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Abstract. A parameter regionalization scheme to transfer pa-
rameter values from gaged to ungaged areas for a monthly
water balance model (MWBM) was developed and tested for
the conterminous United States (CONUS). The Fourier Am-
plitude Sensitivity Test, a global-sensitivity algorithm, was
implemented on a MWBM to generate parameter sensitivi-
ties on a set of 109 951 hydrologic response units (HRUs)
across the CONUS. The HRUs were grouped into 110 cali-
bration regions based on similar parameter sensitivities. Sub-
sequently, measured runoff from 1575 streamgages within
the calibration regions were used to calibrate the MWBM
parameters to produce parameter sets for each calibration
region. Measured and simulated runoff at the 1575 stream-
gages showed good correspondence for the majority of the
CONUS, with a median computed Nash–Sutcliffe efficiency
coefficient of 0.76 over all streamgages. These methods max-
imize the use of available runoff information, resulting in a
calibrated CONUS-wide application of the MWBM suitable
for providing estimates of water availability at the HRU res-
olution for both gaged and ungaged areas of the CONUS.

1 Introduction

The WaterSMART program (http://water.usgs.gov/
watercensus/WaterSMART.html) was started by the
United States (US) Department of the Interior in February
2010. Under WaterSMART, the National Water Census
(NWC) was proposed as one of the US Geological Survey’s
(USGS) key research directions with a focus on devel-

oping new hydrologic tools and assessments. One of the
major components of the NWC is to provide estimates of
water availability at a subwatershed resolution nationally
(http://water.usgs.gov/watercensus/streamflow.html) with
the goal of determining if (1) the nation has enough fresh-
water to meet both human and ecological needs and (2) this
water will be available to meet future needs. Streamflow
measurements do not provide direct observations of water
availability at every location of interest; approximately
72 % of land within the conterminous US is gaged, with
approximately 13 % of these gaged areas being unaffected
by anthropogenic effects (Kiang et al., 2013). This creates
the challenge of determining the best method to transfer in-
formation from gaged catchments to data-poor areas where
results cannot be calibrated or evaluated with measured
streamflow (Vogel, 2006). This transfer of model parameter
information from gaged to ungaged catchments is known as
hydrologic regionalization (Blöschl and Sivapalan, 1995).

Many hydrologic regionalization methods have focused on
developing measures of similarity between gaged and un-
gaged catchments using spatial proximity and physical char-
acteristics. These methods are highly dependent on the com-
plexity of the terrain and scale at which the relations are de-
rived. Spatial proximity is considered the primary explana-
tory variable for hydrologic similarity (Sawicz et al., 2011)
because of the first-order effects of climatic and topographic
controls on hydrologic response. Close proximity, however,
does not always result in hydrologic similarity (Vandewiele
and Elias, 1995; Smakhtin, 2001; Ali et al., 2012).

Physical characteristics have been used as exploratory
variables to develop a better understanding of the relation
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between model parameters that represent model function,
and physical properties of the catchment (Merz and Blöschl,
2004). The relation between model parameters and the rel-
evant physical characteristics, expressed for example as a
form of multivariate regression, can be transferred to un-
gaged catchments (Merz and Blöschl, 2004). Model param-
eter definitions are by nature ambiguous and often difficult
to correlate to a small number of meaningful variables such
as physical and climatic characteristics (Zhang et al., 2008);
some studies have found no significant correlation between
catchment attributes and model parameters (Seibert, 1999;
Peel et al., 2000), whereas others found that high correlation
does not guarantee parameters that result in reliable model
simulations of measured data (Sefton and Howarth, 1998;
Kokkonen et al., 2003; Oudin et al., 2010). Physical charac-
teristics also are used to classify catchments into discrete re-
gions or clusters based on similarity in multi-dimensional at-
tribute space (Oudin et al., 2008, 2010; Samuel et al., 2011).
While these methods have indicated some success in simulat-
ing behavior of specific hydrologic components such as base
flow (Santhi et al., 2008), other efforts utilizing discrete clus-
ters performed poorly in explaining variability of measured
streamflow (McManamay et al., 2011).

Two important components of the transfer of parameters
to ungaged catchments are the identification of (1) influen-
tial (and non-influential) parameters, and (2) geographic ex-
tents and scales at which parameters exert control on model
function. Reducing the number of parameters is important
for calibration efficiency by reducing the structural bias of
the model and the uncertainty of results where they cannot
be verified or confirmed (van Griensven et al., 2006). A high
number of calibrated, poorly constrained parameters can of-
ten mask data or structural errors, which can go undetected
and reduce the skill of the model in replicating results out-
side of calibration conditions (Kirchner, 2006; Blöschl et al.,
2013). This increases the potential for equifinality of param-
eter sets and higher model uncertainty that can be propagated
to model results (Troch et al., 2003).

Sensitivity analysis (SA) has advanced the understanding
of parameter influence on model behavior and structural un-
certainty. SA measures the response of model output to vari-
ability in model input and/or model parameter values. SA
partitions the total variability in the model response to each
individual model parameter (Reusser et al., 2011) and results
in a more defined set of parameters and parameter ranges.
Identification of sensitive parameters and their ranges is im-
portant for hydrologic model applications as key model pa-
rameters can vary spatially across physiographic regions, and
also temporally (Tang et al., 2007; Guse et al., 2013).

Until recently, the high computational demands of SA
have limited most implementations of hydrologic model SA
to local sensitivity algorithms that evaluate a single param-
eter at a time (Tang et al., 2007). Global SA uses random
or systematic sampling designs of the entire parameter space
to quantify variation in model output (van Griensven et al.,

2006; Reusser et al., 2011). Some of these methods can ac-
count for parameter interaction and quantify sensitivity in
non-linear systems. Global SA methods are computationally
intensive (Cuo et al., 2011), but ever-increasing computa-
tional efficiency has allowed for the development and appli-
cation of a large number of global SA algorithms.

Previous work has suggested that isolating the key pa-
rameters that control model performance can be used to in-
fer dominant physical processes in the catchment, as well
as which components of the model dominate hydrologic re-
sponse (van Griensven et al., 2006; Tang et al., 2007; Reusser
et al., 2011). To date, there has been little analysis of the use
of SA for deriving measures of hydrologic similarity across
catchments that can be applied towards hydrologic regional-
ization of model parameters. The spatially distributed appli-
cation of SA could be used to provide additional informa-
tion for the delineation of homogeneous regions for param-
eter transfer based on similarity of model results from the
SA. This strategy allows for the use of the existing model in-
formation and configuration to develop a calibration and re-
gionalization framework without significantly changing the
model structure or implementation.

In this study, we present a hydrologic regionalization
methodology for the CONUS that derived regions of hydro-
logic similarity based on the response of a monthly water bal-
ance model (MWBM) to parameter SA. Groups of stream-
gages within each region are calibrated together to define a
single parameter set for each region. By extending model
calibration to a large number of sites grouped by similarity
through a quantified measure of model behavior, a more spe-
cific and constrained parameter space that fits each region
can be identified.

2 Methods

2.1 Monthly water balance model

The MWBM (Fig. 1) is a modular accounting system that
provides monthly estimates of components of the hydro-
logic cycle by using concepts of water supply and de-
mand (Wolock and McCabe, 1999; McCabe and Markstrom,
2007). Monthly temperature (T ) is used to compute poten-
tial evapotranspiration (PET) and to partition monthly pre-
cipitation (P ) into rain and snow (Fig. 1). Precipitation that
occurs as snow is accumulated in a snow pack (snow storage
as snow water equivalent, or SWE); rainfall is used to com-
pute direct runoff (Rdirect) or overland flow, actual evapotran-
spiration (AET), soil-moisture storage recharge, and surplus
water, which eventually becomes runoff (R) (Fig. 1). When
rainfall for a month is less than PET, AET is equal to the sum
of rainfall, snowmelt, and the amount of moisture that can be
removed from the soil. The fraction of soil-moisture storage
that can be removed as AET decreases linearly with decreas-
ing soil-moisture storage; that is, water becomes more diffi-
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Table 1. Monthly water balance model parameters and ranges.

Parameter Definition Range Default

1. Drofac Controls fraction of precipitation that becomes runoff 0, 0.10 0.05
2. Rfactor Controls fraction of surplus that becomes runoff 0.10, 1.0 0.5
3. Tsnow Threshold above which all precipitation is rain (◦C) −10.0, −2.0 −4.0
4. Train Threshold below which all precipitation is snow (◦C) 0.0, 10.0 7.0
5. Meltcoef Proportion of snowpack that becomes runoff 0.0, 1.0 0.47
6. Ppt_adj Seasonal adjustment factor for precipitation ( %) 0.5, 2.0 1
7. Tav_adj Seasonal adjustment for temperature (◦C) −3.0, 3.0 0

Figure 1. Conceptual diagram of the monthly water balance model
(McCabe and Markstrom, 2007). Processes influenced by model
parameters used in Fourier Amplitude Sensitivity Test (FAST) are
those identified by green arrow and numbered 1–5 (Table 1).

cult to remove from the soil as the soil becomes drier and less
moisture is available for AET. When rainfall (and snowmelt)
exceeds PET in a given month, AET is equal to PET; wa-
ter in excess of PET replenishes soil-moisture storage. When
soil-moisture storage reaches capacity during a given month,
the excess water becomes surplus and a fraction of the sur-
plus (Rsurplus) becomes R, while the remainder of the surplus
is temporarily held in storage. The MWBM has been previ-
ously used to examine variability in runoff over the CONUS
(Wolock and McCabe, 1999; Hay and McCabe, 2002; Mc-
Cabe and Wolock, 2011a) and the global extent (McCabe and
Wolock, 2011b). Table 1 lists the MWBM parameters, with
definitions and parameter ranges for calibration.

The Ppt_adj and Tav_adj parameters specify seasonal
adjustments for precipitation and temperature, respectively.
The seasonal adjustment parameters were included to ac-
count for errors in the precipitation and temperature data
used in this analysis. Sources of systematic and non-

Figure 2. Hydrologic response units of the geospatial fabric, dif-
ferentiated by color, overlain by NHDPlus region boundaries (R01–
R18).

systematic errors of climate forcing data are well docu-
mented from the precipitation gage-derived sources (Grois-
man and Legates, 1994; Adam and Lettenmaier, 2003). Inter-
polation of these systematic errors from point scale to grid-
ded domains may propagate these biases, especially in com-
plex terrain (Clark and Slater, 2006; Oyler et al., 2015). The
use of adjustment factors allows uncertainty associated with
forcing data and model parameter values to be treated sepa-
rately (Vrught et al., 2008).

The MWBM was applied to the CONUS (Bock et al.,
2016) with 109 951 hydrologic response units (HRUs) from
the geospatial fabric (Viger and Bock, 2014), a national
database of hydrologic features for national hydrologic mod-
eling applications (Fig. 2). This HRU derivation is based
on an aggregation of the NHDPlus data set (US Environ-
mental Protection Agency and US Geological Survey, 2010),
an integrated suite of geospatial data that incorporates fea-
tures from the National Hydrography Dataset (http://nhd.
usgs.gov/), the National Elevation Dataset (http://ned.usgs.
gov/), and the Watershed Boundary Dataset (http://nhd.usgs.
gov/wbd.html). The sizes of the HRUs range from less than
1 square kilometer (km2) up to 67 991 km2, with an average
size of 74 km2.
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Inputs to the MWBM by HRU are (1) monthly P (mil-
limeters) and monthly mean T (degrees Celsius), (2) latitude
of the site (decimal degrees), (3) soil moisture storage capac-
ity (millimeters), and (4) monthly coefficients for the com-
putation of PET (dimensionless). Monthly P and mean T
were derived from the daily time step, 1/8◦ gridded mete-
orological data for the period of record from January 1949
through December 2011 (Maurer et al., 2002). Monthly P
and T data were aggregated for each HRU using the USGS
Geo Data Portal (http://cida.usgs.gov/climate/gdp/) (Blod-
gett et al., 2011). Latitude was computed from the centroid
of each HRU. Soil moisture storage capacity was calculated
using a 1 km2 grid derived from the Soils Data for the Con-
terminous United States (STATSGO) (Wolock, 1997). The
monthly PET coefficients were calculated by calibrating the
Hamon PET values to Farnsworth et al. (1982) mean monthly
free-water surface evapotranspiration. McCabe et al. (2015)
describes these PET coefficient calculations in detail.

2.2 Fourier amplitude sensitivity test

A parameter SA for the CONUS was conducted for
the MWBM using the Fourier Amplitude Sensitivity Test
(FAST) to identify areas of hydrologic similarity. FAST is
a variance-based global sensitivity algorithm that estimates
the contribution to model output variance explained by each
parameter (Cukier et al., 1973, 1975; Saltelli et al., 2000).
Advantages of using FAST over other SA methods are that
FAST can calculate sensitivities in non-linear systems, and
is extremely computationally efficient. The seasonal adjust-
ment factors were not incorporated into the FAST analysis.
We viewed the seasonal adjustment factors as more related
to the forcing data, and for this application only parameters
associated with model structure were included (first five pa-
rameters in Table 1).

FAST transforms a model’s multi-dimensional parameter
space into a single dimension of mutually independent sine
waves with varying frequencies for each parameter, while
using the parameter ranges to define each wave’s ampli-
tude (Cukier et al., 1973, 1975; Reusser et al., 2011). This
methodology creates an ensemble of parameter sets number-
ing from 1 to N , each of which is unique and non-correlated
with the other sets. Parameter sets are derived using the cor-
responding y values along each parameter’s sine wave given
a value on the x axis. The model is executed for all parameter
sets using identical climatic and geographic inputs for each
simulation. The resulting series of model outputs are Fourier-
transformed to a power spectrum of frequencies for each pa-
rameter. Parameter sensitivity is calculated as the sum of the
powers of the output variance for each parameter, divided
by the sum of the powers of all parameters (total variance).
The parameter sensitivities are scaled so that the sensitivities
for all parameters sum to 1. Thus, parameters that explain a
large amount of variability in the model output have higher
(i.e., closer to 1) parameter sensitivity values.

FAST was implemented with the MWBM using the “fast”
library in the statistical software R (Reusser, 2012; R Core
Team, 2013). Parameter ranges used by FAST for gener-
ating wave amplitudes of parameter ensembles across the
CONUS were based on Table 1. The “fast” R package pre-
determines the minimal number of runs necessary to estimate
the sensitivities for the given number of parameters (Cukier
et al., 1973). For our application we generated an ensemble
of 1000 parameter sets (as compared to the minimally sug-
gested number of 71 estimated by “fast”). The use of the min-
imal number of parameter sets should be a consideration for
more complex models, but the relative computational effi-
ciency and parallelization of the MWBM allowed the model
to simulate this larger number of parameter sets quickly to
help ensure a robust parameter sensitivity analysis.

Many applications of SA in hydrologic modeling have
evaluated parameter sensitivity for measured streamflow us-
ing performance-based measures such as bias, root mean
squared error (RMSE), and the Nash–Sutcliffe efficiency
(NSE) (Nash and Sutcliffe, 1970; Moriasi et al., 2007). In
this study, parameter sensitivity is examined using two hy-
droclimatic indices that account for the magnitude and vari-
ability of both climatic input and model output: the (1) runoff
ratio (RR), a ratio of simulated runoff to precipitation, and
(2) runoff variability (RV) index, the standard deviation of
simulated runoff to the standard deviation of precipitation
(Sankarasubramanian and Vogel, 2003).

3 Parameter regionalization procedure

The following sections describe the workflow for the
MWBM calibration and regionalization (illustrated in
Fig. 3). The MWBM parameter sensitivities from the FAST
analysis were evaluated across the CONUS. The spatial pat-
terns and magnitudes of parameter sensitivities were used to
organize the 109 951 HRUs into hydrologically similar re-
gions referred to in the paper as calibration regions. During
the initial streamgage selection, potential streamgages were
identified for use in the grouped MWBM calibration. These
selected streamgages then were individually calibrated. Us-
ing a number of selection criteria, a final set of calibra-
tion gages were derived within each calibration region. The
grouped MWBM calibration produced an optimal set of
MWBM parameters for each calibration region by evaluat-
ing simulated MWBM variables converted to z scores.

3.1 Parameter sensitivities

The relative sensitivities derived from the FAST analysis us-
ing the RR and RV indices at each of the 109 951 HRUs
across the CONUS were scaled so that the 5 MWBM pa-
rameter sensitivities derived for each HRU summed to 100
(Fig. 4). RR (Fig. 4a) is most sensitive to the parameter Dro-
fac in regions where MWBM runoff is not dominated by
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Figure 3. Schematic flowchart of the parameter regionalization pro-
cedure described in Sect. 3: parameter sensitivities (Sect. 3.1), cal-
ibration regions (Sect. 3.2), initial streamgage selection (Sect. 3.3),
and grouped streamgage calibration (Sect. 3.4).

snowmelt and orographic precipitation, such as arid and sub-
tropical areas of the CONUS. MWBM parameters that con-
trol snowpack accumulation and melt (Meltcoef, Tsnow, and
Train) are more important to the RR in the extensive moun-
tain ranges in the western CONUS, and northerly latitudes
around the Great Lakes and in the eastern CONUS. The RR
indicates the highest sensitivity to the Rfactor parameter in
mountainous areas of the CONUS and areas of the west
coast, and moderate to high sensitivity in areas where the
sensitivity of RR to Drofac is low. Tsnow, Train, and Melt-
coef all share similar patterns across the CONUS. The spa-
tial variability of the sensitivity of RR to Meltcoef indicates
different physical mechanisms controlling Metlcoef param-
eter influence on RR in different areas of the CONUS. In
the west CONUS, the sensitivity of RR to Meltcoef is great-
est in mountainous areas that accumulate and hold snowpack
through the late spring, such as the Rocky Mountains, Cas-

cade, and Sierra Nevada mountain ranges. In the east and
midwestern CONUS, the sensitivity of RR to Meltcoef is
greatest for HRUs with more northerly latitudes.

The spatial patterns of sensitivities of RV to the five
MWBM parameters (Fig. 4b) show both similarities and de-
viations from the patterns shown in the RR maps. For the
central part of the CONUS, the relative sensitivity for the
parameter Drofac is high for both indices, and low for the
parameter Rfactor for both indices. Meltcoef, Tsnow, and
Train share the same relations between higher sensitivity
and higher elevation (primarily in the western part of the
CONUS), and higher sensitivity and more northerly latitude
(primarily in the eastern half of the CONUS) for both in-
dices. However, Drofac and Rfactor show distinctly differ-
ent patterns of relative sensitivities for the eastern part of
the CONUS for RV as compared to RR. The other three pa-
rameters follow the same general spatial patterns for RV as
compared to RR, but with greater fine-scale spatial variation
and patchiness. The differences between the spatial distribu-
tions of the sensitivities between the two indices highlight
that applying SA to different model outputs can generate dif-
ferent levels of sensitivities for each parameter. In addition,
the choice of objective function or model output for which
to measure parameter sensitivity is important, as parameter
sensitivities will differ depending on whether a user is eval-
uating measures of magnitude, the variability of distribution,
or timing (Krause et al., 2005; Kapangaziwiri et al., 2012).

Figure 5 illustrates the variability of parameter sensitivities
between NHDPlus regions R08 (lower Mississippi) and R14
(upper Colorado) (see Fig. 2) for the RR and RV indices, and
between the RR and RV within a single region. The lower
Mississippi and upper Colorado NHDPlus regions have a
similar number of HRUs (4449 and 3879, respectively) and
cover a similar area (26 285 and 29 357 km2, respectively).
The lower Mississippi region has homogenous topography,
with humid, subtropical climate, while the upper Colorado
region has highly variable topography, and thus highly vari-
able climatic controls on hydrologic processes. For the lower
Mississippi region, only one parameter dominates modeled
RV variance (Rfactor, Fig. 5a) and modeled RR variance
(Drofac, Fig. 5c). In contrast, for the upper Colorado River
region several parameters influence RV variability (Drofac,
Rfactor and Meltcoef, Fig. 5b) and RR variability (Drofac
and Meltcoef, Fig. 5d). In the lower Mississippi region the
amount of snowfall is negligible, so the three parameters that
control snowfall and snowpack accumulation in the MWBM
have a negligible effect on the volume and variability of sim-
ulated total runoff. The Rfactor parameter controls almost all
of the variance for the RV in the lower Mississippi region.
In humid, subtropical hydroclimatic regimes of the CONUS,
peak runoff is coincident with peak precipitation, which is
significant because these periods are when the surplus runoff
is greatest. In the upper Colorado, peak runoff is not coinci-
dent with peak precipitation, and the MWBM snow parame-
ters have more control in modulating the variability and tim-
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Figure 4. Relative sensitivity of the (a) rainfall ratio (RR) and (b) runoff variability (RV) indices to monthly water balance model parameters.

ing of runoff from snowmelt in the higher elevation HRUs.
The comparison of the parameter sensitivities for these two
regions illustrates how variable parameter sensitivities differ
by region (i.e., different climatic and physiographic regions)
and components of model response (i.e., volume and vari-
ability).

3.2 Calibration regions

The spatial patterns and magnitudes of parameter sensitiv-
ities across the CONUS were used as a basis for organiz-
ing HRUs into hydrologically similar regions for parame-
ter regionalization through MWBM calibration. This idea is
rooted in the hypothesis that geographically proximate HRUs
share similar forcings and conditions, and thus will behave
similarly. This application uses similarity in SA results as a
basis for organization, rather than similarity in physiographic
characteristics. The derived regions are subsequently used to
simplify model calibration across the CONUS and provide
a basis for the transfer and application of parameters to un-
gaged areas.

The parameter sensitivities derived from the RR were used
to organize the HRUs into two independently derived cali-
bration regions; the first derived by identifying HRUs with
unique combinations of the order of parameter sensitivities
to the RR (highest parameter sensitivities to lowest, i.e., 1-
Drofac (78 %), 2-Rfactor (16 %), 3-Meltcoef (4 %), 4-Tsnow
(1 %), 5-Train (1 %)), and the second classification based

upon identifying HRUs with unique sets of parameters whose
sensitivities exceeded a specified threshold of parameter sen-
sitivity (i.e., only Drofac, Rfactor, Meltcoef using a 5 %
threshold in the first classification example). The purpose
of the first classification was to delineate regions of similar
model response or behavior based on the order of importance
of the MWBM parameters to the RR for each HRU. This
classification identified 16 distinct regions of HRUs across
the CONUS based on the order of the parameter sensitivities
of the five parameters (derived using the RR index). Sizes of
these regions ranged from 94 km2 to almost 2 million km2.
The second classification delineated regions with an iden-
tical set of the most important parameters to the RR based
on parameters whose sensitivities exceeded a 5 % threshold.
This step identified 12 regions of HRUs with unique combi-
nations of parameter sensitivities exceeding 5 %. There has
been progress in providing quantitative thresholds for the
identification of sensitive and non-sensitive parameters for
hydrologic modelers (Tang et al., 2007), but no definitive
consensus yet exists. Therefore, a 5 % threshold was used
based on visual delineation of major physiographic features,
such as mountain ranges across the CONUS. The sizes of this
second group of regions ranged from 94 km2 to more than 15
million km2. Maps of the two groupings of HRUs were in-
tersected to create a total of 49 regions across the CONUS.
NHDPlus region and subregion boundaries, proximity, and
significant topographic divides were used to further divide
the groups into 159 geographically unique calibration re-
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Figure 5. Parameter sensitivities of runoff variability (RV; a and b)
and runoff ratio (RR; c and d) indices for monthly water balance
model parameters in the lower Mississippi (R08) and upper Col-
orado (R14).

gions across the CONUS. The lack of streamgages available
in some regions, especially areas with arid and semi-arid cli-
mates, necessitated merging regions together. Calibration re-
gions that contained less than 3 streamgages from the 8410
gages present in the geospatial fabric (see Sect. 3.3) were
combined with the proximate and most similar group which
shared the most similar parameter sensitivities (both order
and magnitude), resulting in 110 calibration regions across
the CONUS (Fig. 6). Within each region the FAST results for
both the RR and RV indices were used to determine which
parameters to calibrate. Within each region, parameters with
a median parameter sensitivity of 5 % for the RR and RV
among the region’s HRUs were selected for group calibra-
tion. Parameters not shown as sensitive were kept at the de-
fault value for the group.

3.3 Initial streamgage selection

The initial set of streamgages used for testing in the MWBM
calibration procedures was selected from 8410 streamgages
identified in the geospatial fabric (Fig. 7). The geospatial fab-
ric includes reference and non-reference streamgages from
the Geospatial Attributes of Gages for Evaluating Stream-
flow data set (GAGES, Falcone et al., 2010). Of the 8410
streamgages in the geospatial fabric, 1864 were identified
as having reference-quality data with at least 20 years of

Figure 6. Final 110 monthly water balance model calibration re-
gions differentiated by colors. A subset of streamgages within each
calibration region were calibrated in a group-wise fashion to pro-
duce a single optimized parameter set for the entire region (Fig. 3).
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Figure 7. Streamgages tested in the study. GF notes geospatial fab-
ric for national hydrologic modeling (Viger and Bock, 2014).

record. These reference quality streamgages were judged to
be largely free of human alterations to flow (Falcone et al.,
2010). In the current study, reference quality was not consid-
ered in the initial streamgage selection because the 20 years
of record was considered too restrictive. Therefore, a subset
of the 8410 streamgages was selected for initial testing in the
MWBM calibration procedures based on the following crite-
ria:

1. Remove streamgages with less than 10 years of total
measured streamflow (120 months) within the time pe-
riod 1950–2010.

2. Remove streamgages with a drainage area defined by
the geospatial fabric that are not within 5 % of the USGS
National Water Information System (NWIS) reported
drainage area (US Geological Survey, 2014). This elim-
inated many of the streamgages with smaller drainage
areas due to the resolution of the geospatial fabric.
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3. Remove streamgages that did not have at least 75 % of
its drainage area contained within a single calibration
region.

These criteria resulted in 5457 potential streamgages for test-
ing in the MWBM calibration procedures (Fig. 7). Stream-
flow at these streamgages was aggregated and converted from
daily (cubic feet/second) to a monthly runoff depth (mm)
(streamflow per unit area).

3.4 Monthly water balance model calibration

Two automated calibration procedures were implemented to
produce an optimal set of MWBM parameters for each cal-
ibration region. The first procedure, Individual Streamgage
Calibration, calibrated each of the 5457 streamgages indi-
vidually. Results from the individual calibrations were used
to further filter the streamgages within the second procedure,
Grouped Streamgage Calibration, which calibrated selected
streamgages together by calibration region.

3.4.1 Individual streamgage calibration

The first calibration procedure was an automated process that
individually calibrated each of the 5457 streamgages from
the initial streamgage selection with measured streamflow
(US Geological Survey, 2014). Results from these individ-
ual streamgage calibrations quantified the best performance
of the MWBM at each gage, providing a baseline measure
for evaluation.

The Shuffled Complex Evolution (SCE) global-search op-
timization algorithm (Duan et al., 1993) has been frequently
used as an optimization algorithm in hydrologic studies (Hay
et al., 2006; Blasone et al., 2007; Arnold et al., 2012), includ-
ing previous studies with the MWBM (Hay and McCabe,
2010). Further details can be found in Duan et al. (1993).
SCE was used to maximize a combined objective function
based on (1) Nash–Sutcliffe efficiency (NSE) coefficient us-
ing measured and simulated monthly runoff and (2) NSE us-
ing natural log-transformed measured and simulated runoff
(logNSE), using the entire period of record for each stream-
gage. The NSE measures the predictive power of the MWBM
in matching the magnitude and variability of the measured
and simulated runoff (Nash and Sutcliffe, 1970). The NSE
coefficient ranges from −∞ to 1, with 1 indicating a per-
fect fit, and values less than 0 indicating that measured mean
runoff is a better predictor than model simulations. The NSE
has been shown to give more weight to the larger values
in a time series (peak flows) at the expense of lower val-
ues (low flows) (Legates and McCabe, 1999), so the logNSE
was incorporated into the objective function to give weight
to lowflow periods (Tekleab et al., 2011).

3.4.2 Grouped streamgage calibration

The second calibration procedure was an automated process
that calibrated groups of streamgages together for each cal-
ibration region to derive a single set of MWBM parame-
ters (Table 1) for each calibration region (Fig. 6). The NSE
and logNSE values from the individual streamgage calibra-
tions (described in the previous section) were used to identify
streamgages that should not be used for grouped streamgage
calibration. If the individual streamgage calibration was not
satisfactory, then it was felt that it would not provide use-
ful information for the grouped streamgage calibration pro-
cedure.

Satisfactory individual streamgage calibrations were iden-
tified with the following procedure:

1. Eliminate all streamgages with NSE values < 0.3.

2. If the number of remaining streamgages for a given cal-
ibration region is > 10, then eliminate all streamgages
with NSE < 0.5.

3. If the number of streamgages for a given calibration
region is > 25, then eliminate all streamgages with
NSElog < 0.

4. If the number of remaining streamgages for a calibra-
tion region is < 5, check to see if any of the eliminated
streamgages were reference streamgages (as defined in
Falcone et al., 2010), then add the reference stream-
gages back in if the NSE value > 0.0. Reference stream-
gages are USGS streamgages deemed to be largely free
of anthropogenic impacts and flow modifications (Fal-
cone et al., 2010; Kiang et al., 2013).

These criteria, while somewhat arbitrary, were chosen so that
no calibration region had less than five streamgages for the
grouped streamgage calibration. Using the above criterion, of
the 5457 streamgages individually calibrated, 3125 remained
as candidates for the grouped streamgage calibration proce-
dure.

The grouped streamgage calibration procedure used the
SCE global-search optimization algorithm with a multi-term
objective function (Eq. 1). Measured and simulated values
for selected streamgages contained within a calibration re-
gion were scaled to z scores to remove differences in mag-
nitudes between streamgages (Eq. 2). The multi-term objec-
tive function minimized the sum of the absolute differences
between z scores from four measured and simulated time se-
ries: mean monthly runoff (MMO, MMS), monthly runoff
(MO, MS), annual runoff (AO, AS) (US Geological Survey,
2014), and monthly snow water equivalent (SO, SS) for all
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selected streamgages within a given calibration region:

min
n∑
i=1
[3 |MMOi −MMSi | + |MOi −MSi | + |AOi −ASi |

+ 0.5|SOi −SSi |], (1)

where


0 if 0.75< SOi−SSi < 1.25
|SOi−SSi| if SSi < SO0.75

i
|SOi−SSi |SSi > SO1.25

i

.

The measured and simulated z scores were calculated as

Z = (x− u)/σ, (2)

where x is the time series value, u is the mean, and σ the
standard deviation of the measured and simulated variable.

Measured SWE was determined for each HRU from the
Snow Data Assimilation System (SNODAS; National Op-
erational Hydrologic Remote Sensing Center, 2004) and in-
cluded a ± 25 % error bound. The unconstrained automated
calibration (without a restriction on SWE) led to unrealis-
tic sources of snowmelt in the summer that enhanced the
low-flow simulations. The 25 % error bound is arbitrary; cal-
ibrating to the actual SNODAS SWE values was found to
be too restrictive, but adding this error bound to the SWE
values resulted in better overall runoff simulations. The ab-
solute difference of the simulated SWE z scores that were
within ± 25 % of the measured SWE z score were desig-
nated as 0. Otherwise, the absolute difference was computed
between the simulated SWE z score and either the upper or
lower bounds (Eq. 1).

The grouped calibration procedure was run for all 110 cal-
ibration regions. For each calibration region the seasonal ad-
justment parameters and the sensitive parameters (identified
by the FAST analysis – Sect. 3.1) were calibrated; parame-
ters deemed not sensitive (parameter sensitivity < 5 % of to-
tal variance) were set to their default values (see Table 1).
The entire period of the streamflow record for each stream-
gage was split by alternating years. After calibration, mean
monthly measured and simulated z scores for runoff at all
selected streamgages within a calibration region were com-
pared.

Figure 8 shows an example of the graphic used to evalu-
ate the measured and simulated mean monthly z scores for
21 streamgages selected for the region located in the Ten-
nessee River calibration region (part of NHDPlus region R06
in Fig. 2); the orange, red, and black dots indicate calibra-
tion, evaluation, and the entire period of record, respectively.
A tight grouping around the one-to-one line indicates good
correspondence between measured and simulated z scores.
Points closer to the upper right corner of each plot repre-
sent high-flow periods. Points closer to the lower left corner
of the plot represent low-flow periods. Streamgages within
a calibration region were assigned the same parameter val-
ues; therefore, streamgages that plotted outside (2 standard

deviations) of the one-to-one line were considered to not be
representative of the calibration region, and the calibration
procedure for that calibration region was repeated without
those streamgages.

The goal of the second calibration procedure was to find a
single parameter set for each calibration region. Past applica-
tions of the MWBM (Wolock and McCabe, 1999; McCabe
and Wolock, 2011a) used a single set of fixed MWBM pa-
rameters for the entire CONUS. Many of the streamgages in-
cluded in the second calibration procedure could be affected
by significant anthropogenic effects; the seasonal adjustment
factors, calibrated at each individual streamgage, could ac-
count for these effects and result in satisfactory NSE values.
Streamgages that were removed due to poor performance in
the second calibration were assumed to have anthropogenic
effects not consistent with the streamgages that plotted along
the one-to-one line. Poor performance may result because
the MWBM fails to reliably simulate runoff for a watershed
because of model limitations (i.e., not including all impor-
tant hydrologic processes), but the calibration regions are
assumed to be homogeneous based on the FAST analysis.
Therefore, it is assumed that if some of the streamgages
within a region have satisfactory results, then the MWBM
is able to simulate runoff in that region.

4 MWBM calibration region results

4.1 Individual streamgage calibration results

The individual streamgage calibrations provided information
regarding (1) the potential suitability of a given streamgage
for inclusion in a grouped calibration, and (2) a baseline mea-
sure for evaluation of the grouped calibration results. Refer-
ence and non-reference streamgages were considered in this
application; if the runoff at a streamgage could not be cal-
ibrated individually to a satisfactory level (based on crite-
rion outlined in Sect. 3.4.2), then it was felt that it would not
provide useful information for the grouped streamgage cal-
ibration procedure. Figure 9 shows the NSE (Fig. 9a) and
logNSE (Fig. 9b) coefficients from the individual stream-
gage calibrations for the CONUS. Scattered throughout the
CONUS are NSE and logNSE values less than 0.0 (trian-
gles in Fig. 9). These poor results are likely streamgages with
poor streamflow records, either due to measurement error or
anthropogenic effects (dams, water use, etc.).

4.2 Grouped streamgage calibration results

4.2.1 Mean monthly z scores

Figure 10a shows a scatterplot of measured vs. simulated
mean monthly z scores for runoff, similar to Fig. 8, but based
on all available years (the black dots in Fig. 8) for all the
final calibration streamgages (1575 streamgages). Four re-
gions are highlighted to illustrate the monthly variability in
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Figure 8. Measured vs. simulated mean monthly z scores for the Tennessee River calibration region (see Fig. 9b for location). Orange is
calibration, red is evaluation, and black is all years.
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Figure 9. Individual streamgage calibration results: (a) Nash–
Sutcliffe efficiency (NSE) coefficient and (b) log of the NSE
(logNSE).

MWBM results across the CONUS (see Fig. 10b for loca-
tions). The four regions are New England (67 streamgages,
red); Tennessee River basin (21 streamgages, orange); Platte
Headwaters (15 streamgages, blue); and Pacific Northwest
(33 streamgages, green) (Fig. 10b).

In Fig. 10a, three of the regions (New England, Tennessee
River, and Pacific Northwest), show simulated z scores that
correspond favorably to measured z scores for each of the 12
months, including periods of low and high runoff. These re-
gions represent marine or humid climates with homogenous
physio-climatic conditions and an even spatial distribution of
streamgages, where models should be expected to perform
well (see Fig. 9) There is a higher variability in model results
for the high-flow months (May–June) for streamgages within
the Platte Headwaters (Fig. 10a; blue dots) than for low-flow
months. This variability may be related to factors controlling
the magnitude and timing of snow melt runoff (Fig. 9).

For each calibration streamgage, a set of 4 months were
identified that represent different parts of the measured mean
monthly hydrograph (highest- and lowest-flow month and the
2 median-flow months). The measured and simulated mean
monthly streamflow z scores corresponding to the 4 months
are plotted as cumulative frequencies (Fig. 11) to compare
how well the simulated z scores matched measured z scores
for different parts of the hydrograph over the entire set of cal-
ibration gages. For the highest flow, there is an underestima-
tion of runoff, with the greatest divergence between the two
distributions in the middle to lower half of the distribution
(Fig. 11a). For the median flow, the measured and simulated
z scores are well matched. For the 10 lowest flows, simulated
z scores are greater than measured z scores, with the great-
est divergence between the two distributions in the middle to
upper half of the distribution (Fig. 11c).

The median z score errors (simulated–measured) by re-
gion for the (a) highest, (b) median, and (c) lowest flows are
shown in Fig. 12. The largest errors are for the highest flows
(Fig. 12a). The MWBM simulations underestimate the high-
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Figure 10. (a) Measured vs. simulated mean monthly z scores for runoff at all streamgages and (b) location of highlighted streamgages for
four calibration regions: New England (67 streamgages, red); Tennessee River (21 streamgages, orange); Platte Headwaters (15 streamgages,
blue); and Pacific Northwest (33 streamgages, green).

−2 −1.5 −1 −0.5 0

0
0.

5
1

Measured
Simulated

(a) Low flow

−1 0 1

0
0.

5
1

Measured
Simulated

(b) Median flow

0 1.5 3

0
0.

5
1

Measured
Simulated

(c) High flow

z score

C
um

ul
at

iv
e 

fr
eq

ue
nc

y

Figure 11. The z score cumulative frequency for (a) highest-, (b) median-, and (c) lowest-flow months.

est flows for much of the CONUS. The errors for median
flows are fairly uniform and consistent across the CONUS
(Fig. 12b), with a median error close to 0. For the lowest-
flow months the MWBM overestimates low flows for a large
portion of the midwest (Fig. 12c).

4.2.2 Nash–Sutcliffe efficiency

Figure 13 compares the NSE from the individual stream-
gage calibrations (gageNSE) with the grouped calibrations
(groupNSE) for all final streamgages used in the second cali-

bration procedure. NSE values > 0.75 (dashed line) and > 0.5
(solid line) indicate very good and satisfactory results (Mo-
riasi et al., 2007). Overall, most NSE values fall above the
0.5 NSE threshold of satisfactory performance (median of
gageNSE and groupNSE= 0.76). The gageNSE values are
used here as a baseline for evaluation of the groupNSE re-
sults. The groupNSE values were not expected to be greater
than the gageNSE values since (1) NSE was not used as an
objective function in the grouped calibration, and (2) grouped
calibrations found the best parameter set for a set of stream-
gages vs. an individual streamgage. Figure 13 shows an equal
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Figure 12. The z score error (simulated–measured) for (a) highest-, (b) median-, and (c) lowest-flow months.
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Figure 13. Nash–Sutcliffe efficiency from individual (gageNSE)
and grouped (groupNSE) calibration. Calibration regions in New
England (67 streamgages, red); Tennessee River (21 streamgages,
orange); Platte Headwaters (15 streamgages, blue); and Pacific
Northwest (33 streamgages, green) are highlighted (see Fig. 9b for
location).

Figure 14. Median Nash–Sutcliffe efficiency (NSE) of streamgages
used for calibration by calibration region.
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distribution of NSE values around the one-to-one line, in-
dicating that the grouped calibration provided additional in-
formation over the individual streamgage calibrations (cases
where groupNSE are greater than gageNSE in Fig. 13). The
difference between the gageNSE and groupNSE becomes
larger as the NSE values decrease, reflecting the increasing
uncertainty in the grouped calibrations in areas with lower
gageNSE values.

Four regions are highlighted in Fig. 13 to illustrate the
variability of NSE across the CONUS (see Fig. 10b for loca-
tions). The highlighted regions in New England (red), Ten-
nessee River (orange), and Pacific Northwest (green), show
good groupNSE and gageNSE results. In total, 4 of the 15
streamgages in the Platte Headwaters (blue) have groupNSE
values≤ 0.5. This is probably related to simulation error dur-
ing the snowmelt period (May–June, Fig. 10a).

Figure 14 shows the median groupNSE by calibration re-
gion for the CONUS. The pattern is very similar to that
shown for the individual streamgage calibration results in
Fig. 9a and highlights the problem areas shown in Fig. 12.

5 Discussion

This study presented a parameter regionalization procedure
for calibration of the MWBM, resulting in an application that
can be used for simulation of hydrologic variables for both
gaged and ungaged areas in the CONUS. The regionalization
procedure grouped HRUs on the basis of similar sensitivity
to five model parameters. Parameter values and model un-
certainty information within a group was then passed from
gaged to ungaged areas within that group.

5.1 Regionalized parameters

Results from this study indicate that regionalized parameters
can be used to produce satisfactory MWBM simulations in
most parts of the CONUS (Fig. 13). Despite the differences
between the individual streamgage calibration and grouped
calibration, Fig. 13 illustrates that the grouped calibration
strategy, which focused only on sensitive parameters, can
provide just as much information as the individual stream-
gage calibration with no constraints on the parameter opti-
mization other than the default ranges. The MWBM is a sim-
ple hydrologic model as it has minimal parameters, which are
conceptual in nature (not physically based). It may be that
this type of model is best for regionalization when parameter
sensitivity can be identified and HRU behavior can be clas-
sified by a small number of clearly defined spatial groups.
More complicated models with many more interactive pa-
rameters may not respond as well to this simple type of re-
gionalization; more parameters may lead to more parameter
interaction and situations of equifinality which might confuse
the analysis.

The adjustments of precipitation and temperature parame-
ters for the individual streamgage calibrations accounted for
local errors such as rain gage undercatch of precipitation.
In addition, these climate adjustments also account for local
anthropogenic effects on streamflow (e.g., dams, diversions)
since streamgages were not screened for these effects prior to
individual streamgage calibration. In the grouped streamgage
calibrations, the same precipitation and temperature adjust-
ments are applied at every streamgage within the calibration
region, making these climate adjustments more of a regional
adjustment and producing more of a reference condition for
each calibration region.

5.2 Parameter sensitivities and dominant process

The MWBM parameter sensitivities varied by hydroclimatic
index (RR and RV) and across the CONUS (Fig. 3). The pa-
rameter sensitivity patterns give an indication of dominant
hydrologic processes based on MWBM. The dominant pro-
cess can be seasonal and MWBM performance may be en-
hanced by extending the use of SA along the temporal do-
main to identify and temporally vary the parameters that are
seasonally important to the MWBM. For example, error in
peak flow months is the primary cause for poor model per-
formance in the Platte Headwaters (Fig. 9). For the Platte
Headwaters, the final parameter set performed well for sim-
ulated z scores for the regionalized low- and median-flow
conditions (Fig. 9a, July through April), but was not able to
replicate measured mean monthly flows for May and June. In
this case, the dominant processes controlling hydrologic be-
havior change with season and the parameters controlling the
dominant response may have to change accordingly (Gupta
et al., 2008; Reusser et al., 2011).

5.3 Model accuracy

The pattern of MWBM accuracies shown in Figs. 8 and 14
are similar to those shown by Newman et al. (2015; Fig. 5a)
in which a daily time step hydrologic model was calibrated
for 671 basins across the CONUS. Our study and the New-
man et al. (2015) study both indicate the same problem areas
with the poorest-performing basins generally being located
in the high plains and desert southwest. Newman et al. (2015)
attributed variation in model performance by region to spatial
variations in aridity and precipitation intermittency, contribu-
tion of snowmelt, and runoff seasonality.

The inferior MWBM results in the problem areas can be
attributed to multiple factors which likely include inadequate
hydrologic process representation and errors in forcing data
(e.g., climate data), and/or measured streamflow. Archfield
et al. (2015) state that the performance of continental-domain
hydrologic models is considerably constrained by inadequate
model representation of dominant hydrologic processes. For
example, the simplicity of the MWBM presents limitations
on the representation of deeper groundwater reservoirs, gain-
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ing and losing stream reaches, simplistic AET, and the effects
of surface processes (infiltration and overland flow) that need
to be represented at finer time steps than monthly.

The dominant hydrologic processes in the problem areas
appear to be poorly represented at the daily (Newman et al.,
2015) and monthly time steps. This may be due to inade-
quate forcing data, the quality of which “is paramount in hy-
drologic modeling efforts” (Archfield et al., 2015) and/or the
lack of good reference streamflow data for calibration and
evaluation. Both surely play a role and emphasize the need
for incorporation of additional data sets so that calibration
and evaluation of intermediate states in the hydrologic cycle
are examined.

6 Conclusions

A parameter regionalization procedure was developed for the
CONUS that transferred parameter values from gaged to un-
gaged areas for a MWBM. The FAST global-sensitivity al-
gorithm was implemented on a MWBM to generate parame-
ter sensitivities on a set of 109 951 HRUs across the CONUS.
The parameter sensitivities were used to group the HRUs into
110 calibration regions. Streamgages within each calibration
region were used to calibrate the MWBM parameters to pro-
duce a regionalized set of parameters for each calibration re-
gion. The regionalized MWBM parameter sets were used to
simulate monthly runoff for the entire CONUS. Results from
this study indicate that regionalized parameters can be used
to produce satisfactory MWBM simulations in most parts of
the CONUS.

The best MWBM results were achieved simulating low
and median flows across the CONUS. The high-flow months
generally showed lower skill levels than the low- and
median-flow months, especially for regions with dominant
seasonal cycles. The lowest MWBM skill levels were found
in the high plains and desert southwest and can be attributed
to multiple factors which likely include inadequate hydro-
logic process representation and errors in forcing data and/or
measured streamflow. Calibration and evaluation of interme-
diary fluxes and states in the MWBM through additional
measured data sets may help to improve MWBM represen-
tations of these model states by helping to constrain parame-
terization to measured values.
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