

Supplement of

Case-based knowledge formalization and reasoning method for digital terrain analysis – application to extracting drainage networks

Cheng-Zhi Qin et al.

Correspondence to: Cheng-Zhi Qin (qincz@lreis.ac.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 Supplement: **List of cases**

Case name (cell size used originally)	Source paper
LittlePiney (90 m)	Botter G. Flow regime shifts in the Little Piney creek (US)[J]. <i>Advances in Water Resources</i> , 2014, 71: 44-54.
PoRiver (90 m)	Lanzoni S, Luchi R, Pittaluga M B. Modeling the morphodynamic equilibrium of an intermediate reach of the Po River (Italy)[J]. <i>Advances in Water Resources</i> , 2015, 81: 95–102.
UpperMcKenzie (10 m)	Di Lazzaro M, Zarlenza A, Volpi E. Hydrological effects of within-catchment heterogeneity of drainage density[J]. <i>Advances in Water Resources</i> , 2015, 76: 157-167.
Babaohe (30 m)	Lei F, Huang C, Shen H, et al. Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother: Synthetic experiments for the Heihe River Basin in northwest China[J]. <i>Advances in Water Resources</i> , 2014, 67: 32-45.
OldMansCreek (30 m)	Ayalew T B, Krajewski W F, Mantilla R, et al. Exploring the effects of hillslope-channel link dynamics and excess rainfall properties on the scaling structure of peak-discharge[J]. <i>Advances in Water Resources</i> , 2014, 64: 9-20.
UpstreamGarza (20 m)	Balistrocchi M, Grossi G, Bacchi B. Deriving a practical analytical-probabilistic method to size flood routing reservoirs[J]. <i>Advances in Water Resources</i> , 2013, 62: 37-46.
Peachester (50 m)	Kim J, Warnock A, Ivanov V Y, et al. Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow[J]. <i>Advances in Water Resources</i> , 2012, 37: 104-126.
Cauvery (90 m)	Konar M, Todd M J, Muneepeerakul R, et al. Hydrology as a driver of biodiversity: Controls on carrying capacity, niche formation, and dispersal[J]. <i>Advances in Water Resources</i> , 2013, 51: 317-325.
Krishna (90 m)	
Krishna1 (90 m)	
Godavari (90 m)	
Klodawka (15 m)	Jasiewicz J Ł, Metz M. A new GRASS GIS toolkit for Hortonian

	analysis of drainage networks[J]. Computers & Geosciences, 2011, 37(8): 1162-1173.
Chabagou (50 m)	Li T, Wang G, Chen J. A modified binary tree codification of drainage networks to support complex hydrological models[J]. Computers & Geosciences, 2010, 36(11): 1427-1435.
SaoFrancisco (200 m)	Saraiva A G S, Paz A R. Multi-step change of scale approach for deriving coarse-resolution flow directions[J]. Computers & Geosciences, 2014, 68: 53-63.
TapajosRiver (200 m)	
CooperRiver (30 m)	Castranova A M, Goodall J L. A hierarchical network-based algorithm for multi-scale watershed delineation[J]. Computers & Geosciences, 2014, 72: 156-166.
MiddleColorado (90 m)	Karimipour F, Ghandehari M, Ledoux H. Watershed delineation from the medial axis of river networks[J]. Computers & Geosciences, 2013, 59: 132-147.
FuRiver (10 m)	Xu C, Xu X, Dai F, et al. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China[J]. Computers & Geosciences, 2012, 46: 317-329.
JuniataRiver (30 m)	Yu X, Bhatt G, Duffy C, et al. Parameterization for distributed watershed modeling using national data and evolutionary algorithm[J]. Computers & Geosciences, 2013, 58: 80-90.
YoungWomansCreek (30 m)	
YaluTsangpo (85 m)	Wang H, Fu X, Wang G. Multi-tree Coding Method (MCM) for drainage networks supporting high-efficient search[J]. Computers & Geosciences, 2013, 52: 300-306.
KaghanValley (90 m)	Dehvari A, Heck R J. Removing non-ground points from automated photo-based DEM and evaluation of its accuracy with LiDAR DEM[J]. Computers & Geosciences, 2012, 43: 108-117.
CameronHighlands (10 m)	Lim S L, Sagar B S D, Koo V C, et al. Morphological convexity measures for terrestrial basins derived from digital elevation models[J]. Computers & Geosciences, 2011, 37(9): 1285-1294.
W_Kharit (30 m)	Milewski A, Sultan M, Yan E, et al. A remote sensing solution for estimating runoff and recharge in arid environments[J]. Journal of

	Hydrology, 2009, 373(1): 1-14.
ChiJiaWang (40 m)	Lin W T, Chou W C, Lin C Y, et al. Automated suitable drainage network extraction from digital elevation models in Taiwan's upstream watersheds[J]. <i>Hydrological Processes</i> , 2006, 20(2): 289-306.
ErhWu (40 m)	
Demeni (90 m)	Getirana A C V, Bonnet M P, Rotunno Filho O C, et al. Improving hydrological information acquisition from DEM processing in floodplains[J]. <i>Hydrological Processes</i> , 2009, 23(3): 502-514.
Batchawana (5 m)	Creed I F, Hwang T, Lutz B, et al. Climate warming causes intensification of the hydrological cycle, resulting in changes to the vernal and autumnal windows in a northern temperate forest[J]. <i>Hydrological Processes</i> , 2015, 29: 3519–3534.
Hailogou (90 m)	Xing B, Liu Z, Liu G, et al. Determination of runoff components using path analysis and isotopic measurements in a glacier-covered alpine catchment (upper Hailuogou Valley) in southwest China[J]. <i>Hydrological Processes</i> , 2015, 29, 3065–3073.
Bellebeek (25 m)	Loosvelt L, Pauwels V, Verhoest N E C. On the significance of crop-type information for the simulation of catchment hydrology[J]. <i>Hydrological Processes</i> , 2015, 29(6): 915-926.
WeiRiver (90 m)	Zuo D, Xu Z, Peng D, et al. Simulating spatiotemporal variability of blue and green water resources availability with uncertainty analysis[J]. <i>Hydrological Processes</i> , 2015, 29(8): 1942-1955.
HunzaRiver (90 m)	Biber K, Khan S D, Shah M T. The source and fate of sediment and mercury in Hunza River basin, Northern Areas, Pakistan[J]. <i>Hydrological Processes</i> , 2015, 29(4): 579-587.
Kasilian (50 m)	Saghafian B, Meghdadi A R, Sima S. Application of the WEPP model to determine sources of run-off and sediment in a forested watershed[J]. <i>Hydrological Processes</i> , 2015, 29(4): 481-497.
Lonquen (90 m)	Stewart R D, Abou Najm M R, Rupp D E, et al. Hillslope run-off thresholds with shrink–swell clay soils[J]. <i>Hydrological Processes</i> , 2015, 29(4): 557-571.
MicaCreek1 (30 m)	Du E, Link T E, Gravelle J A, et al. Validation and sensitivity test of the distributed hydrology soil-vegetation model (DHSVM) in a forested
MicaCreek2 (30 m)	

	mountain watershed[J]. <i>Hydrological Processes</i> , 2014, 28(26): 6196-6210.
NarayaniRiver (30 m)	Neupane R P, Yao J, White J D. Estimating the effects of climate change on the intensification of monsoonal-driven stream discharge in a Himalayan watershed[J]. <i>Hydrological Processes</i> , 2014, 28(26): 6236-6250.
WillowRiver (90 m)	Zhang M, Wei X. Contrasted hydrological responses to forest harvesting in two large neighbouring watersheds in snow hydrology dominant environment: implications for forest management and future forest hydrology studies[J]. <i>Hydrological Processes</i> , 2014, 28(26): 6183-6195.
UpperDalya (90 m)	Peleg N, Shamir E, Georgakakos K P, et al. A framework for assessing hydrological regime sensitivity to climate change in a convective rainfall environment: a case study of two medium-sized eastern Mediterranean catchments, Israel[J]. <i>Hydrology and Earth System Sciences</i> , 2015, 19(1): 567-581.
UpperTanimim (90 m)	
SanFrancisco (90 m)	Timbe E, Windhorst D, Crespo P, et al. Understanding uncertainties when inferring mean transit times of water trough tracer-based lumped-parameter models in Andean tropical montane cloud forest catchments[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18: 1503-1523.
HuaiRiver (90 m)	Chen X, Hao Z, Devineni N, et al. Climate information based streamflow and rainfall forecasts for Huai River basin using hierarchical Bayesian modeling[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(4): 1539-1548.
WarregoSC2 (90 m)	Alvarez-Garreton C, Ryu D, Western A W, et al. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes[J]. <i>Hydrology and Earth System Sciences</i> , 2015, 19(4): 1659-1676.
WarregoSC3 (90 m)	
WarregoSC4 (90 m)	
Ishikari (50 m)	Duan W L, He B, Takara K, et al. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW[J]. <i>Hydrology and Earth System Sciences</i> , 2015, 19(3): 1293-1306.
Limari (90 m)	Scott C A, Vicu ña S, Blanco-Guti érez I, et al. Irrigation efficiency and water-policy implications for river basin resilience[J]. <i>Hydrology and</i>

	Earth System Sciences, 2014, 18(4): 1339-1348.
Limpopo (90 m)	Trambauer P, Werner M, Winsemius H C, et al. Hydrological drought forecasting and skill assessment for the Limpopo River basin, southern Africa[J]. <i>Hydrology and Earth System Sciences</i> , 2015, 19(4): 1695-1711.
Crocodile (90 m)	Saraiva Okello A M L, Masih I, Uhlenbrook S, et al. Drivers of spatial and temporal variability of streamflow in the Incomati River basin[J]. <i>Hydrology and Earth System Sciences</i> , 2015, 19(2): 657-673.
Komati (90 m)	
Haean (30 m)	Shope C L, Maharjan G R, Tenhunen J, et al. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(2): 539-557.
Durance (90 m)	Kuentz A, Mathevot T, Gailhard J, et al. Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM method[J]. <i>Hydrology and Earth System Sciences</i> , 2015, 19: 2717-2736.
Kabul (90 m)	Wi S, Yang Y C E, Steinschneider S, et al. Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change[J]. <i>Hydrology and Earth System Sciences</i> , 2015, 19(2): 857-876.
Garonne (90 m)	Habets F, Philippe E, Martin E, et al. Small farm dams: impact on river flows and sustainability in a context of climate change[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(10): 4207-4222.
Rhone (90 m)	
Ebro (25 m)	Peñas F J, Barquín J, Snelder T H, et al. The influence of methodological procedures on hydrological classification performance[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(9): 3393-3409.
Olifants (30 m)	Dabrowski J M. Applying SWAT to predict orthophosphate loads and trophic status in four reservoirs in the upper Olifants catchment, South Africa[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18: 2629-2643.
WeiRiver (90 m)	Zhan C S, Jiang S S, Sun F B, et al. Quantitative contribution of climate change and human activities to runoff changes in the Wei River basin, China[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(8): 3069-3077.

Bellever (90 m)	Liu J, Han D. On selection of the optimal data time interval for real-time hydrological forecasting[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(9): 3639-3659.
Brue (90 m)	
Bishop_Hull (90 m)	
Pomahaka (90 m)	McMillan H K, Hreinsson E Ö, Clark M P, et al. Operational hydrological data assimilation with the recursive ensemble Kalman filter[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(1): 21-38.
ColoradoR_Cameron (90 m)	Rosenberg E A, Clark E A, Steinemann A C, et al. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(4): 1475-1491.
SanJuanR_Bluff (90 m)	
DoloresR_Cisco (90 m)	
RioSanFrancisco (90 m)	Windhorst D, Waltz T, Timbe E, et al. Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(1): 409-419.
RioSanFrancisco1 (90 m)	
Rhine (90 m)	Vorogushyn S, Merz B. Flood trends along the Rhine: the role of river training[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(10): 3871-3884.
Urola (90 m)	Cowpertwait P, Ocio D, Collazos G, et al. Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17: 479–494.
KrishnaRiver (10 m)	Surinaidu L, Bacon C G D, Pavelic P. Agricultural groundwater management in the Upper Bhima Basin, India: current status and future scenarios[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(2): 507-517.
ClearCreek (90 m)	Zhang H L, Wang Y J, Wang Y Q, et al. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(7): 2735-2745.
Baba (90 m)	Arias-Hidalgo M, Bhattacharya B, Mynett A E, et al. Experiences in using the TMPA-3B42R satellite data to complement rain gauge
Toachi (90 m)	

SanPabloLaMana (90 m)	measurements in the Ecuadorian coastal foothills[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(7): 2905
Monastir (25 m)	Mascaro G, Piras M, Deidda R, et al. Distributed hydrologic modeling of a sparsely monitored basin in Sardinia, Italy, through hydrometeorological downscaling[J]. <i>Hydrology and Earth System Sciences</i> , 2013, 17(10): 4143-4158.
Gard (90 m)	Braud I, Ayral P A, Bouvier C, et al. Multi-scale hydrometeorological observation and modelling for flash-flood understanding[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(9): 3733-3761.
Zhanghe (9 m)	Xie X, Meng S, Liang S, et al. Improving streamflow predictions at ungauged locations with real-time updating: application of an EnKF-based state-parameter estimation strategy[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(10): 3923
Davidson (25 m)	Yang J, Castelli F, Chen Y. Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(10): 4101-4112.
Lienz (25 m)	He Z H, Parajka J, Tian F Q, et al. Estimating degree-day factors from MODIS for snowmelt runoff modeling[J]. <i>Hydrology and Earth System Sciences</i> , 2014, 18(12): 4773-4789.
Cheakamus (30 m)	Bourdin D R, Nipen T N, Stull R B. Reliable probabilistic forecasts from an ensemble reservoir inflow forecasting system[J]. <i>Water Resources Research</i> , 2014, 50(4): 3108-3130.
YbbsRiver (10 m)	Ceola S, Bertuzzo E, Singer G, et al. Hydrologic controls on basin-scale distribution of benthic invertebrates[J]. <i>Water Resources Research</i> , 2014, 50(4): 2903-2920.
Susquehanna (90 m)	Giuliani M, Herman J D, Castelletti A, et al. Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management[J]. <i>Water Resources Research</i> , 2014, 50(4): 3355-3377.
NorsmindeFjord (20 m)	He X, Koch J, Sonnenborg T O, et al. Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data[J]. <i>Water Resources Research</i> , 2014, 50(4): 3147-3169.

SouthPark (30 m)	Ball L B, Caine J S, Ge S. Controls on groundwater flow in a semiarid folded and faulted intermountain basin[J]. Water Resources Research, 2014, 50(8): 6788-6809.
KernRiver (90 m)	Girotto M, Cortés G, Margulis S A, et al. Examining spatial and temporal variability in snow water equivalent using a 27 year reanalysis: Kern River watershed, Sierra Nevada[J]. Water Resources Research, 2014, 50(8): 6713-6734
UpperRhone (90 m)	Bordoy R, Burlando P. Stochastic downscaling of climate model precipitation outputs in orographically complex regions: 2. Downscaling methodology[J]. Water Resources Research, 2014, 50(1): 562-579.
Pettit (10 m)	Mallard J, McGlynn B, Covino T. Lateral inflows, stream-groundwater exchange, and network geometry influence stream water composition[J]. Water Resources Research, 2014, 50(6): 4603-4623.
Stanley (10 m)	
Alturas (10 m)	
Burdekin (90 m)	Bainbridge Z T, Lewis S E, Smithers S G, et al. Fine-suspended sediment and water budgets for a large, seasonally dry tropical catchment: Burdekin River catchment, Queensland, Australia[J]. Water Resources Research, 2014, 50(11): 9067-9087.
Blackwater (90 m)	Cooper R J, Krueger T, Hiscock K M, et al. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison[J]. Water Resources Research, 2014, 50(11): 9031-9047.
OitaRiver (90 m)	Higashino M, Stefan H G. Modeling the effect of rainfall intensity on soil-water nutrient exchange in flooded rice paddies and implications for nitrate fertilizer runoff to the Oita River in Japan[J]. Water Resources Research, 2014, 50(11): 8611-8624.
Zwalm (30 m)	Guingla P, Douglas A, Keyser R, et al. Improving particle filters in rainfall - runoff models: Application of the resample-move step and the ensemble Gaussian particle filter[J]. Water Resources Research, 2013, 49(7): 4005-4021.
XianNanGou (5 m)	Ichoku C, Karnieli A, Verchovsky I. Application of fractal techniques to the comparative evaluation of two methods of extracting channel networks from digital elevation models[J]. Water Resources Research,

	1996, 32(2): 389-399.
Hodder (200 m)	Bulygina N, Ballard C, McIntyre N, et al. Integrating different types of information into hydrological model parameter estimation: Application to ungauged catchments and land use scenario analysis[J]. Water Resources Research, 2012, 48(6), W06519.
NorthEsk (90 m)	Capell R, Tetzlaff D, Soulsby C. Can time domain and source area tracers reduce uncertainty in rainfall-runoff models in larger heterogeneous catchments?[J]. Water Resources Research, 2012, 48(9), W09544.
SouthForkNew (30 m)	Gu C, Anderson W, Maggi F. Riparian biogeochemical hot moments induced by stream fluctuations[J]. Water Resources Research, 2012, 48(9), W09546.
LiWuRiver (30 m)	Huang Jr C, Yu C K, Lee J Y, et al. Linking typhoon tracks and spatial rainfall patterns for improving flood lead time predictions over a mesoscale mountainous watershed[J]. Water Resources Research, 2012, 48(9), W09540.
AlzetteEttel (30 m)	Krier R, Matgen P, Goergen K, et al. Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale catchments in Luxembourg[J]. Water Resources Research, 2012, 48(10), W10525.
MessPontpierre (30 m)	
Colpach (30 m)	
RoudbachPlaten (30 m)	
Burdekin (90 m)	Kuhnert P M, Henderson B L, Lewis S E, et al. Quantifying total suspended sediment export from the Burdekin River catchment using the loads regression estimator tool[J]. Water Resources Research, 2012, 48(4), W04533.
Cajon (30 m)	Mendoza P A, McPhee J, Vargas X. Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment[J]. Water Resources Research, 2012, 48(9), W09532.
Tenderfoot (100 m)	Payn R A, Gooseff M N, McGlynn B L, et al. Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession[J]. Water Resources Research, 2012, 48(4), W04519.
Wattenbach (200 m)	Rogger M, Pirkl H, Viglione A, et al. Step changes in the flood

Weerbach (200 m)	frequency curve: Process controls[J]. Water Resources Research, 2012, 48(5), W05544.
UpperRhone (90 m)	Leite Ribeiro M, Blanckaert K, Roy A G, et al. Hydromorphological implications of local tributary widening for river rehabilitation[J]. Water Resources Research, 2012, 48(10), W10528.
WhiteRiver (30 m)	Steinschneider S, Polebitski A, Brown C, et al. Toward a statistical framework to quantify the uncertainties of hydrologic response under climate change[J]. Water Resources Research, 2012, 48(11), W11525.
AmericanRiver (30 m)	Woldemichael A T, Hossain F, Pielke R, et al. Understanding the impact of dam - triggered land use/land cover change on the modification of extreme precipitation[J]. Water Resources Research, 2012, 48(9), W09547.
MahanadiRiver (90 m)	Kannan S, Ghosh S. A nonparametric kernel regression model for downscaling multisite daily precipitation in the Mahanadi basin[J]. Water Resources Research, 2013, 49(3): 1360-1385.
Nujiang (90 m)	Kibler K M, Tullos D D. Cumulative biophysical impact of small and large hydropower development in Nu River, China[J]. Water Resources Research, 2013, 49(6): 3104-3118.
LuckyHills (30 m)	Sivandran G, Bras R L. Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed[J]. Water Resources Research, 2013, 49(6): 3292-3305.
Sacramento (30 m)	Ficklin D L, Stewart I T, Maurer E P. Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California[J]. Water Resources Research, 2013, 49(5): 2765-2782.
ClintonRiver (30 m)	Shen C, Niu J, Phanikumar M S. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model[J]. Water Resources Research, 2013, 49(5): 2552-2572.
HJA (30 m)	Garcia E S, Tague C L, Choate J S. Influence of spatial temperature estimation method in ecohydrologic modeling in the Western Oregon Cascades[J]. Water Resources Research, 2013, 49(3): 1611-1624.

UpperGuadiana (90 m)	Loon A F, Lanen H A J. Making the distinction between water scarcity and drought using an observation-modeling framework[J]. Water Resources Research, 2013, 49(3): 1483-1502.
HaiRiver (1000 m)	Jia Y, Ding X, Wang H, et al. Attribution of water resources evolution in the highly water - stressed Hai River Basin of China[J]. Water Resources Research, 2012, 48(2), W02513.
Cordevole (30 m)	Rigon E, Comiti F, Lenzi M A. Large wood storage in streams of the Eastern Italian Alps and the relevance of hillslope processes[J]. Water Resources Research, 2012, 48(1), W01518.
SalmonRiver (90 m)	Yearsley J. A grid-based approach for simulating stream temperature[J]. Water Resources Research, 2012, 48(3), W03506.
CedoCaka (90 m)	Zhang G, Xie H, Yao T, et al. Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001–2010)[J]. Water Resources Research, 2012, 48(10), W10529.
YamzhogYumCo (90 m)	