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Abstract. In this study, the method of inference of
macroscale thermodynamic potentials, forces, and exchange
coefficients for variably saturated groundwater flow is out-
lined based on the entropy balance. The theoretical basis of
the method of inference is the explicit calculation of the in-
ternal entropy production from microscale, thermodynamic
flux–force relationships using, e.g., hyper-resolution variably
saturated groundwater flow models. Emphasis is placed on
the two-scale nature of the entropy balance equation that al-
lows simultaneously incorporating movement equations at
the micro- and macroscale. The method is illustrated with
simple hydrologic cross sections at steady state and periodic
sources/sinks at dynamic equilibrium, and provides a ther-
modynamic point of view of upscaling in variably saturated
groundwater flow. The current limitations in the connection
with observable variables and predictive capabilities are dis-
cussed, and some perspectives for future research are pro-
vided.

1 Introduction

The current earth science literature indicates that entropy bal-
ance considerations have been mainly applied in the context
of optimality and self-organization. Theories of optimality
and self organization are appealing when dealing with com-
plex nonlinear systems, because of their apparent usefulness
in interpreting interactions of gradients and fluxes and in
quantifying (predicting) systems’ states and uncertainties. In
this context, the entropy and energy balance received atten-
tion, because of its physics-based foundation in nonequilib-
rium thermodynamics and potential connection with infor-

mation theory (e.g., Dewar, 2003; Koutsoyiannis, 2014). The
entropy balance appears to be useful in applications to hy-
drologic (e.g., Zehe et al., 2013; Ehret et al., 2014), ecohy-
drologic (e.g., Dewar, 2010; Miedziejko and Kedziora, 2014;
del Jesus et al., 2012), and atmospheric sciences (e.g., Pail-
lard and Herbert, 2013), and in general to open complex non-
linear thermodynamic systems (Abe and Okuyama, 2011).

The entropy balance states that in an open system, the
change in entropy equals the internal production of entropy
minus the divergence of the entropy current. A dynamic equi-
librium or steady state is obtained, when entropy produc-
tion inside (due to, e.g., flow processes of heat or matter)
equals the divergence of the entropy current, i.e., the entropy
exchange with the outside. Note also, dynamic equilibrium
refers to a state of stationarity in the statistical sense. Opti-
mality of the dynamic equilibrium may be achieved, because
the gradient, which drives the flux and, thus, the production
of entropy, is reciprocally depleted by the same flux (Kleidon
et al., 2013).

In hydrology, the entropy balance has been applied to con-
ceptual problems based on the overarching rationale that en-
tropy production is maximized (maximum entropy produc-
tion, MEP) in obtaining a state of dynamic equilibrium by
optimizing the fluxes and gradients in competition via an
adjustment of some (non)linear exchange coefficient. There
have been some studies demonstrating how entropy produc-
tion can be maximized by optimizing an exchange coefficient
to obtain an optimal system’s state. In hydrology, there are
quite a few examples of the application and discussion of the
MEP principle (e.g., Ehret et al., 2014; Westhoff et al., 2014;
Kleidon and Schymanski, 2008) also in connection with data
(e.g., Zehe et al., 2013). However, its validity and applicabil-
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ity to hydrologic systems is still in question (Westhoff and
Zehe, 2013).

Often the entropy balance has been applied at steady state
with simple bucket models, which are well mixed (i.e., with-
out internal gradients). For example, Porada et al. (2011) per-
formed a detailed entropy production analysis of the land sur-
face hydrologic cycle including the shallow vadose zone as-
suming vertical equilibrium of the soil bucket model. Apply-
ing linear bucket models without considering internal gradi-
ents, Kleidon and Schymanski (2008) showed that if the nat-
ural system possesses enough degrees of freedom, in case of
steady state, the system will tend towards a certain exchange
coefficient, when entropy production is maximized. For sim-
ilar bucket models, Westhoff et al. (2014) demonstrated the
impact of periodic boundary forcing on entropy production,
which may result in more than one maximum for unique val-
ues of the exchange coefficient at dynamic equilibrium. Inter-
estingly, these studies did not calculate the internal entropy
production explicitly. Instead, entropy production was esti-
mated indirectly from the exchange with the outside (i.e., the
divergence of the entropy current).

In order to optimize effective values of a simple two-box
model, Schymanski et al. (2010) recognized the potential of
explicitly estimating the internal entropy production using
a simple distributed model of the water and carbon balance
(Klausmeier, 1999), which is based on coupled equations of
moisture and biomass and is able to produce vegetation pat-
terns. This study highlights an interesting aspect of entropy
balance considerations that is the inference of upscaled ef-
fective parameters and state variables to represent subgrid
scale variability in coarse scale (macroscale) models. Thus,
ultimately, the appeal of the entropy balance maybe the in-
ference of upscaled or effective exchange coefficients and
forces/gradients, which may be used to quantitatively de-
scribe the complex system without the explicit knowledge
about microscopic details (Dewar, 2009). In this context, a
popular example is gas diffusion, which can be captured by
an inferred, macroscopic diffusion coefficient and gradient
instead of honoring the motion and interactions of individual
molecules.

In this study, the method of inference of effective hydro-
logic exchange coefficients, potentials and forces is outlined
using the entropy balance equation in applications to sim-
ple hydrologic cross sections. The purpose of this study is to
direct attention to the potential insights gained from a new
branch of theoretical hydrology combining modern thermo-
dynamic principles with numerical experiments. While the
thermodynamic principles constitute the link between differ-
ent spatial scales that may be useful in upscaling hydrologic
process across a hierarchy of scales, the numerical experi-
ments constitute the methodological pillar to obtain explic-
itly the internal entropy production or dissipation required in
the upscaling, equivalent to ab initio simulations in molecular
dynamics (Kresse and Hafner, 1994). The following sections
provide the basic theory with an emphasis on the two-scale

nature of the entropy balance, and the application to the hy-
drologic cross sections with ensuing discussion and conclu-
sions.

2 Basic theory and the two-scale nature of the entropy
balance

The theory outlined in Kondepudi and Prigogine (2014)
is applied to the problem of variably saturated ground-
water flow at constant temperature. Based on conserva-
tion of energy (and the balance equation for concentrations,
which is not required in this analysis) Kondepudi and Pri-
gogine (2014) write the entropy balance as follows:

s′+∇ · Js = σ, (1)

where s′ (ML−1 T−3 K−1) is the change in the entropy den-
sity with time; Js (MT−3 K−1) is the entropy current per unit
of volume; and σ (ML−1 T−3 K−1) is the internal entropy
production per unit of volume, which is always positive by
definition. Thus, the change of entropy density with time of
a macroscopic volume depends on the divergence of the en-
tropy current and the internal entropy production.

In the considered case of variably saturated groundwater
flow, Js = JM /T , where J (ML−2 T−1) is the mass flow
per unit area, M (L2 T−2) is the chemical potential (i.e., the
sum of pressure and gravitational potential, Eq. 5) at the
macroscale and T (K) is the temperature. At the microscale,
defining q (ML−3 T−1) and f (L2 T−2) as the fluxes and ther-
modynamic forces per unit of volume, the divergence of the
entropy current and the internal entropy production can be
expanded as follows:

s′+ (M /T )(∇ · J )+ J · (∇ (M /T ))=
∑

qf /T . (2)

For the derivations below it is important to recognize that
Eq. (2) exhibits the unique characteristics of incorporating
two scales: the entropy density change with time and diver-
gence of the entropy current at the macroscale (all terms on
the left-hand side), and the entropy production at the mi-
croscale, i.e., the sum of all products of the internal micro-
scopic fluxes and forces (term on the right-hand side). Note,
in the following, the temperature T (K) is omitted in the
equations and units, because T is constant in the following
derivations.

Performing an entropy balance at steady state leads to

M(∇ · J )+ J · (∇M)= σ (3)

because s′ = 0. In contrast, performing an entropy balance
under the influence of periodic external forcing requires in-
tegration over one full forcing cycle at dynamic equilibrium
of Eq. (2) indicated by overbars

M(∇ · J )+ J · (∇M)= σ (4)
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with s′ = 0 over one full cycle. Both approaches will be ap-
plied in the following sections, in order to arrive at effective
variables at the macroscale.

Because of the two-scale nature of Eqs. (1) and (2), move-
ment equations are introduced at the macroscale and mi-
croscale. At the macroscale, M (L2 T−2) is defined as the
sum of the macroscopic pressure potential 9 (L2 T−2), and
gravitational potential gz (L2 T−2), leading to

M =9 + gz, (5)

and is, thus, equivalent to the hydraulic head; (∇M) symbol-
izes a macroscopic thermodynamic force F (L2 T−2) as the
difference in the macroscopic chemical potentials

(∇M)= F =Mhigh−Mlow (6)

and, at the moment, J is defined as a conductance concept

J = λF, (7)

where λ (ML−4T) is a conductance coefficient (λ= ρrs, with
water density ρ (ML−3) and resistance rs (TL−1)) relating
the flux with the force at the macroscale.

At the microscale, the chemical potential µ, (L2 T−2), the
mass flux q (ML−3 T−1) per unit of volume and the thermo-
dynamic force f (L2 T−2) are

µ= ψ + gz, (8)

where ψ (L2 T−2) is the microscale pressure potential;

q =
1
α
ρ
K

v
kr (ψ)

(
µhigh−µlow

)
, (9)

where ρ (ML−3) is the density; υ (L2 T−1) is the kinematic
viscosity; K is the permeability (L2), kr (ψ) (−) is the rela-
tive permeability, and α (L−2) is the unit microscopic flow-
through area; and the microscale force is

f =
(
µhigh−µlow

)
. (10)

Technically,
∑
qf is the sum of all fluxes and forces (al-

ways positive because any flux produces entropy) between
all neighboring cells or elements in a microscale, numerical,
variably saturated groundwater flow model including Dirich-
let and/or Neumann boundary conditions.

Thus, the two-scale nature of Eq. (2) allows to apply dif-
ferent thermodynamic flux–force relationships at the differ-
ent scales that are the conductance concept at the macroscale
(Eq. 7) and essentially Darcy’s law or Richards’ equation
(Eq. 9) at the microscale. In Eq. (2), the entropy production
serves as an automatic spatial and also temporal integrator
of the microscale fluctuations. These two characteristics are
remarkable. Note, the calculation (integration) of the entropy
balance may be performed over the global domain of volume
V (L3) or any subdomain Vi (L3) thereof.

Figure 1. Schematic of a simple profile with Dirichlet boundary
conditions on the right and left (Mr,Ml) and steady-state, variably
saturated flow. In the theory, the vertical and horizontal extents of
the cross section are assumed to be constant.

3 Method of inference

The basis of the method of inference is that the internal, mi-
croscopic entropy production σ and also the complete en-
tropy balance can be calculated from support scale simu-
lations by implementing the microscale Eqs. (9) and (10)
in combination with a continuity equation over the macro-
scopic domain. In obtaining σ explicitly, one is able to es-
timate effective potentials, forces, and conductance coeffi-
cients of Eq. (7) at the macroscale from the explicitly re-
solved fluctuations at the microscale, which are thermody-
namically consistent. In order to illustrate the method of in-
ference of macroscale potentials, conductances, and forces, a
number of illustrative examples based on simple hydrologic
profiles are presented applying different boundary conditions
and source/sink terms.

3.1 Example 1

Directed at a heat flow example in Kondepudi and Pri-
gogine (2014), a simple cross section is considered (Fig. 1)
with steady-state, variably saturated groundwater flow, J ,
from left to right due to Dirichlet boundary conditions on
the left Mr, and right Ml, with Ml >Mr. Because ∇ · J = 0,
and s′= 0 at steady state, integration of the entropy balance
over the cross section leads to

Si =

Lz∫
0

Lx∫
0

σ (x,z)dxdz= Lz

Lx∫
0

Jx (∇xM)dx (11a)

Si = LzJx (Ml−Mr)= LzJxF, (11b)

where Lz and Lx (L) are the constant vertical and horizontal
extents of the cross section, respectively; Si is the total in-
ternal entropy production; and F = (Ml−Mr) is the macro-
scopic force. Note, in the following, the entropy production
integral is simply written as Si =

∫
σ , and Lz is lumped into

the flux LzJx = J for convenience.
In case of this simple example, applying J = λ(Ml−Mr)

from Eq. (5), one obtains the expression for the effective con-
ductance

λ= Si(Ml−Mr)
−2
= SiF

−2 (12)
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Figure 2. Schematic of a simple profile with a Dirichlet bound-
ary condition on the right (Mr), a no-flow boundary condition on
the left, a constant source (Qs), and steady-state, variably saturated
groundwater flow. In the theory, the vertical and horizontal extents
of the cross section are assumed to be constant.

and the effective force

F = SiJ
−1. (13)

Thus, one may obtain the effective conductance for
any kind of heterogeneity (i.e., microscale fluctuations)
by explicitly calculating σ and Si based on Eqs. (6)
and (7) and the macroscopic boundary conditions Ml
and Mr. Note, entropy production is simply the sum
of the product of the steady-state fluxes and incremen-
tal forces over the cross section Si =

∫
σ =

∫ (∑
qf
)
=∫ (∑ 1

α
ρ K
v
kr (ψ)

(
µhigh−µlow

)2), where individual values
of qf are calculated with Eqs. (9) and (10) between two ad-
jacent microscale elements in support scale numerical simu-
lations. While λ could have been obtained directly from the
macroscopic flux and the applied boundary conditions simi-
lar to a numerical Darcy experiment, the example serves to
illustrate the basic concept of inference arriving at a thermo-
dynamic expression for λ and the force F (if a flux is pre-
scribed at the boundaries).

3.2 Example 2

This example expands example 1 to steady-state groundwater
flow including recharge represented by the mass rate Qs

Qs =

L∫
0

(∇ · J )dx, (14)

and integration leading to

MQs+ JlMl− JrMr = Si, (15)

where M is the macroscopic potential of the cross section.
The general expression for the macroscopic potential of

the cross section is

M =Q−1
s (Si − (JlMl− JrMr)) . (16)

In this example, three special cases are considered, namely
Jl = 0, Jl < 0, and Jl > 0. In case of Jl = 0 (Fig. 2), there

Figure 3. Schematic of a simple profile with Dirichlet boundary
conditions on the right and left (Mr,Ml) a constant source (Qs), and
steady-state, variably saturated groundwater flow. In this symmetric
case, there exists a water divide in the center of the domain. In the
theory, the vertical and horizontal extents of the cross section are
assumed to be constant.

is a no-flow boundary condition on the left side resulting in
Jr =Qs and, thus

M = Si,Jl= 0Q
−1
s +Mr (17)

F = (M −Mr)= Si,Jl= 0Q
−1
s , (18)

where the subscript indicates the respective case for the left
boundary flux.

With Eq. (7) and Jr =Qs = J,

λ= Si,Jl= 0F
−2 (19)

follows for the conductance coefficient.
For Jl < 0 (Fig. 3), the symmetric case is consid-

ered, where the potentials at the boundaries are equal
(Ml =Mr =Mb) and Qs is uniform over the profile
(−Jl = Jr =Qs/2) leading to

MQs− 1/ 2QsMl− 1/ 2QsMr = Si,Jl < 0 (20a)
Qs (M − (Ml+Mr)/2)= Si,Jl < 0 (20b)
Qs (M −Mb)= Si,Jl < 0, (20c)

and ultimately for the macroscopic potential

M = Si,Jl < 0Q
−1
s +Mb. (21)

F = (M −Mb)= Si,Jl < 0Q
−1
s , (22)

and

λ= Si,Jl < 0F
−2. (23)

Note, M and F reflect values for each of the two half
spaces separated by a no-flow boundary condition, e.g., F =(
Si,Jl<0/2

)
(Qs/2)−1, which is true for a homogeneous pro-

file only and is equivalent to the case Jl < 0 above. The
entropy production is calculated also with Si,Jl<0 =

∫
σ =∫ (∑

qf
)
=
∫ (∑ 1

α
ρ K
v
kr (ψ)

(
µhigh−µlow

)2).
For a heterogeneous profile and/or Ml >Mr (Fig. 4), i.e.,

when there is no symmetry

MQs− JlMl− JrMr = Si,Jl<0. (24)
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Figure 4. Schematic of a simple profile with Dirichlet boundary
conditions on the right and left (Mr,Ml) a constant source (Qs),
and steady-state, variably saturated flow. In this case, there exists a
water divide in the domain. In the theory, the vertical and horizontal
extent of the cross section is assumed to be constant.

Figure 5. Schematic of a simple profile with Dirichlet boundary
conditions on the right and left (Mr,Ml), a constant source (Qs),
and steady-state, variably saturated groundwater flow. Note the di-
viding streamline in this example. In the theory, the vertical and
horizontal extents of the cross section are assumed to be constant.

Thus, the effective potential M of the cross section may be
obtained from

M =Q−1
s
(
Si,Jl < 0+ JlMl+ JrMr

)
. (25)

Additionally, expressions can be obtained for the conduc-
tance coefficients in the exchange with the left and right
boundary conditions that are

λl =
(
MQs− Si,Jl < 0− JrMr

)
(FlMl)

−1 (26a)

λr =
(
MQs− Si,Jl < 0− JlMl

)
(FrMr)

−1, (26b)

where the macroscale forces Fr =M −Mr and Fl =M −

Ml result from the differences between M and Ml,
Mr with M following from Eq. (25). Again, entropy
production is calculated with Si,Jl<0 =

∫
σ =

∫ (∑
qf
)
=∫ (∑ 1

α
ρ K
v
kr (ψ)

(
µhigh−µlow

)2).
For Jl > 0 (Fig. 5), the entropy balance is

MQs+ JlMl− JrMr = Si,Jl>0 (27)

and the macroscopic potential is

M =Q−1
s
(
Si,Jl>0− JlMl+ JrMr

)
. (28)

With Qs = Jr− Jl, follows

Jl (Ml−M)+ Jr (M −Mr)= Si,Jl>0. (29)

Figure 6. Schematic of the discrete example consisting of three mi-
croscale elements with a Dirichlet boundary condition on the right
side (µb) and a source/sink in each element (ql, qc, qr).

Thus, two conductances can be obtained, which are

λl =
(
Si,Jl>0− Jr (M −Mr)

)
F−2

l (30)

λr =
(
Si,Jl > 0− Jl (Ml−M)

)
F−2

r (31)

with the macroscopic forces Fl = (Ml−M) and Fr =

(M −Mr). In this example, two additional conductances can
be obtained for the subdomains separated by the dividing
streamline due to recharge shown in Fig. 5 that are

λQs =
(
Si,Jl > 0− Jl (Ml−Mr)

)
F−2
Qs

(32)

λl,r =
(
Si,Jl>0−Qs (M −Mr)

)
F−2
l,r , (33)

with Jr = Jl+Qs, and the macroscale forces FQs =

(M −Mr) and Fl,r = (Ml−Mr). In the domain, the en-
tropy production is calculated also with Si,Jl > 0 =

∫
σ =∫ (∑

qf
)
=
∫ (∑ 1

α
ρ K
v
kr (ψ)

(
µhigh−µlow

)2).

3.3 Example 3

In this example, a no-flow boundary condition on the left is
considered resembling a hillslope with a no-flow boundary
along a hypothetical ridge on the left side, and a Dirichlet
boundary condition along a hypothetical stream on the right
side. Now, a source/sinkQs(x, t) varies periodically in space
and time (periodically varying recharge/discharge). In this
case, Eq. (2) needs to be solved for the different variables
and integrated over one complete cycle at dynamic equilib-
rium.

Note, again
∫ L

0 ∇ · Jdx =Qs because there is a macro-
scopic, transient source/sink in the domain, therefore, after
integration along the cross section, the entropy balance reads

S′+MQs− JrMr = Si, (34)

where S′ is the entropy change rate. After time integration
over one full cycle at dynamic equilibrium, Qs = 0 and S′ =
0, the effective macroscopic potential of the cross section due
to the periodic varying source/sink is

M = (Si + JrMr− S′)Q
−1
s (35a)
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or

M = cov
(
Si,Q

−1
s

)
+ SiQ

−1
s +

Mr

(
cov

(
Jr,Q

−1
s

)
+ JrQ

−1
s

)
+ cov

(
S′,Q−1

s

)
, (35b)

based on the definition of the covariance.
Recognizing that Jr =

∫ L
0

(
Qs−2

′
)
dx, where 2′ is the

macroscopic mass change rate of the cross section, one ob-
tains for the effective force

F = (Si −2′Mr− S′)Q
−1
s (36a)

or

F = cov
(
σ,Q−1

s

)
+ σQ−1

s −Mrcov
(
2′,Q−1

s

)
− cov

(
S′,Q−1

s

)
, (36b)

with2′ = 0 due to dynamic equilibrium; and for the effective
conductance

λ= (Si −2′M − S′)F 2 (37a)

or

λ= cov
(
Si,F

2
)
+ Si F 2− cov

(
2′M,F 2

)
+2′MF 2+ cov

(
S′,F 2

)
(37b)

with Jr = λF = λ(M −Mr).
Apparently, on the right-hand side of Eqs. (35), (36), and

(37) all terms may be calculated from the numerical simula-
tions except the entropy change rate S′ =

∫
s′ and therefore

also cov
(
S′,Q−1

s
)
, because both, S′ and M are not known

in Eq. (34) (note, Si is calculated explicitly). However, S′ is
needed in the estimation of F and λ and may actually be cal-
culated from the microscale variables, which is demonstrated
with a discrete example depicted in the schematic in Fig. 6.

In this schematic, there are three microscale elements with
sources/sinks in each individual element (ql, qc, qr) and a
constant potential boundary condition on the right (µb). For
each individual element the entropy balance is

s′l + qlµl− ql,cµl,c =
∑

qlfl = ql,c
(
µl−µl,c

)
(38a)

s′c+ qcµc+ ql,cµl,c− qc,rµc,r =
∑

qcff

= ql,c
(
µl,c−µc

)
+ qc,r

(
µc−µc,r

)
(38b)

s′r+ qrµr+ qc,rµc,r− qbµb =
∑

qrfr = qc,r
(
µc,r−µr

)
+ qb (µr−µb) , (38c)

where the fluxes and potentials with the subscript l, c and
c, r are valid at the element interfaces. The terms on the
right-hand side, i.e., the entropy production for each element,
encompass the fluctuations in the flux–force relationships
between the element’s interior and the element boundaries.

Summation of the individual balance equations leads to the
total balance

s′+ qlµl+ qcµc+ qrµr− qbµb = σ = ql,c (µl−µc)

+ qc,r (µc−µr)+ qb (µr−µb) . (39)

Note, on the left-hand side, all the interface terms disappear
and only the source and boundary terms remain, equivalent
to the macroscale balance in Eq. (34). Equation (38) is the
entropy balance equation for the system depicted in Fig. 6.

Any changes in the entropy of the system with time are due
to transient effects that cancel out at dynamic equilibrium
s′ = 0. In order to demonstrate this, substitution of ql,c =(
ql− θl

′
)
, qc,r =

(
ql− θl

′
)
+
(
qc− θc

′
)
, and qb =

(
ql− θl

′
)
+(

qc− θc
′
)
+
(
qr− θr

′
)

for the interface fluxes on the right-
hand side in Eq. (38) leads to

s′+ qlµl+ qcµc+ qrµr− qbµb =
(
ql− θl

′
)
µl

+
(
qc− θc

′
)
µc+

(
qr− θr

′
)
µr− qbµb, (40)

which demonstrates continuity in case of steady-state θl
′
=

θc
′
= θr

′
= 0, and shows that any, e.g., positive mass stor-

age change θ ′ over the microscopic volume leads to negative
change in entropy and vice versa. Note, the entropy produc-
tion is still always positive as required by definition. Thus, S′

and M can be evaluated by applying Eq. (39) to microscale
simulations.

A special case may be considered, in which the system
depicted in Fig. 6 is also closed on the right side result-
ing in a sole exchange with the surroundings via the peri-
odic source/sink (e.g., infiltration/evapotranspiration) Qs (t).
This would be equivalent to a profile with a discharge area
in the center and the assumption of symmetry shown in the
schematic in Fig. 7. The requirement again is that Qs =

0 over one full cycle at dynamic equilibrium. Then, e.g.,
Eq. (35) simplifies to

M = (Si − S′)Q
−1
s (41a)

or

M = cov
(
1S′,Q−1

s

)
+ SiQ

−1
s (41b)

with 1S′ = Si − S′.

4 Discussion

The major advantage of the proposed inference theory is
the estimation of macroscopic variables that are thermody-
namically consistent with the microscale fluctuations. This is
discussed in the context of the simple example 1 interpret-
ing the entropy current Js = JM as an advective potential
flux. Because J is constant and Ml > Mr, the entropy cur-
rent leaving the domain on the right side is smaller than the
entropy current entering the domain on the left side. This is
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Figure 7. Schematic of a simple profile with a no-flow boundary
condition on the left and right (based on symmetry) and transient,
spatially varying sources/sinks Qs (x, t) resulting in a recharge and
discharge area. In the theory, the vertical and horizontal extent of
the cross section is assumed to be constant.

due to dissipation in the interior of the domain resulting in
the production of entropy Si . In hydrology, the dissipation is
simulated using Darcy’s law and Richards’ equation at the
support (here microscopic) scale, where all dissipative pro-
cesses are lumped in the hydraulic conductivity representing
the flow resistance. Thus, at the macroscale the derived con-
ductance λ is thermodynamically consistent if one accepts,
e.g., Darcy’s law as a valid parameterization of the internal
dissipative processes. Note, in this study, Js is equivalent to
the internal energy current in the energy balance equation,
because temperature is constant.

Equations (12) and (13) have not been applied before
in the context of hydrology. While the equations illustrate
the basic idea for the simplest case of a Darcy experi-
ment, one may argue that the insight gained from this ex-
ample is rather limited, because λ could have been ob-
tained from the known flux–force relationship and the con-
ductance equation (one unknown λ with one Eq. 7). Exam-
ples 2 and 3, on the other hand, clearly illustrate the ad-
vantage, because the macroscale potential M (and therefore
F), which are needed to obtain λ, are not known in these
examples. Thus, one is left with two unknowns, λ and F ,
and only one equation (the conductance Eq. 7). In the pro-
posed theory, the entropy balance provides the second equa-
tion to solve for the two unknowns at the cost of explic-
itly calculating the internal entropy production Si =

∫
σ =∫ (∑

qf
)
=
∫ (∑ 1

α
ρ K
v
kr (ψ)

(
µhigh−µlow

)2), and at the
benefit of thermodynamic consistency. This is the central
message of the proposed method of inference, which exploits
the internal entropy production Si as a spatial and also tem-
poral integrator.

It is important to emphasize that one can also obtain, in an
ad hoc fashion, the forces and conductance coefficients for
any subdomain Vi of the global domain with volume V . For
example, in order to obtain the macroscale potential in the
center of the profile of example 1, one arrives at

Mc =Ml− J
−1
∫
Vi

σdVi . (42)

Thus, from
∫
Vi
σdVi estimates, one is able to obtain

macroscale variables over a hierarchy of scales for differ-
ent hydrologic configurations similar to the simple examples
provided above.

Under purely saturated groundwater flow conditions, the
estimates of macroscale variables can be used directly for
predictions, because λ is constant for the same flow geome-
tries, which is trivial, but important to realize. In case of vari-
ably saturated flow and transient conditions (when the flow
geometry changes), λ is of course not constant and Si will
depend in an unknown, nonlinear fashion on the flux J and
its variability (example 3), which apparently limits the use-
fulness of the proposed approach. However, universal rela-
tionships of Si (J ) and cov

(
Si,J

−1) can perhaps be obtained
from a series of numerical experiments under characteristic
hydrologic configurations.

This also brings up the question of whether one is able to
establish a connection of the proposed theory with observa-
tions of real-world systems. Obviously, Si can not be mea-
sured directly in the field utilizing independent experiments,
which could, in turn, be used to derive macroscopic thermo-
dynamic forces from flux observations that are more readily
available. Thus, utilizing the entropy balance for estimating
macroscopic field variables and ensuing predictions appears
limited at this point. Yet, this study suggests exploring rela-
tionships of measurable field variables and Si utilizing nu-
merical experiments in the future. In turn, under certain con-
ditions, estimates of Si from measurable quantities may be
possible. With the help of the extended example 1, this is
discussed below.

Assuming a time-varying force, i.e., Dirichlet boundary
conditions, temporal integration of Eq. (11) over one full cy-
cle at dynamic equilibrium yields

Si = JF . (43)

Inserting the conductance equation into Eq. (43) under sat-
urated, linear groundwater flow conditions with the assump-
tion of only small changes in the flow geometry (λ is con-
stant) leads to

Si = λ
−1J 2 = λ−1

[
var(J )+ J

2
]
. (44)

Thus, entropy production is related inversely to λ, linearly
to var(J ), and by a power of 2 to J . If an estimate of λ is
available, Si can be calculated from observations of J . In the
more realistic case of variably saturated groundwater flow
and/or varying flow geometry, Eq. (44) changes to

Si = λ−1J 2 = cov
(
λ−1,J 2

)
+ λ−1 J 2, (45)

illustrating the same dependence of Si on λ and J as before.
The unknown covariance cov

(
λ−1,J 2) may potentially be

estimated from numerical experiments.
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5 Summary and conclusions

In this study, the method of inference based on the en-
tropy balance equation was introduced. The theoretical ba-
sis is the explicit calculation of the internal microscale en-
tropy production, which is used in the balance equation to
solve for macroscale potentials, and thermodynamic forces
and fluxes. The proposed method was illustrated with sim-
ple hydrologic cross sections of steady-state, variably satu-
rated groundwater flow and a periodic source/sink (infiltra-
tion/evapotranspiration) at dynamic equilibrium.

The entropy balance equation is remarkable, because the
equation unifies the macro- and microscale in one equation
allowing the simultaneous application of two different move-
ment equations, which are the conductance equation at the
macroscale and Darcy’s law/Richards’ equation at the mi-
croscale, in this study. The derivations lead to expressions
for macroscale variables that are a function of the entropy
production (i.e., the internal fluctuations of the microscale
flux–force relationships) and provide a thermodynamically
consistent link between the two different scales. Therefore,
the derivation provides a different theoretical perspective of
variably saturated groundwater flow and new approaches for
obtaining effective macroscale variables. The discussion sug-
gests that these may be derived consistently for a hierarchy
of scales. With the advent of high-performance computing
in hydrology, there is strong potential for additional insight
from hyper-resolution numerical experiments to explicitly
calculate the internal entropy production. For example, ex-
isting and new averaging and upscaling laws may be tested
and derived using series of numerical experiments with, e.g.,
varying subsurface heterogeneity configurations and bound-
ary conditions. These experiments may also be useful in de-
riving new movement equations at the macroscale replacing
empirical, calibrated parameterizations, and regionalization
approaches.

The study is a contribution to the field of theoretical hy-
drology, providing a thermodynamic perspective of inference
in hydrology. While inference of macroscale variables’ ne-
cessitates explicit calculation of the entropy production and
thus considerable computational resources, these resources
are well invested: obtaining previously unknown macroscale
parameters is at the center of the ubiquitous challenge of up-
scaling, and applying the proposed framework may help in
finding general upscaling relationships over a hierarchy of
scales. The connection to real-world observations needs to
be established in the future, also with the help of numerical
simulations. In the provided theoretical setting, the useful-
ness of the method for predictions is evident from the simple
examples provide here, however, for real-world predictions
this remains to be demonstrated.
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