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Abstract. Projecting water deficit under various possible fu-
ture climate scenarios depends on the choice of general circu-
lation model (GCM), reference evapotranspiration (ET0) es-
timation method, and Representative Concentration Pathway
(RCP) trajectory. The relative contribution of each of these
factors must be evaluated in order to choose an appropriate
ensemble of future scenarios for water resources planning.
In this study variance-based global sensitivity analysis and
Monte Carlo filtering were used to evaluate the relative sen-
sitivity of projected changes in precipitation (P ), ET0, and
water deficit (defined here as P –ET0) to choice of GCM,
ET0 estimation method, and RCP trajectory over the con-
tinental United States (US) for two distinct future periods:
2030–2060 (future period 1) and 2070–2100 (future period
2). A total of 9 GCMs, 10 ET0 methods, and 3 RCP trajecto-
ries were used to quantify the range of future projections and
estimate the relative sensitivity of future projections to each
of these factors. In general, for all regions of the continental
US, changes in future precipitation are most sensitive to the
choice of GCM, while changes in future ET0 are most sensi-
tive to the choice of ET0 estimation method. For changes in
future water deficit, the choice of GCM is the most influential
factor in the cool season (December–March), and the choice
of ET0 estimation method is most important in the warm sea-
son (May–October) for all regions except the Southeast US,

where GCMs and ET0 have approximately equal influence
throughout most of the year. Although the choice of RCP tra-
jectory is generally less important than the choice of GCM
or ET0 method, the impact of RCP trajectory increases in
future period 2 over future period 1 for all factors. Monte
Carlo filtering results indicate that particular GCMs and ET0
methods drive the projection of wetter or drier future con-
ditions much more than RCP trajectory; however, the set of
GCMs and ET0 methods that produce wetter or drier pro-
jections varies substantially by region. Results of this study
indicate that, in addition to using an ensemble of GCMs and
several RCP trajectories, a range of regionally relevant ET0
estimation methods should be used to develop a robust range
of future conditions for water resources planning under cli-
mate change.

1 Introduction

Climate change will result in significant impacts on hydro-
logic processes. The 2014 Fifth Assessment Report (AR5) of
the Intergovernmental Panel on Climate Change (IPCC) re-
ported that climate change will significantly affect future pre-
cipitation (P ), temperature (T ), and reference evapotranspi-
ration (ET0), and these changes will affect the quantity and
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quality of water resources. The most recent report of the Na-
tional Climate Assessment and Development Advisory Com-
mittee (NCADAC, Melillo et al., 2014) indicated that the av-
erage annual temperature in the United States (US) has in-
creased by 0.7 to 0.9 ◦C since record keeping began in 1895
and is expected to continue to rise (Georgakakos et al., 2014;
Walsh et al., 2014). The NCADAC report also indicated that
Coupled Model Intercomparison Project 5 (CMIP5) general
circulation model (GCM) precipitation projections show a
consistent increase in Alaska and the far north of the con-
tinental US and a consistent decrease in the far Southwest
US, but that GCM projections are inconsistent in the pre-
cipitation transition zone of the US continent. The uncer-
tainty in climate change projections makes actionable water
resources planning difficult in many regions. In order to pre-
dict changes in the hydrologic cycle, and future water supply
and demand, estimates of changes in P , T , and ET0 must
be evaluated on a regional basis, and the uncertainty of these
estimates must be quantified (Ishak et al., 2010).

Previous research has evaluated existing and potential fu-
ture spatiotemporal changes in P , T , and ET0 for various re-
gions around the globe (e.g., Chaouche et al., 2010; Chong-
Hai and Ying, 2012; Johnson and Sharma, 2009; Kharin et
al., 2013; Maurer and Hidalgo, 2008; Quintana Seguí et al.,
2010; Sung et al., 2012; Thomas, 2000; Wang et al., 2013; Xu
et al., 2006). It is well known that future GCM projections of
temperature and precipitation vary significantly due to both
the different radiative forcing assumptions of carbon diox-
ide scenarios (e.g., the CMIP3 Special Report on Emissions
Scenarios (SRES) and CMIP5 Representative Concentra-
tion Pathways; RCP trajectories) and different GCM model
physics (Hawkins and Sutton, 2009, 2010). Future ET0 pro-
jections have been shown to depend on ET0 estimation meth-
ods in addition to GCMs. For example, Wang et al. (2015)
used projections from the CMIP3 HADCM3 model A2 sce-
nario and found that the physically based Penman–Monteith
equation, which uses less reliable GCM projection data (in-
cluding vapor pressure and solar radiation), and the empirical
temperature-based Hargreaves equation showed similar pat-
terns but different magnitudes for future ET0 changes over
the Hanjiang River basin in China. Kingston et al. (2009)
used five GCMs from the CMIP3 climate projections and six
different ET0 equations to estimate global ET0 and found that
the choice of ET0 method contributes to different projections
of the future state of water resources, which varies by re-
gion. They found that the Hamon and Jensen–Haise ET0 es-
timates showed the greatest changes in both humid and arid
regions, while the Penman–Monteith and Priestley–Taylor
estimates frequently showed the smallest change. Similarly,
McAfee (2013) used three ET0 equations with 17 CMIP3
GCMs to evaluate the uncertainty of future global ET0 pro-
jections and found that the Hamon equation showed more
significant and consistently positive trends in ET0 compared
to the Priestley–Taylor and Penman methods.

Figure 1. US climate regions identified by the National Climate
Data Center (adapted from Karl and Koss, 1984, https://www.ncdc.
noaa.gov/monitoring-references/maps/us-climate-regions.php).

Models developed to estimate future water supply and de-
mand as a result of projected climate change use many dif-
ferent types of ET0 estimation methods (Zhao et al., 2013).
Because the choice of ET0 estimation method may be as
important as the choice of GCM or RCP trajectory, better
understanding of the contribution of each of these factors
to the overall prediction uncertainty of future water avail-
ability or water deficit is necessary (Taylor et al., 2013).
Kay and Davies (2008) compared the performance of the
Penman–Monteith equation and a simple temperature-based
ET0 method using climate data from five global and eight re-
gional climate models over Britain. They found that the two
methods showed very different changes in ET0 for the pe-
riod 2071–2100 under the A2 emission scenario and differ-
ent flow predictions for three catchments when the data were
used to force a rainfall–runoff model. Kay and Davies re-
sults suggest that hydrological prediction uncertainty due to
ET0 formulation was smaller than that due to GCM structure
or RCM structure for their study region. Bae et al. (2011)
evaluated the uncertainty contributed by choice of GCM
and hydrologic model for the Chungju Dam basin, Korea.
They found that hydrologic model structural differences con-
tributed greater uncertainty than GCM selection to winter
runoff prediction. Koedyk and Kingston (2016) found that
for the Waikaia River, New Zealand, the ET0 method con-
tributed more uncertainty than GCM selection when predict-
ing ET0, but that runoff predictions were more sensitive to
GCMs than to ET0 methods. Thompson et al. (2014) eval-
uated the effect of using different GCMs and different ET0
methods on discharge predictions for the Mekong River in
Southeast Asia and found that GCM-related uncertainty was
greater than the ET0 method-related uncertainty.

In this study we perform a comprehensive evaluation of
the relative sensitivity of future P , ET0, and water deficit
(defined here as P –ET0) projections to the choice of GCM,
ET0 method, and RCP trajectory over the continental USA
using CMIP5 GCM model outputs to provide new insights
that will inform more robust future water resources planning
efforts. Variance-based global sensitivity analysis (Saltelli et
al., 2010) and Monte Carlo filtering (Rose et al., 1991) are
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Table 1. Description of reference evapotranspiration estimation methods used in this study (ET0: reference evapotranspiration).

Methods Equations1 Reference

(a) Hargreaves ET0 = 0.0135KT S0(T + 17.8)
√
δT Hargreaves and Allen (2003)

(b) Blaney–Criddle ET0 = p(0.46T + 8.13) Xu and Singh (2002)
(c) Hamon ET0 = 0.55δ2

T
Pt Xu and Singh (2002)

(d) Kharrufa ET0 = 0.34pT 1.3 Xu and Singh (2002)
(e) Irmak-Rn ET0 = 0.486+ 0.289Rn+ 0.023T Irmak et al. (2003)
(f) Irmak-Rs ET0 =−0.611+ 0.149Rs+ 0.079T Irmak et al. (2003)
(g) Dalton ET0 = (0.3648+ 0.07223u)(es− ea) Tabari et al. (2013)
(h) Meyer ET0 = (0.375+ 0.05026u)(es− ea) Tabari et al. (2013)

(i) Penman–Monteith ET0 =
0.4081(Rn−G)+γ

900
T+273u2(es−ea)

1+γ (1+0.34u2)
Allen et al. (1998)

(j) Priestley–Taylor ET0 = α
1

1+γ
(Rn−G)

λ Allen et al. (1998)

1 Variables (estimated from CMIP5 outputs): G: soil heat flux (assumed 0); γ : psychrometric constant; T : average temperature;
u2: wind speed at 2 m surface; es: saturated vapor pressure; ea: actual vapor pressure; 1: slope vapor pressure; KT :
Hargreaves–Samani coefficient; S0: extraterrestrial radiation (estimated by Julian date); δT : difference between maximum and
minimum temperature, p: percentage of total daytime hours (estimated by Julian date); Rn: net radiation; Rs: solar radiation;
Pt : saturated water vapor density; u: wind speed.

used to quantify the uncertainty and important input fac-
tors controlling these projections. Global sensitivity anal-
ysis (GSA) apportions the total output uncertainty simul-
taneously onto all the uncertain input factors described by
marginal probability density functions, and thus is preferred
over the local, one factor at a time, sensitivity analyses that
have been previously reported (Homma and Saltelli, 1996;
Saltelli, 1999). Monte Carlo filtering can identify sets of
model simulations and input factors that meet a specified
criterion or threshold. Thus global sensitivity analysis and
Monte Carlo filtering offer an opportunity to gain insight into
the sources of uncertainty and drivers of particular types of
wet/dry behavior when estimating future water deficit under
projected climate change.

2 Methods

All retrospective and future climate variables were obtained
from the CMIP5 archive (accessible for download at http:
//pcmdi9.llnl.gov/). The “historical” runs of CMIP5 were
used for the retrospective period (1950–2005) and the same
ensemble member runs (r1i1p1 ensemble) of CMIP5 were
used for two future periods: future period 1 (2030–2060),
and future period 2 (2070–2100). Data for three RCP tra-
jectories, RCP2.6, RCP4.5, and RCP8.5, were included in
the analyses. Taylor et al. (2012) described an overview of
CMIP5 and RCP trajectories and compared the differences
between CMIP5 and CMIP3 model projections.

Data from the CMIP5 archive were used to calculate
monthly mean P , ET0, and P –ET0 (water deficit) for the ret-
rospective and both future periods over each of the nine US
climate regions identified by the National Climatic Data Cen-
ter (Karl and Koss, 1984; Fig. 1). Future changes in monthly
mean P , ET0, and P–ET0 were estimated by subtracting the

monthly mean value for the retrospective period from the
monthly mean value for future period 1 or future period 2,
as appropriate (Baker and Huang, 2014).

Ten commonly used reference evapotranspiration es-
timation methods (Hargreaves, Blaney–Criddle, Hamon,
Kharrufa, Irmak-Rn, Irmak-Rs, Dalton, Meyer, Penman–
Monteith, and Priestley–Taylor) were used in this study. The
methods can be further classified into temperature (Harg-
reaves, Blaney–Criddle, Hamon, and Kharrufa), radiation
(Irmak-Rn, Irmak-Rs, and Priestley–Taylor), mass transfer
(Dalton and Meyer), and combination (Penman–Monteith)
equations. These equations are well described in many pa-
pers (e.g., Allen et al., 1998; Hargreaves and Allen, 2003;
Irmak et al., 2003; Tabari, 2010; Tabari et al., 2013; Xu and
Singh, 2001) and are summarized in Table 1 (hereafter pre-
cipitation is referred to as P , and reference evapotranspira-
tion is referred to as ET0 for convenience).

Variables directly used from the CMIP5 monthly model
output included precipitation (pr, P in this study), maxi-
mum and minimum temperature (tasmax and tasmin), ra-
diation (rlds, rlus, rsds, and rsus), air pressure (psl and ps),
and wind speed (sfcWind). The abbreviations for these vari-
ables are as defined in the CMIP5 archive and explained in
the PCMDI server (Program For Climate Model Diagno-
sis and Intercomparison, http://cmip-pcmdi.llnl.gov/cmip5/
docs/standard_output.pdf). Other variables needed in the 10
reference evapotranspiration equations were calculated using
the variables from CMIP5 monthly model output (for de-
tails, see Table 1). Monthly output that included all the vari-
ables needed for the Penman–Monteith reference evapotran-
spiration method (the most data-intensive method) was avail-
able for both the retrospective period and for the RCP2.6,
RCP 4.5, and RCP8.5 trajectories for the future periods, for
nine CMIP5 models. Table 2 lists the nine models from the
CMIP5 archive that were used in this study.
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Table 2. Description of the CMIP5 models used in this study.

Model Institute (country) Resolutions Calendar Reference

(1) BNU-ESM College of Global Change and Earth 2.8◦ lat× 2.8◦ lon No leap Ji et al. (2014)
System Science, Beijing Normal
University (China)

(2) CSIRO-MK3-6-0 University of New South 1.87◦ lat× 1.87◦ lon No leap Rotstayn et al. (2012)
Wales (Australia)

(3) GFDL-CM3 NOAA/Geophysical Fluid 2.0◦ lat× 2.5◦ lon No leap Guo et al. (2014)
Dynamics Laboratory (USA)

(4) GFDL-ESM2G NOAA/Geophysical Fluid 2.0◦ lat× 2.5◦ lon No leap Taylor et al. (2012)
Dynamics Laboratory (USA)

(5) MIROC-ESM Atmosphere and Ocean Research 2.8◦ lat× 2.8◦ lon Leap year Watanabe et al. (2011)
Institute, National Institute for
Environmental Studies, and Japan
Agency for Marine-Earth Science and
Technology (Japan)

(6) MPI-ESM-LR Max Planck Institute for 1.87◦ lat× 1.87◦ lon Leap year Block and Mauritsen (2013)
Meteorology (Germany)

(7) MRI-CGCM3 Meteorological Research 1.12◦ lat× 1.12◦ lon Leap year Yukimoto et al. (2012)
Institute (Japan)

(8) NorESM1-M Norwegian Climate 1.9◦ lat× 2.5◦ lon No leap Bentsen et al. (2013)
Centre (Norway)

(9) BCC-CSM1.1 Beijing Climate Center (China) 2.8◦ lat× 2.8◦ lon No leap Xiao-Ge et al. (2013)

The sensitivity of changes in future P , ET0, and water
deficit (defined here as P –ET0) to the choice of GCM, ET0
estimation method, and RCP trajectory was evaluated us-
ing the variance-based GSA method of Saltelli et al. (2010).
Given a model of the form Y = f (X1X2, . . .Xk), with Y a
scalar, the variance-based first-order effect for a generic fac-
tor Xi can be written as (Saltelli et al., 2010)

VXi
(
EX∼i (Y |Xi)

)
, (1)

where Xi is the ith factor (in our case either GCMs, ET0
method, or RCP trajectory) and X∼i is the vector of all fac-
tors except Xi . The expectation operator EX∼i (Y |Xi) indi-
cates that the mean of Y is taken over all possible values of
X exceptXi (i.e., X∼i) while keepingXi fixed. The variance,
VXi , is then taken of this quantity over all possible values of
Xi .

The first-order sensitivity coefficient is expressed as

Si =
VXi (EX∼i (Y |X))

V (Y )
, (2)

where V (Y ) is the total variance of Y over all Xi . Si
is a normalized index varying between 0 and 1, because
VXi

(
EX∼i (Y |Xi)

)
varies between 0 and V (Y ) according to

the identity (Mood et al., 1974)

VXi
(
EX∼i (Y |Xi)

)
+EXi

(
VX∼i (Y |Xi)

)
= V (Y ) . (3)

As indicated above, VXi
(
EX∼i (Y |Xi)

)
is the first-order ef-

fect of Xi on the model output Y , while EXi
(
VX∼i (Y |Xi)

)

is called the residual. The total effect index, including first-
order and higher-order effects (i.e., interactions between fac-
torXi and other factors) of the factorXi on the model output
is calculated (Saltelli et al., 2010):

STi =
EX∼i (VXi (Y |X∼i))

V (Y )
= 1−

VX∼i

(
EXi (Y |X∼i)

)
V (Y )

. (4)

The first-order sensitivity of estimated future changes in
mean monthly P , ET0, and P –ET0 to choice of GCM, ET0
estimation method, and RCP trajectory was calculated over
the nine US climate regions for each future period in order
to evaluate the relative contributions of each of these factors
in the uncertainty of future changes. A total of 270 simu-
lations (9 GCMs× 10 evapotranspiration methods× 3 RCP
trajectories) was used in the analysis. Sensitivity of projected
changes in P was evaluated for both choice of GCM and
choice of RCP trajectory. Sensitivity of projected changes in
ET0 and P –ET0 was evaluated for choice of GCM, choice of
ET0 estimation method, and choice of RCP trajectory.

For projected changes in water deficit (P –ET0), Monte
Carlo filtering (Saltelli et al., 2008) was used to identify
whether projected wetter or drier future conditions (i.e.,
larger or smaller water deficit) could be attributed to spe-
cific GCMs, ET0 estimation methods, or RCP trajectories.
For each future period the ensemble of 270 projections of
change in water deficit were categorized as either wet fu-
ture condition (mean change in (P −ET0)≥ 0) or dry fu-
ture condition (mean change in (P −ET0) < 0). Next for
each factor (Xi =GCM, ET0 method, RCP trajectory), the
histograms of wet (fwet|Xi) and dry (fdry|Xi) future condi-
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Figure 2. The change in the annual mean (a) P , (b) ET0, and (c) P –
ET0 over the US. All units are mm day−1 and the change is defined
as the mean of 2070–2100 minus that of 1950–2005. These changes
are averaged over all GCMs, ET0 estimation methods, and RCP
trajectories.

tions over the range of possible values of that factor were
estimated. To identify the factors that are most responsible
for driving the model into projected wet or dry future con-
ditions for each factor, Xi , the distributions (fwet|Xi) and
(fdry|Xi) were tested for significant difference using the X2

two-sample test for categorical variables with α = 0.05 (Rao
and Scott, 1981). If for a given factorXi the two distributions
are significantly different, then Xi is a key factor in driving
into either a wet or dry condition (Saltelli et al., 2008).

Because GCM predictions are known to contain system-
atic biases (Hwang and Graham, 2013; Wood et al., 2002,
2004), we evaluated the sensitivity of the mean monthly
change in raw climate predictions between retrospective and
future periods to the choice of GCM, ET0 estimation method,
and RCP trajectories. This is analogous to using the delta
change GCM bias-correction method that involves shifting
the mean of a series of observed climate data by the mean dif-
ference in raw GCM output between the corresponding ob-
served time period and the desired future period. Teutschbein
and Seibert (2012) pointed out that all bias-correction meth-
ods are based on the stationarity principle that assumes that

Figure 3. The standard deviation of the change in the annual mean
(a) P , (b) ET0, and (c) P–ET0 over the US. All units are mm day−1

and the change is defined as the average of 2070–2100 minus that of
1950–2005. The standard deviations are estimated over all GCMs,
ET0 estimation methods, and RCP trajectories.

similar biases occur in the retrospective and future predic-
tions, and thus the same bias-correction algorithm may be
applied to both. Muerth et al. (2013) found that the impact of
bias correction on the relative change of flow indicators be-
tween retrospective and future periods was weak for most
indicators; however, Pierce et al. (2015) found that some
bias-correction methods altered model-projected changes in
mean precipitation and temperature. LaFond et al. (2014)
found that the delta change GCM bias-correction method was
more useful for simulating hydrologic extreme events than
the quantile mapping bias-correction method, as it preserved
daily climate variability better. In this study, we differenced
raw rather than bias-corrected GCM outputs in order to pre-
vent spurious alteration of the climate change signal between
retrospective and future GCMs that might be induced by the
bias-correction method.
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Figure 4. The change in monthly mean water deficit (P –ET0) over nine different regions. Blue lines represent future period 1 (2030–2060),
and red lines represent future period 2 (2070–2100). Error bars represent 1 standard deviation of each value. The change is defined as the
mean of future periods minus that of retrospective periods (1950–2005).

3 Results

3.1 Projected P , ET0, and water deficit change in the
21st century

Future P , ET0, and water deficit projections include large un-
certainties stemming from different sources. Figures 2 and 3
present maps of the mean change (Fig. 2) and the standard
deviation of change (Fig. 3) in annual P (top chart), ET0
(middle), and water deficit (P –ET0; bottom) over the con-
tinental US calculated over all GCMs, ET0 estimation meth-
ods, and RCP trajectories for future period 2 (2070–2100).
Major portions of the West, Southwest, and South show a
mean decrease in annual precipitation, while the rest of the
continental US shows a mean increase (Fig. 2a). Future an-
nual ET0 shows a mean increase over retrospective annual
ET0 over the entire US (Fig. 2b), with the largest increase in
the South region. Following the patterns of P and ET0, future
annual water deficit (P –ET0) shows a significant mean de-
crease in the West, Southwest, and South regions, and a slight

decline or negligible change in most other regions (Fig. 2c).
These mean changes in annual P , ET0, and P –ET0 are rela-
tively small compared to the standard deviation of changes in
annual P , ET0, and P –ET0 (Fig. 3). Water deficit in particu-
lar has a large standard deviation, resulting in coefficients of
variation larger than 1 throughout the continental US. Simi-
lar results are shown in Figs. S1 and S2 for future period 1
(2030–2060) in the Supplement.

Figure 4 shows the seasonal changes in the monthly mean
and standard deviation of water deficit (P –ET0) over the
nine US regions. Blue and red lines represent the changes
in monthly mean water deficit for future period 1 and fu-
ture period 2, respectively, and the error bars represent 1
standard deviation around each mean value. All regions of
the continental US show drier conditions (negative mean
changes) in the summer season (June–August). Southern re-
gions (Southeast, South, Southwest, and West) show drier
conditions throughout the year; however, northern portions
of the US (i.e., the Northeast, Ohio Valley, Upper Midwest,
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Figure 5. First-order sensitivity analysis results of change in precipitation. Solid lines represent future period 1 (2030–2060) and dotted lines
represent future period 2 (2070–2100). Blue lines represent the first-order effect of GCMs and green lines represent the first-order effect of
RCPs.

Northern Rockies and Plains, and Northwest) show wetter
conditions (positive mean changes) in the winter season.

3.2 Global sensitivity analysis of projected changes

Figure 5 shows the first-order sensitivity of change in P to
GCMs and RCP trajectory over the nine US climate regions
for future periods 1 and 2. For projected changes in P , the
choice of GCM is generally more important than the choice
of RCP trajectory for all regions and both future periods.
First-order sensitivities of mean change in ET0 to GCM, ET0
method, and RCP trajectory are shown in Fig. 6. This figure
clearly shows that the choice of ET0 method is the most influ-
ential factor for projecting change in ET0 for both future pe-
riods, except for the month of March in the Northeast, Upper
Midwest, and Northern Rockies and Plains. High sensitivity
of mean change in ET0 to GCM selection occurs in spring
for several regions (Northeast, Upper Midwest, and North-
ern Rockies and Plains), indicating a divergence of model
predictions during this time. The influence of the RCP tra-
jectory on ET0 increases in future period 2 over future pe-
riod 1, with a concomitant decrease in the influence of both
ET0 method and GCM. In future period 1 the GCM sensi-
tivity coefficients are greater than the RCP trajectory sensi-
tivity coefficients over most regions; however, in future pe-
riod 2 the RCP sensitivity coefficients become more impor-

tant. Figure 7 shows that projected change in water deficit
depends strongly on both the choice of GCM and ET0 es-
timation method. In all regions except the Southeast, pro-
jected change in water deficit is most sensitive to ET0 estima-
tion method in the warm season (May through October) and
most sensitive to GCM in the cool season (December through
March). For the Southeast region, the sensitivity coefficients
for GCM and ET0 method are quite similar throughout the
year. The sensitivity coefficients for RCP trajectory are very
low in future period 1, but increase in future period 2, becom-
ing approximately equal to the GCM sensitivity coefficients
in the summer season in future period 2.

3.3 Change in annual mean water deficit projections
using different ET0 methods

Figure 8 shows the change in annual mean water deficit
over all nine GCMs for the RCP 4.5 trajectory in future pe-
riod 1 (2030–2060) predicted by the 10 different ET0 meth-
ods used in this study (a: Hargreaves; b: Blaney–Criddle;
c: Hamon; d: Kharrufa; e: Irmak-Rn; f: Irmak-Rs; g: Dalton;
h: Meyer; i: Penman–Monteith; j: Priestley–Taylor). This fig-
ure clearly shows that the changes in water deficit for future
period 1 are diverse and depend strongly on the choice of
ET0 method. Except for the Hargreaves method (Fig. 8a), the
temperature-based methods (e.g., Blaney–Criddle, Fig. 8b;
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Figure 6. First-order sensitivity analysis results of change in reference evapotranspiration. Solid lines represent future period 1 (2030–2060)
and dotted lines represent future period 2 (2070–2100). Blue lines represent the first-order effect of GCMs, red lines represent the first-order
effect of ET0 estimation methods, and green lines represent the first-order effect of RCPs.

Hamon, Fig. 8c; and Kharrufa, Fig. 8d) predict drier con-
ditions over the continental US than the other methods.
The mass transfer-based methods (e.g., Dalton, Fig. 8g, and
Meyer, Fig. 8h) predict generally wetter conditions over
most of the continental US compared to other methods.
The combination method (Penman–Monteith, Fig. 8i) and
the radiation-based methods (Irmak-Rn, Fig 8e; Irmak-Rs,
Fig. 8f; and Priestley–Taylor, Fig. 8j) generally fall be-
tween the mass transfer-based and temperature-based meth-
ods, with the combination methods producing slightly drier
conditions. Although most methods predict similar spatial
patterns of water deficit over the continental US (generally
drier conditions in the West, Southwest, and South, and gen-
erally wetter elsewhere), the Hamon method predicts a dif-
ferent pattern of water deficit over the Southwest, South, and
Northern Rockies and Plains regions.

3.4 Monte Carlo filtering

Monte Carlo filtering (Saltelli et al., 2008) was conducted to
further investigate whether projected wetter or drier future
conditions (i.e., larger or smaller annual mean water deficit)
could be attributed to specific GCMs, ET0 estimation meth-
ods, or RCP trajectories. Figure 9 shows the histograms for
wet conditions and dry conditions in future period 2 over the

Southeast US by GCMs, the ET0 method, and RCP trajectory
for the example month of July. Figure 10 shows similar his-
tograms for the Northern Rockies and Plains, a region with
differing behavior from the Southeast US. Table 3 shows the
P value results for the X2 test for all months in both futures
for the Southeast and Northern Rockies and Plains regions.
P values greater than 0.05 (bold values) indicate the two his-
tograms are not significantly different from each other. Ta-
bles 4–6 show the fraction of time that a particular GCM
(Table 4), ET0 method (Table 5), or RCP trajectory (Table 6)
projected drier future conditions in each of the nine US cli-
mate regions for each month, with fractions higher than 0.5
shaded in grey.

4 Discussion

Drier conditions in southern regions (Southeast, South,
Southwest, and West) and wetter conditions in northern re-
gions (Northeast, Ohio Valley, Upper Midwest, Northern
Rockies and Plains, and Northwest) are consistent (Fig. 4)
with those reported by McAfee (2013), who used three ET0
methods (Hamon, Priestley–Taylor, and Penman–Monteith)
to estimate global changes in ET0 over the entire globe.
As found by Baker and Huang (2014) for both CMIP3 and
CMIP5 projections, mean ET0 is projected to be higher in fu-
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Table 3. P values of a Chi-square two-sample test for differences among wet condition vs. dry condition pdfs: Southeast US (SE US) and
Northern Rockies and Plains (NRP; West North Central) US (bold values indicate that pdfs are not statistically significantly different at
p = 0.05).

Future period 1 Future period 2

Month GCM ET0 RCP GCM ET0 RCP

SE 1 0.0000 0.0689 0.3701 0.0000 0.1823 0.1853
US 2 0.0000 0.0889 0.4434 0.0000 0.0269 0.0000

3 0.0000 0.0365 0.0306 0.0000 0.0000 0.1339
4 0.0000 0.0000 0.6602 0.0000 0.0000 0.0001
5 0.0000 0.0000 0.3223 0.0000 0.0000 0.0041
6 0.0000 0.0000 0.0809 0.0000 0.0000 0.0006
7 0.0000 0.0000 0.2855 0.0000 0.0000 0.0749
8 0.0000 0.0000 0.2805 0.0000 0.0000 0.0074
9 0.0000 0.0000 0.8646 0.0000 0.0000 0.0044
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
11 0.0000 0.0001 0.0000 0.0000 0.0001 0.2003
12 0.0000 0.0117 0.3083 0.0000 0.0000 0.0000

NRP 1 0.0000 0.0000 0.1931 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0010 0.0000 0.0000 0.7617
3 0.0000 0.0000 0.0538 0.0000 0.0000 0.0769
4 0.0000 0.0000 0.7882 0.0002 0.0000 0.8925
5 0.0000 0.0000 0.4047 0.0000 0.0000 0.1103
6 0.0000 0.0000 0.3839 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.5321 0.0001 0.0008 0.0000
8 0.0000 0.0001 0.1544 0.0000 0.0686 0.0000
9 0.0000 0.0000 0.4242 0.0000 0.0000 0.2002
10 0.0000 0.0000 0.6688 0.0000 0.0213 0.0001
11 0.0000 0.0000 0.1334 0.0000 0.0000 0.1948
12 0.0000 0.0000 0.7617 0.0000 0.0000 0.6561

Table 4. The fraction of future dry conditions over all months by GCMs (future periods 1 and 2).

GCM SE South West NR NE NW UM SW Ohio

Future period 1 BNU-ESM 0.575 0.589 0.511 0.367 0.436 0.322 0.467 0.453 0.492
– dry condition CSIRO-mk3-6-0 0.489 0.689 0.639 0.547 0.297 0.519 0.381 0.653 0.481

GFDL-CM3 0.414 0.608 0.686 0.419 0.403 0.525 0.383 0.647 0.425
GFDL-ESM2G 0.731 0.900 0.758 0.453 0.486 0.486 0.397 0.828 0.617
MIROC-ESM 0.631 0.594 0.822 0.625 0.636 0.708 0.686 0.658 0.611
MPI-ESM-LR 0.375 0.747 0.694 0.542 0.597 0.611 0.558 0.756 0.575
MRI-CGCM3 0.494 0.592 0.639 0.400 0.544 0.553 0.350 0.547 0.506
NorESM1-M 0.492 0.764 0.778 0.475 0.400 0.611 0.475 0.753 0.508
BCC-CSM 0.728 0.739 0.828 0.642 0.603 0.614 0.564 0.822 0.656

Future period 2 BNU-ESM 0.608 0.775 0.597 0.400 0.522 0.461 0.478 0.522 0.572
– dry condition CSIRO-mk3-6-0 0.367 0.667 0.583 0.528 0.225 0.528 0.433 0.633 0.461

GFDL-CM3 0.467 0.767 0.789 0.461 0.514 0.542 0.508 0.794 0.469
GFDL-ESM2G 0.722 0.831 0.694 0.478 0.519 0.525 0.397 0.672 0.581
MIROC-ESM 0.672 0.686 0.897 0.742 0.731 0.728 0.700 0.739 0.664
MPI-ESM-LR 0.442 0.800 0.778 0.519 0.542 0.639 0.450 0.800 0.450
MRI-CGCM3 0.508 0.703 0.581 0.422 0.481 0.528 0.439 0.517 0.556
NorESM1-M 0.594 0.808 0.722 0.500 0.461 0.550 0.481 0.731 0.594
BCC-CSM 0.628 0.697 0.875 0.708 0.567 0.708 0.556 0.825 0.603
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Figure 7. First-order sensitivity analysis results of change in P –ET0. Solid lines represent future period 1 (2030–2060) and dotted lines
represent future period 2 (2070–2100). Blue lines represent the first-order effect of GCMs, red lines represent the first-order effect of ET0
estimation methods, and green lines represent the first-order effect of RCPs.

ture period 2 than in future period 1, and mean precipitation
projections are approximately equivalent in future period 1
and future period 2. Thus the projected mean changes in wa-
ter deficit for future period 2 (red lines in Fig. 4) are larger
in magnitude than the projected changes for future period 1
(blue lines). In all regions, and for both future periods, the 1
standard deviation error bars bracket zero mean change, in-
dicating large uncertainty in the projections throughout the
year.

The choice of GCM is generally more important than the
choice of RCP trajectory for projected changes in P (Fig. 5).
This is consistent with results found by Gaetani and Mo-
hino (2013) and Knutti and Sedláček (2012), who showed
significant differences in precipitation predictions among
CMIP5 models. It should be noted that these results do not
indicate that the choice of RCP trajectory does not affect the
change in precipitation, only that the choice of RCP trajec-
tory is less influential than the choice of GCM. There are no
consistent seasonal patterns of the first-order sensitivity co-
efficients for either GCM or RCP trajectories in either future
period. However, during the spring months, the sensitivity of
change in P to the choice of RCP trajectory increases sub-
stantially in future period 2 compared to future period 1 in
the Northeast, Ohio Valley, Upper Midwest, South, South-
west, and West regions.

Higher sensitivity of mean change in ET0 to the choice of
ET0 estimation method than the choice of GCM (Fig. 6) is
consistent with those found by Kingston et al. (2009), who
showed that projected increase in ET0 varied by more than
100 % between ET0 methods, and Schwalm et al. (2013),
who found that the choice of ET0 estimation method is sen-
sitive and even more influential than the choice of GCM in
predicting ET0. However, neither of these studies looked at
the influence of RCP trajectory on ET0 projections, which
increases in future period 2 over future period 1, causing a
decrease in the sensitivity coefficient of both the GCM and
the ET0 method in future period 2. Burke and Brown (2008)
evaluated uncertainties in the projection of future drought us-
ing several drought indices. They found that there are large
uncertainties in regional changes in drought, and changes in
drought are dependent on both index definition and GCM
ensemble members. Similarly, our results for the projected
change in water deficit vary by region and depend strongly
on the choice of GCM and ET0 estimation method, but are
relatively less sensitive to RCP trajectory (Fig. 7). These
findings are similar to results reported by Orlowsky and
Seneviratne (2013), who found that the greenhouse gas emis-
sion scenario uncertainty is not as important as differences
among GCMs or internal climate variability when predict-
ing the Standardized Precipitation Index (SPI) and soil mois-
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Figure 8. The change in the annual mean P –ET0 of the RCP 4.5 scenario by 10 different evapotranspiration methods. All units are mm day−1

and the change is defined as the mean of 2030–2060 minus that of 1950–2005. (All results are interpolated to 1◦× 1◦ grids and averaged
over nine different GCMs.)

ture (SMA). However, they also found that uncertainty due to
greenhouse gas emission scenarios increased in later future
periods. Taylor et al. (2013) showed the patterns of changes
in future drought were similar between the A1B scenario in
CMIP3 and the RCP2.6 trajectory in CMIP5, reinforcing our
finding that the choice of RCP trajectory is less important
than the choice of GCM and ET0 estimation method when
estimating future water deficit.

Similar to the results of Kay and Davies (2008) and Bae
et al. (2011) the results of our GSA show that the choice of
ET0 method has important implications when making future
ET0 projections and future water deficit projections (Fig. 8).
Kingston et al. (2009) recommended the use of different ET0
equations to evaluate global ET0, and Wang et al. (2015)
found that although different methods predict similar future
ET0, there are important differences in uncertainties due to
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Table 5. The fraction of future dry conditions over all months by the ET0 estimation method and region (future periods 1 and 2).

ET0 SE South West NR NE NW UM SW Ohio

Future period 1 Hargreaves 0.302 0.426 0.559 0.333 0.309 0.466 0.321 0.485 0.324
– dry condition Blaney-Criddle 0.738 0.880 0.898 0.840 0.738 0.762 0.784 0.904 0.769

Hamon 0.633 0.818 0.667 0.531 0.494 0.497 0.457 0.713 0.549
Kharrufa 0.883 0.957 0.889 0.636 0.667 0.698 0.636 0.886 0.738
Irmak-Rn 0.522 0.673 0.694 0.491 0.512 0.556 0.494 0.679 0.580
Irmak-Rs 0.525 0.722 0.731 0.463 0.485 0.546 0.460 0.679 0.556
Dalton 0.364 0.503 0.583 0.340 0.343 0.426 0.296 0.509 0.380
Meyer 0.367 0.531 0.596 0.346 0.324 0.435 0.290 0.512 0.367
PM 0.534 0.685 0.694 0.472 0.469 0.525 0.481 0.676 0.540
PT 0.608 0.719 0.750 0.515 0.552 0.590 0.515 0.753 0.608

Future period 2 Hargreaves 0.352 0.506 0.605 0.420 0.355 0.491 0.380 0.537 0.361
– dry condition Blaney-Criddle 0.765 0.907 0.880 0.877 0.769 0.818 0.830 0.901 0.806

Hamon 0.633 0.861 0.679 0.552 0.491 0.528 0.460 0.719 0.574
Kharrufa 0.883 0.954 0.898 0.704 0.713 0.728 0.682 0.883 0.784
Irmak-Rn 0.515 0.738 0.710 0.494 0.491 0.574 0.503 0.685 0.543
Irmak-Rs 0.534 0.796 0.753 0.485 0.497 0.562 0.478 0.719 0.562
Dalton 0.349 0.596 0.620 0.389 0.358 0.475 0.315 0.540 0.373
Meyer 0.352 0.596 0.630 0.383 0.349 0.488 0.309 0.546 0.361
PM 0.543 0.744 0.701 0.475 0.485 0.531 0.463 0.679 0.528
PT 0.639 0.784 0.765 0.509 0.562 0.593 0.515 0.716 0.608

Table 6. The fraction of future dry conditions over all months by RCP trajectory and region (future periods 1 and 2).

RCP SE South West NR NE NW UM SW Ohio

Future period 1 2.6 0.551 0.657 0.665 0.507 0.502 0.543 0.495 0.644 0.553
– dry condition 4.5 0.553 0.698 0.739 0.515 0.475 0.554 0.482 0.731 0.556

8.5 0.539 0.719 0.715 0.468 0.491 0.554 0.443 0.665 0.515

Future period 2 2.6 0.516 0.649 0.657 0.486 0.524 0.515 0.465 0.617 0.545
– dry condition 4.5 0.490 0.731 0.712 0.510 0.476 0.584 0.494 0.658 0.528

8.5 0.664 0.864 0.803 0.590 0.520 0.637 0.521 0.803 0.577

ET0 estimation methods and input data reliability. Currently
many hydrological models use a single evapotranspiration
method for simulation, which may substantially increase the
uncertainty and reduce the reliability of future projections.
Our results strongly indicate that an ensemble of ET0 estima-
tion methods should be used to understand potential future
water availability and water deficit due to climate change.

Monte Carlo filtering results (Fig. 9 and 10, Table 3) in-
dicate that GCMs and ET0 methods both produce statisti-
cally significant different wet condition and dry condition
histograms in both the Southeast and Northern Rockies and
Plains regions for almost all months in both future periods.
This indicates that particular GCMs and ET0 methods tend to
systematically produce wet or dry conditions. Some GCMs
(i.e., MIROC-ESM and BCC-CSM; Table 4) and ET0 meth-
ods (i.e., Priestley–Taylor, Blaney–Criddle, and Kharrufa;
Table 5) predict dry conditions the majority of the time for
all regions in both future periods. However, the remaining
GCMs and ET0 methods project both wetter and drier fu-

tures, depending on the region and future period. Results in
Tables 4 through 6 show that for the South, West, and South-
west regions, drier conditions are predicted the majority of
the time in both future periods by all GCMs and RCP trajec-
tories, and by all ET0 methods except Hargreaves. For RCP
trajectory, P values indicate that the histograms are statis-
tically significantly different in fewer cases than for either
GCMs or ET0 methods for both future periods 1 and 2 (Ta-
ble 3). These results are consistent with the first-order sen-
sitivity coefficient results that showed the RCP trajectory is
not as important a factor as GCMs or ET0 methods in driv-
ing differences in future projections, but that the sensitivity
to choice of RCP trajectory increases in future period 2.

GCMs estimate some climate variables, such as tempera-
ture, with higher confidence than other variables (Randall et
al., 2007). However, for some evapotranspiration estimation
methods the effect of temperature on evaporation is smaller
than other climate variables (Linacre, 1994; Roderick et al.,
2009a, b; Thom et al., 1981). We found that temperature and

Hydrol. Earth Syst. Sci., 20, 3245–3261, 2016 www.hydrol-earth-syst-sci.net/20/3245/2016/



S. Chang et al.: Sensitivity of future continental United States water deficit projections 3257

Figure 9. Histograms for projected future period 2 wet conditions and dry conditions in the Southeast US by GCMs, the ET0 method, and
RCP trajectory for the month of July.

Figure 10. Histograms for projected future period 2 wet conditions and dry conditions in the Northern Rockies and Plains US by GCMs, the
ET0 method, and RCP trajectory for the month of July.

net radiation from the CMIP5 GCMs show increasing trends
over the 2005–2100 time period, while wind speed and sur-
face pressure are relatively constant (Fig. S3). Because we
considered various ET0 estimation methods our results in-
clude the impacts of the different physics represented in the
ET0 methods, the projected changes in each of the climate

variables contributing to the different ET0 methods, and the
reliability of the predictions of each variable.
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5 Summary and conclusions

Future changes in precipitation and evapotranspiration will
lead to changes in the hydrologic balance. This study clearly
shows that the uncertainty caused by different GCMs, ET0
methods, and RCP trajectories makes actionable water re-
sources planning based on climate change projections dif-
ficult. Understanding and quantifying how these projected
changes vary with choice of GCM, ET0 method, and RCP
trajectory is important for designing robust ensembles of sce-
narios to include in future water resources planning. This
study assessed the future mean change in monthly precip-
itation, evapotranspiration, and water deficit (P–ET0) pro-
jected by CMIP5 simulations over the continental US and an-
alyzed the sensitivity of the projected changes to the choice
of GCM, ET0 estimation method, and RCP trajectory. Nine
GCMs, 10 ET0 estimation methods, and 3 RCP trajectories
were included in the analyses. Variance-based global sensi-
tivity analysis (Saltelli et al., 2010) was conducted in order to
determine the relative contributions of the choice of GCMs,
ET0 estimation methods, and RCP trajectory to uncertainty
in future prediction. Monte Carlo filtering was used to inves-
tigate whether particular GCMs, ET0 methods, and/or RCP
scenarios consistently led to wet or dry future projections.

The global sensitivity analyses showed that projected
changes in precipitation are more sensitive to the choice of
GCM than the choice of RCP trajectory over the entire con-
tinental US for both future periods. However, the choice of
RCP trajectory becomes more important in future period 2.
The most sensitive factor for the future ET0 projections is
the choice of ET0 estimation method for all regions in both
future periods. The first-order sensitivity of projected change
in future ET0 to the choice of RCP trajectory increases in fu-
ture period 2 compared to future period 1, with a concomitant
decrease in the first-order sensitivity to the choice of GCM.
For projected change in future water deficit, the choice of
ET0 method constitutes the dominant source of uncertainty
in warmer months (May through September), and the choice
of GCM is the dominant source of uncertainty in the cooler
months (November through March) over all regions except
the Southeast, where the sensitivity of GCM and ET0 method
are roughly equal throughout the year. Sensitivity of change
in future water deficit to RCP trajectory is very small for fu-
ture period 1, but increased in future period 2.

Monte Carlo filtering results indicated that both GCMs
and ET0 methods produced statistically different histograms
for wetter or drier future conditions (i.e., larger or smaller
mean future water deficit) for almost all months in both fu-
ture periods. Two GCMs (MIROC-ESM and BCC-CSM) and
three ET0 methods (Priestley–Taylor, Blaney–Criddle, and
Kharrufa) predicted dry conditions the majority of the time
for all regions in both future periods; however, the remain-
ing GCMs and ET0 methods projected both wetter and drier
futures, depending on the region.

Results of this study indicate that when predicting the ef-
fects of future climate on water resources, the choice of evap-
otranspiration method should be carefully evaluated. Rather
than the typical practice of using a single ET0 method to
drive a hydrologic model with future climate projections, an
ensemble of ET0 methods should be used in addition to an
ensemble of GCMs and a variety of RCP trajectories. The
GSA methodology adopted here assumed that all the GCMs,
ET0 methods, and RCP trajectories used in this study were
equally appropriate for use in all US regions (i.e., the sensi-
tivity coefficients were evaluated by equally weighting each
GCM, ET0 method, and RCP trajectory), which is likely not
to be the case. When making future projections of potential
climate change in water resources, reliability ensemble av-
eraging (REA; Giorgi and Mearns, 2002) or Bayesian-based
indicator-weighting (Asefa and Adams, 2013; Tebaldi et al.,
2005; Xing et al., 2014) could be used to weight the results of
an ensemble of GCMs and ET methods based on how close
the retrospective GCM–ET0 method predictions agree with
past observations (bias criterion) and how well the future
GCM–ET0–RCP projections agree with other future GCM–
ET0–RCP predictions (convergence criterion).

This study assumed that ET0 methods that have been de-
veloped and parameterized based on vegetation response to
current CO2 levels and climatic conditions will be valid un-
der future CO2 levels and climatic conditions. Future re-
search should explore the validity of this assumption by
incorporating potential changes in plant transpiration (e.g.,
stomatal conductance) to changing CO2 levels into the ET0
estimation methodologies.

6 Data availability

The underlying data of this research can be downloaded from
the Program For Climate Model Diagnosis and Intercompar-
ison (PCMDI, http://pcmdi-cmip.llnl.gov/cmip5/index.html)
and the North American Land Data Assimilation System
(NLDAS-2, http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.
php).

The Supplement related to this article is available online
at doi:10.5194/hess-20-3245-2016-supplement.
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