rently this type of knowledge has not been formalized to
be available for DTA-assisted tools to minimize the model-
ing burden of DTA users (especially non-expert users). This
paper has proposed a case-based methodology for formal-
izing DTA application-context knowledge and correspond-
ing case-based reasoning. A detailed method based on this
methodology has been developed. Taking drainage network
extraction from a gridded DEM as an application exam-
ple, 124 cases (50 for evaluation and 74 for reasoning) of
drainage network extraction from peer-reviewed journal arti-
cles were used to evaluate the performance of the proposed

method. Preliminary evaluation shows the reasonableness of
the proposed case-based method. Combining the proposed
method with existing methods for using the other two types
of DTA knowledge (i.e., task and algorithm knowledge), au-
tomated DTA modeling could be implemented to make DTA
easy to use for users and ensure that the result model is rea-
sonable comparatively. This is valuable especially for non-
expert users at the beginning of the modeling when field data
for evaluation might be not easy to obtain.

Additional research is needed to enhance the proposed
method. In this paper, the proposed methodology is imple-
mented as a primary method which focuses on DTA domain
and considers the area and the terrain condition through a
few simple attributes for describing the study area character-
istics of a DTA application case. The design for the individ-
ual attributes and their quantification in each case could be
improved to describe the domain-specific application-context
knowledge in a more adaptive and efficient manner for vari-
ous DTA application targets. Another possible improvement
to the method would be to consider the reliability of the case
and revise the solution part of the case as suggested by case-
based reasoning before applying the solution to the new ap-
plication problem. The possibility of synthesizing the solu-
tions of the cases in the base with higher similarity to build
a solution to the new application problem could also be ex-
plored.

The size of the case base does matter. An expanded case
base containing as many cases as possible with more com-
binations of all kinds of characteristics would improve the
application effectiveness of the proposed method. The expan-
sion of the case base (not only for the current target task but
also for other DTA application tasks) is valuable for evaluat-
ing the effectiveness of the case-based reasoning method and
its successive versions. If case base is of a large size, machine
learning algorithms (such as multidimensional regression)
might be available for automatically calibrating the similar-
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ity functions and their shape-adjusting parameters used in the
proposed method. Currently, the size of current case base is
still comparatively limited because current cases used in the
experiment were mainly manually prepared from journal ar-
ticles, except for certain attribute calculations (e.g., total re-
lief, hypsometric curve), for which an automatic computer
program was used. This inefficient way of preparing cases
needs to be improved through developing automatic or semi-
automatic case-creation methods.

In other geographical modeling domains, the task and al-
gorithm knowledge have been used by formalization and in-
ference methods and corresponding tools, such as Gregersen
et al. (2007) and Škerjanec et al. (2014) in automated wa-
tershed modeling domain. For those domains in which the
application-context knowledge is also largely non-systematic
and tacit knowledge, the case-based idea proposed in this pa-
per could also be available to combine with the existing au-
tomated modeling methods of using the task and algorithm
knowledge in those domains, towards new geographical anal-
ysis tools which is easy to use for non-expert participants
(Lin et al., 2013).

7 Data availability

The source list of cases used in this study is attached as a
Supplement. The interested readers can also send an email to
the corresponding author of this paper to access the data set.

The Supplement related to this article is available online
at doi:10.5194/hess-20-3379-2016-supplement.
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