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Abstract. Drought is one of the most costly natural hazards
in Europe. Due to its complexity, drought risk, meant as the
combination of the natural hazard and societal vulnerabil-
ity, is difficult to define and challenging to detect and pre-
dict, as the impacts of drought are very diverse, covering
the breadth of socioeconomic and environmental systems.
Pan-European maps of drought risk could inform the elab-
oration of guidelines and policies to address its documented
severity and impact across borders. This work tests the ca-
pability of commonly applied drought indices and vulner-
ability factors to predict annual drought impact occurrence
for different sectors and macro regions in Europe and com-
bines information on past drought impacts, drought indices,
and vulnerability factors into estimates of drought risk at the
pan-European scale. This hybrid approach bridges the gap
between traditional vulnerability assessment and probabilis-
tic impact prediction in a statistical modelling framework.
Multivariable logistic regression was applied to predict the
likelihood of impact occurrence on an annual basis for par-
ticular impact categories and European macro regions. The
results indicate sector- and macro-region-specific sensitivi-
ties of drought indices, with the Standardized Precipitation
Evapotranspiration Index (SPEI) for a 12-month accumula-
tion period as the overall best hazard predictor. Vulnerability
factors have only limited ability to predict drought impacts as
single predictors, with information about land use and water
resources being the best vulnerability-based predictors. The
application of the hybrid approach revealed strong regional
and sector-specific differences in drought risk across Europe.

The majority of the best predictor combinations rely on a
combination of SPEI for shorter and longer accumulation
periods, and a combination of information on land use and
water resources. The added value of integrating regional vul-
nerability information with drought risk prediction could be
proven. Thus, the study contributes to the overall understand-
ing of drivers of drought impacts, appropriateness of drought
indices selection for specific applications, and drought risk
assessment.

1 Introduction

Drought is a natural phenomenon that can become a natu-
ral disaster if not adequately managed (Wilhite, 2000). Un-
like other natural hazards, it has a creeping onset and does
not have a unique definition (Lloyd-Hughes, 2014), which
makes defining the beginning or end of a drought event diffi-
cult (Hayes et al., 2004; Wilhite et al., 2007). Drought is ei-
ther defined by its physical characteristics, e.g. meteorolog-
ical drought, soil moisture drought or hydrological drought
(e.g. Wilhite and Glantz, 1985), or by its consequences on so-
cioeconomic and environmental systems, i.e. its negative im-
pacts (Blauhut et al., 2015a). These impacts can either be di-
rect (e.g. reduced crop yields) or indirect (e.g. increased costs
for food due to reduced crop yields) and can occur across a
wide range of temporal and spatial scales. In the European
Union (EU), more than 4800 unique drought impact entries
have been identified in the European Drought Impact Re-
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port Inventory (EDII) across 15 different impact categories
from agriculture to water quality (Stahl et al., 2016) and fi-
nancial losses over the last 3 decades were estimated to over
EUR 100 billion (EC, 2007).

To mitigate these impacts, until recently drought risk
management at the pan-European scale has predominantly
focused on coping with financial losses, mainly through
calamity funds, mutual funds, and insurances (Diaz-Caneja
et al., 2009). Nevertheless, today’s scientific consensus
points to the need to move from a reactive to a proactive risk
management strategy (Wilhite et al., 2007). Rossi and Can-
celliere (2012) stated that an advanced assessment of drought
must include firstly, an investigation of socioeconomic and
environmental impacts, secondly, multicriteria tools to miti-
gate these, and thirdly, a set of easily understood models and
techniques for application by stakeholders and decision mak-
ers responsible for drought preparedness planning.

The risk of natural disasters in a very general sense is a
combined function of hazard and vulnerability (Birkmann et
al., 2013). For drought risk analysis, risk may be estimated
through a combination of hazard measures and estimates of
vulnerability or proxies of it. Cardona et al. (2012) observed
that “vulnerability and risk assessment deal with the iden-
tification of different facets and factors of vulnerability and
risk, by means of gathering and systematising data and in-
formation, in order to be able to identify and evaluate dif-
ferent levels of vulnerability and risk of societies – social
groups and infrastructures – or coupled socioecological sys-
tems”. Hence, the assessment of the vulnerability component
of drought risk is based either on vulnerability factors or on
past drought impacts, as these are considered to be symptoms
of vulnerability (Knutson et al., 1998).

According to Knutson et al. (1998), vulnerability assess-
ments provide a framework for identifying the root causes of
drought impacts at social, economic, and environmental lev-
els and measure a potential state, which will generate impacts
if a given level of hazard occurs. Vulnerability to drought, as
the predisposition to be adversely affected by a given haz-
ard (IPCC, 2012), therefore is often assessed by the factor
approach, in which a set of vulnerability factors (e.g. Swain
and Swain, 2011; Jordaan, 2012; Naumann et al., 2014; Kar-
avitis et al., 2014) contribute to an overall classification of
vulnerability (e.g. information on water resources, society
or technical infrastructure; González-Tánago et al., 2015).
Based on their review of 46 drought-factor-based vulnera-
bility assessments, González-Tánago et al. (2015) observed
that only 57 % of the studies actually describe the process
followed to select vulnerability factors. Among those, the
criteria used include the consultation of previous studies and
specialised literature, data availability, and expert knowledge
(González-Tánago et al., 2015). The selection of vulnerabil-
ity factors is guided by the focus of the study, the definition
of drought applied, the study location, and data availability.
Vulnerability factors are often combined and weighted by ex-
pert knowledge and stakeholder interaction to a single, over-

all vulnerability index (Wilhelmi and Wilhite, 1997; Adepetu
and Berthe, 2007; Deems and Bruggeman, 2010). The ma-
jority of studies provide limited or no information on proce-
dures applied to verify the derived index (González-Tánago
et al., 2015). Only few studies validate their results, among
them Aggett (2013), Naumann et al. (2014), and Karavitis et
al. (2014).

Impact approaches to vulnerability and risk assessment,
on the other hand, use information on past drought impacts
as a proxy for vulnerability, assuming that a system has been
vulnerable if it has been impacted. Drought risk is then con-
sidered the risk for a particular type of impact. Typically, the
impact of drought is then characterised based on data of ei-
ther financial or quantitative losses of agricultural production
(Hlavinka et al., 2009; Rossi and Niemeyer, 2010; Tsakiris
et al., 2010; Gil et al., 2011; Jayanthi et al., 2014; Quijano
et al., 2014), human mortality (Dilley et al., 2005), or im-
pacts on forestry (Vicente-Serrano et al., 2012; Muukkonen
et al., 2015). Blauhut et al. (2015a) applied annual impact oc-
currence based on reported information in the EDII to char-
acterise sector-specific vulnerability. Drought risk was then
estimated as the probability of impact occurrence as a func-
tion of the Standardized Precipitation Evapotranspiration In-
dex (SPEI). The function used was a fitted logistic regression
model. The estimated parameters could subsequently be used
to generate a first set of pan-European drought risk maps.
The displayed likelihood of impact occurrence on the maps
can be considered impact-category-specific drought risk for
selected hazard intensities. Stagge et al. (2015b) considered
variations of the logistic regression and expanded the ap-
proach to include multiple hazard predictors. Bachmair et
al. (2015) applied regression tree and correlation approaches
to link impact number and occurrence with a range of in-
dices. Both studies relied on a rather high temporal resolution
of reported impact occurrence, and hence considered only a
few regions with particularly good data coverage.

The hazard component of drought risk is commonly de-
rived from a statistical analysis of a single drought indi-
cator, a single or set of drought indices, or a combined
drought index (Hayes, 1998; Zargar et al., 2011). Drought
indices are well researched and have been applied to char-
acterise drought patterns across Europe in several stud-
ies (Lloyd-Hughes and Saunders, 2002; Parry et al., 2012;
Stagge et al., 2013; Tallaksen and Stahl, 2014; Spinoni et
al., 2015). The actual monitoring of drought in Europe is
conducted at different scales: national (e.g. German Drought
Monitor), transnational (e.g. Drought Management Centre
for Southeastern Europe (DMCSEE), continental (e.g. Eu-
ropean Drought Observatory, EDO), and global (e.g. SPEI
Global Drought Monitor). But what is the basis for their
selection as drought predictors? Bachmair et al. (2016) re-
viewed pertinent literature and surveyed existing monitor-
ing systems and found that tradition as well as data avail-
ability are commonly the criteria to select the most ap-
propriate drought index. Drought severity or warning lev-
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els are commonly categorised into arbitrarily chosen haz-
ard index thresholds, such as those selected for the Stan-
dardized Precipitation Index (SPI) (−1.5<SPI<−1: mod-
erate drought, −2<SPI<−1.5: severe drought, SPI<−2:
extreme drought, where negative values represents less than
median precipitation) (McKee et al., 1993). Defining haz-
ard severity thresholds that relate to potential impacts on
socioeconomic and natural systems, and thus the drought
risk, is often left to expert judgement. However, an indepen-
dent validation of the relevance of the various drought in-
dicators for management purposes is of crucial importance
(Pedro-Monzonís et al., 2015). Bachmair et al. (2016) found
that although drought monitoring and early warning system
providers often collect impact information, these are rarely
used systematically to validate the usefulness of particular
hazard indices. Such usefulness has been tested mostly in
local or regional case studies based on empirical links be-
tween quantified losses such as financial or yield losses and
climatic or resource (water availability) conditions (Jayan-
thi et al., 2014; Stone and Potgieter, 2008; Schindler et al.,
2007). Stagge et al. (2015b). Bachmair et al. (2015) have as-
sessed the link between impacts and different drought indices
in selected European countries and found that the best indices
vary with location and sector.

In this study, we expand the method of Blauhut et
al. (2015a) into a hybrid approach, which implies the consid-
eration of vulnerability factors into the probabilistic impact
prediction. The approach builds on earlier work developed
for the agricultural sector (Zhang et al., 2011; Ahmed and
Elagib, 2014; Han et al., 2015; Yin et al., 2014) and a Euro-
pean assessment by De Stefano et al. (2015), who considered
several physical and socioeconomic factors to calculate sen-
sitivity and adaptive capacity, and used impact information
collected in the EDII to estimate exposure. More specifically,
the hybrid approach aims to

1. investigate the ability of commonly used drought in-
dices and vulnerability factors to predict annual drought
impact occurrence for various sectors;

2. identify the best-performing combinations of predictors
to model drought risk for different sectors; and

3. map sector-specific drought risk for selected hazard
severity levels across Europe.

This study addresses these aims through statistical modelling
(logistic regression) of the combined effect of drought haz-
ard, defined by drought indices, and drought vulnerability,
defined by vulnerability factors, on the occurrence of histor-
ical drought impacts as extracted from the EDII. In a first
step, potentially relevant drought indices and vulnerability
factors were tested for their suitability as impact predictors
in binary logistic models. Then, impact category and region-
specific multivariable logistic models were built in a hybrid
approach, combining the most relevant drought indices and

Figure 1. Number of annual aggregated NUTS-combo-scale im-
pacts reported and archived in the European Drought Impact Re-
port Inventory (EDII) by European macro region (left panel) and by
NUTS-combo region (right panel).

vulnerability factors as predictors of drought impact likeli-
hood using stepwise selection. The final models were then
used to construct pan-European drought risk maps for spe-
cific hazard severity levels.

2 Data

2.1 Impact information

Information on drought impacts are derived from the EDII
(Stahl et al., 2016; http://www.geo.uio.no/edc/droughtdb/).
Since its creation in 2012, this archive has grown signifi-
cantly due to extensive data collection. Documentation on
the database’s structure and categorisation scheme can be
found on the website and in a pan-European summary assess-
ment by Stahl et al. (2016). All reports archived in the EDII
database (a) describe negative impacts of drought on soci-
ety, the economy, or the environment as reported by a given
information source, e.g. government report, any type of pub-
lic media; (b) are spatially referenced, either to their respec-
tive NUTS (Nomenclature of Territorial Units for Statistics)
region or to locations such as rivers, lakes, or coordinates;
(c) are time referenced to at least the year of occurrence,
preferably the season or month if given, and, when possible,
assigned to a major regional drought event; and (d) are as-
signed to one of 15 impact categories and an associated num-
ber of subordinate impact types (105 in total). To guarantee a
standard quality of entries, each entry has been reviewed by
an expert (Stahl et al., 2016).

In May 2015, the EDII database contained over
4800 drought impact reports. After the transformation to
NUTS-combo scale (Fig. 1, right panel), a custom combi-
nation of NUTS-level regions of similar sizes (Blauhut et
al., 2015a), 2745 entries for all impact categories were re-
tained for analysis. Figure 2 provides an overview of the
distribution of these reported impacts aggregated by year
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Figure 2. Annual drought impact occurrence by European macro
region and impact categories. A & L: Agriculture and Livestock
Farming, Fo: Forestry, A & F: Aquaculture and Fisheries, E & I: En-
ergy and Industry, WT: Waterborne Transportation, T & R: Tourism
and Recreation, PWS: Public Water Supply, WQ: Water Quality,
FE: Freshwater Ecosystems, TE: Terrestrial Ecosystems, SS: Soil
Systems, WF: Wildfires, H & P: Human Health and Public Safety,
Co: Conflicts.

of impact occurrence and shows significant differences be-
tween European macro regions (Fig. 1, left panel). These
macro regions are climatologically comparable regions de-
fined in order to cope with larger climatic differences and
data shortfalls (Blauhut et al., 2015a). The majority of im-
pact reports are located in maritime Europe (1290) with
fewer entries in the western Mediterranean (342), southeast-
ern Europe (283), and northeastern Europe (62). The highest
numbers for drought impact entries by NUTS-combo level
(Fig. 1, right panel) are available for southern UK, central
Europe, and the southwestern Iberian Peninsula. Northeast-
ern Europe has the lowest number of EDII entries.

To overcome reporting biases, including regionally lack-
ing data for a pan-European application of the EDII data
set (Stahl et al., 2016), we followed Blauhut et al. (2015a)
and: (a) created binary data sets (occurrence/absence of im-
pact reports) from 1970 to 2012 for each impact category and
macro region, (b) assigned multiyear drought impacts to each
affected year (e.g. 1975–1976: impact occurrence in 1975
and 1976), and (c) generalised seasonal and short-term infor-
mation to the year of occurrence. Figure 2 shows the timeline

of annual drought impact occurrence for all reported impact
categories pooled for European macro regions.

Drought impact reports stem from various sources and
are assigned with a certain level of reliability, decreasing
by its enumeration rank: academic work, governmental re-
ports and documents, reports, media and webpages, and
other sources (Stahl et al., 2016). The proportions of im-
pact sources by macro regions differ significantly. In both
the western Mediterranean and maritime Europe regions,
academic work and governmental documents are the dom-
inant sources of information (about two-thirds). By con-
trast, EDII entries for northeastern Europe are strongly dom-
inated by academic work and the media (∼ 90 %). The ma-
jority of information sources for southeastern Europe are
non-governmental reports and the media, which suggest that
southeastern Europe may have the least reliable data. Explicit
information is lacking that would allow assigning an uncer-
tainty flag depending on the source. Thus, in this study all
information sources were treated equally. Nevertheless, un-
certainties due to the nature of the impact data need to be
discussed and considered in the interpretation of any studies
that are based on this or similar sources of data.

2.2 Hazard indices

Variables which describe drought hazard are numerous, and
can be categorised into two main groups: indicators and in-
dices (Heim, 2002; Zargar et al., 2011). Drought indica-
tors directly measure a certain facet of the drought haz-
ard, e.g. climatological conditions, vegetation health, or soil
moisture by a quantitative measure. Drought indices, such
as the Standardised Precipitation Index (SPI) or Soil Mois-
ture Anomaly (1pF), are quantitative measures characteris-
ing drought levels by assimilating data from one or multiple
drought indicators to a single numerical value (Zargar et al.,
2011). Unlike these, combined drought indices, e.g. drought
intensity of the US Drought Monitor (Svoboda et al., 2002)
or the Combined Drought Indicator of the EDO (Sepulcre
Canto et al., 2012) blend drought indicators and indices to
a categorical hazard severity index. For the purpose of this
study, focus is on drought indices that are commonly rec-
ommended (Stahl et al., 2015), readily available, monitored,
and used operationally in Europe for drought monitoring (Ta-
ble 1). For the purpose of this work, all drought indices (pre-
sented below) were first derived at the original grid scale on
a monthly basis for periods with the necessary data availabil-
ity. To match the spatial resolution of recorded impacts, these
drought indices were aggregated to the NUTS-combo scale
(Fig. 1, right panel) by taking the mean of gridded values.

Among the single indices, the most widely accepted me-
teorological drought index is the SPI (McKee et al., 1993).
It is recommended by the WMO and is therefore applied
widely in Europe for drought identification (e.g. Gregorič
and Sušnik, 2010; Vogt et al., 2011; Stagge et al., 2015a). As
introduced by McKee et al. (1993) “the SPI is the transforma-
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Table 1. Overview of selected drought indices.

Indices Application for drought Data requirements Data source used in Temporal
monitoring in Europe (examples) this study aggregation and

resolution used

SPI

Drought Management Centre

Precipitation E-OBS 9.0

Timescales of 1–6,
Southeastern Europe 9, 12, 24
European Drought Reference months; monthly;
Database 1950–2012
Global Drought Information
System
JRC

SPEI SPEI Global Drought Monitor

Precipitation

E-OBS 9.0

Timescales of 1–6,
evapotranspiration 9, 12, 24

months; monthly;
1950–2012

1pF

German Drought Monitor (soil Precipitation, National Meteo Office, Monthly; annual
moisture index) evapotranspiration, Joint Research average;
European Drought Observatory soil water potential, Centre 2001–2014

soil parameters, NDVI

1fAPAR European Drought Observatory

Fraction of the Medium Monthly; annual
incoming solar Resolution Imaging average;
radiation in Spectrometer 2001–2014
the photosynthetically (MERIS),
active radiation VEGETATION sensor
spectral region onboard SPOT

CDI European Drought Observatory SPI, 1pF, 1fAPAR
Joint Research Monthly; annual
Centre maximum;

2001–2014

tion of the precipitation time series into a standardised nor-
mal distribution” (Lloyd-Hughes and Saunders, 2002), and
is commonly used to estimate wet or dry conditions based
on long-term records of monthly precipitation. SPI is com-
puted by summing precipitation over n months, termed ac-
cumulation periods, and is typically calculated at a monthly
resolution. For instance, SPI-3 for December represents the
number of standard deviations from the standard normal dis-
tribution of accumulated precipitation for Oct–Dec relative
to a given reference period. The SPI’s strength is its low
data needs and its multiscalar nature. It can be calculated
for various accumulation periods and therefore can be re-
lated to different types of drought (e.g. soil moisture drought
or hydrological drought) and temporal duration (e.g. sum-
mer drought to multiyear drought). Nevertheless, the SPI
has limited interpretability for short accumulation periods
(< 2 months) in dry regions where monthly precipitation is
often near 0 (Stagge et al., 2015a). For this study we used
gridded monthly aggregated precipitation from the E-OBS-
9 data set and derived the SPI for accumulation periods of
1–24 months (SPI-1, SPI-2, etc.) based on the gamma distri-
bution with a baseline for standardisation from 1970 to 2010.
Subsequently, the gridded monthly SPI values were spatially

aggregated by averaging all grid cells within each NUTS-
combo level.

The SPEI (Vicente-Serrano et al., 2010; Stagge et al.,
2015b) is an alternative drought index, which is defined as
precipitation minus potential evapotranspiration. The index
thus provides a more comprehensive measure of the climatic
water balance while avoiding problems with zero precipita-
tion as for the SPI. Consequently, it has been growing in pop-
ularity (Beguería et al., 2010; Lorenzo-Lacruz et al., 2010;
Blauhut et al., 2015a). Here, the SPEI was calculated based
on monthly aggregated E-OBS-9 data following the recom-
mendations of Stagge et al. (2015a), which uses the Har-
greaves equation (Hargreaves, 1994) to estimate potential
evapotranspiration and the generalised extreme value distri-
bution for normalisation based on data from 1970 to 2010.
Finally, all gridded SPEI indices were spatially averaged to
NUTS-combo level.

Besides the standardised meteorological indices, we ap-
plied the following drought indices, as used by the Joint Re-
search Centre of the European Commission (JRC) in their
EDO, a website that shows the recent and current drought
situation in Europe from 2001 on. Soil moisture is known
as a major driver for a variety of climate and hydrological
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processes and is the key indicator of agricultural drought
(Kulaglic et al., 2013; Hlavinka et al., 2009; Potop, 2011).
The JRC’s EDO provides daily and 10-day assessments of
the moisture content of the top soil layer (upper 30 cm).
Soil moisture is obtained from the LISFLOOD distributed
rainfall–runoff model with a grid-cell resolution of 5 km
across Europe, using daily meteorological input from the
JRC MARS meteorological database. Soil moisture is ex-
pressed as soil suction (pF), providing a quantitative mea-
sure of the force needed to extract water from the soil ma-
trix. Soil moisture anomalies (1pF) are then calculated as
the standardised deviation from the long-term average for the
period 1996–2014, and are used as input for the CDI. This
standardisation results in a quantification of the soil moisture
deficit which is normally distributed and thus comparable to
the SPI and other similar indices. For this study, the index
was aggregated temporally to monthly values, and spatially
to NUTS-combo level by averaging.

Direct measurement of stomatal activity (or photosyn-
thetic activity, e.g. NDVI, VCI) (Chopra, 2006; Amoako et
al., 2012) has been applied in many drought hazard analy-
ses and has directly been used as a proxy for drought im-
pacts (Skakun et al., 2014). The JRC derives the fraction of
absorbed photosynthetically active radiation (fAPAR) from
satellite measurements at approximately 1 km spatial reso-
lution and for 10-day periods. The fAPAR is a quantitative
measure of the fraction of solar energy that is absorbed by
vegetation and a proxy for the status of the vegetation cover.
Analogous to the SPI and soil moisture, fAPAR anomalies
(1fAPAR) are calculated as the standardised deviation from
the long-term mean (1975–2010). For this study, the index
was averaged to monthly values and the NUTS-combo level.
The fAPAR anomaly can be associated with plant productiv-
ity and has therefore been recommended as an agricultural
drought index by the UN Global Climate Observing Sys-
tem (GCOS) and the FAO Global Terrestrial Observing Sys-
tem (GTOS). However, fAPAR measures the photosynthetic
activity of the vegetation cover only, which can be due to
drought but also related to factors such as pests and diseases.
It is therefore important to analyse the index in conjunction
with other indices in order to ensure the link to a drought
situation.

The Combined Drought Indicator (CDI) (Sepulcre-Canto
et al., 2012) generated by the JRC represents a logical com-
bination of several drought indices to detect the severity of
agricultural/ecosystem drought with a time step of 10 days.
The method is a classification scheme that corresponds to dif-
ferent stages of drought propagation from the initial precipi-
tation deficit, over a soil moisture deficit, to a water stress for
the vegetation canopy. It is a logical combination of the SPI
for 1- and 3-month accumulation periods,1pF, and1fAPAR
with adjusted time lags. It results in four increasingly severe
drought states: Watch, Warning, Alert, and Alert2, as well as
two recovery states: Partial recovery and Full recovery. For
the purpose of our analysis the levels of recovery were ne-

glected. For this study, monthly and annual maxima within
each NUTS-combo region were selected as further hazard
indices available for the modelling.

2.3 Vulnerability factors

The most commonly used method to assess vulnerability to
drought or other natural hazards is to employ a set of proxy
factors or composites of them. These factors aim at capturing
different issues that influence the level of vulnerability of a
system to a given hazard, herein referred to as vulnerability
factors. Vulnerability is often assessed through the combina-
tion of factors in the following components of vulnerability:

– Exposure is the extent to which a unit of assessment
falls within the geographical range of a hazard event
(Birkmann et al., 2013).

– Sensitivity is the occupance and livelihood characteris-
tics of the system (Smit and Wandel, 2006).

– Adaptive capacity is the particular asset bundles for
risk reduction (Pelling and Uitto, 2001; Gosling et al.,
2009).

In Europe, the assessment of vulnerability to drought has
been undertaken mostly at national or local scales. With the
exception of comprehensive efforts to characterise causes,
components, and factors of drought vulnerability (Flörke et
al., 2011; Lung et al., 2011), De Stefano et al. (2015) was the
first to map a vulnerability index at a pan-European scale.
This study builds on the experience gained in that effort,
which was complemented by some additional data, as ex-
plained below.

De Stefano et al. (2015) defined 16 vulnerability factors
grouped into three thematic components: exposure (1), sen-
sitivity (5), and adaptive capacity (10). The latter further sub-
divided into four classes. The factors were assessed through
a large set of parameters produced at the NUTS-2 resolu-
tion for the 28 member states of the European Union plus
Norway and Switzerland. To build the data set, De Stefano
et al. (2015) extracted data from international databases, in-
cluding Aquastat, the Eurobarometer, European Commis-
sion, the European Environment Agency, Eurostat, the World
Bank, FAO, as well as from the literature. In order to be able
to compare and combine data describing different factors,
De Stefano et al. (2015) normalised the data from 0 to 1.
Combined vulnerability factors and the vulnerability index
itself were generated on the basis of equal weights (more de-
tails on the processes can be found in their report). For this
analysis, we obtained the raw data as initially collected, their
normalised values, as well as combined versions of vulnera-
bility factors (Table 2).

For some vulnerability factors, this study completed the
original data set with data available for multiple time steps.
Thus, the CORINE landcover data sets for 1990, 2000,
and 2006 were added to the data set. These data stem
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Table 2. Factors used to assess vulnerability.

Vulnerability factor Scale Multiple Composed Applied Data source or source
time steps for combined

MLRM

Adaptive capacity

Corruption Country
√ √

De Stefano et al. (2015)
Drought awareness Country

√ √
De Stefano et al. (2015)

Drought management tools RDB
√ √

De Stefano et al. (2015)
Drought recovery capacity Country

√ √
De Stefano et al. (2015)

Education expenditure and skilled people NUTS-2
√ √

De Stefano et al. (2015)
Inability to finance losses Country

√
Eurostat

Innovation capacity NUTS-2
√ √

De Stefano et al. (2015)
Law enforcement Country

√ √
De Stefano et al. (2015)

Law enforcement and corruption Country
√ √

Corruption+ law enforcement
Public participation Country

√ √
De Stefano et al. (2015)

River basin management plans Country
√ √

De Stefano et al. (2015)
Water related participation factor-EC Country

√ √
De Stefano et al. (2015)

Sensitivity

A. agriculture NC
√ √

Corine Land Cover, EEA
A. agriculture, ratio of NC NC

√ √
Corine Land Cover, EEA

A. artificial surfaces NC
√ √

Corine Land Cover, EEA
A. artificial surfaces, ratio of NC NC

√ √
Corine Land Cover, EEA

A. forest NC
√ √

Corine Land Cover, EEA
A. forest, ratio of NC NC

√ √
Corine Land Cover, EEA

A. inland water bodies NC
√ √

Corine Land Cover, EEA
A. inland water bodies, ratio of NC NC

√ √
Corine Land Cover, EEA

A. lakes within region NC
√ √ WISE large rivers and large

lakes, EEA
A. non irrigated agri NC

√ √
Corine Land Cover, EEA

A. non irrigated agri, ratio of NC NC
√ √

Corine Land Cover, EEA
A. NUTS-combo region NC

√ √
Corine Land Cover, EEA

A. permanent irrigated agri NC
√ √

Corine Land Cover, EEA
A. permanent irrigated, ratio of NC NC

√ √
Corine Land Cover, EEA

A. semi natural A.s NC
√ √

Corine Land Cover, EEA
A. semi natural A.s, ratio of NC NC

√ √
Corine Land Cover, EEA

A. wetlands NC
√ √

Corine Land Cover, EEA
A. wetlands, ratio of NC NC

√ √
Corine Land Cover, EEA

Agriculture under glass Country
√

Eurostat

Aquatic ecosystem status RBD
√

European Environment Agency
(EEA). WISE WFD Database:
ecological and chemical status
of surface water bodies
chemical and quantitative
status of groundwater bodies

Arable land Country
√

Eurostat
Biodiversity, A. protected Country

√
Corine Land Cover, EEA

Dams+ groundwater (GW) resources Country
√ √

De Stefano et al. (2015)

Dams capacity Country
√

FAO, AQUASTAT: geo-
referenced dams database
Europe (data for DK, EE, and
MT was gathered in different
sources)

Economic resources and equity NUTS-2
√ √

De Stefano et al. (2015)
Economic wealth NUTS-2

√
Eurostat

Education Country
√

UNDP
Environmental taxes Country

√
Eurostat
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Table 2. Continued.

Vulnerability factor Scale Multiple Composed Applied Data source or source
time steps for combined

MLRM

Sensitivity

GDP per capita by country Country
√

Eurostat

Groundwater resources (GW) Country
√

FAO, AQUASTAT: total
Renewable water resources –
Groundwater: total renewable

Human health and public safety Country
√

Eurostat
Irrigation by country Country

√
FAO, Aquastat

Low wage earn Country
√

Eurostat
Major soil type Raster: 100 m

√
European Soil Database

Population density N2 NUTS-2
√

Eurostat
Population density by country Country

√ √
Eurostat

Population density and age NUTS-2
√

Eurostat
Public water supply NUTS-2

√
Eurostat

Public water supply connection NUTS-2
√

Eurostat
Public water supply infrastructure NUTS-2

√
Eurostat

SR agriculture Country
√ √

De Stefano et al. (2015)
SR industry Country

√ √
De Stefano et al. (2015)

SR services Country
√ √

De Stefano et al. (2015)
Tourist beds by N2 NUTS-2

√
Eurostat

Tourist beds by country Country
√

Eurostat
Water balance Country

√ √
De Stefano et al. (2015)

Water body status Country
√ √

De Stefano et al. (2015)
Water resources development Country

√ √
De Stefano et al. (2015)

Water use Country
√ Eurostat: annual freshwater

abstraction

Water use Country
√ √ Eurostat: annual freshwater

abstraction

Water use agriculture Country
√ Eurostat: annual freshwater

abstraction, agriculture

Water use industry Country
√ Eurostat: annual freshwater

abstraction, industry

WR agri sector Country
√ √ Eurostat: annual freshwater

abstraction

WR industry sector Country
√ √ Eurostat: annual freshwater

abstraction, agriculture

WR services sector Country
√ √ Eurostat: annual freshwater

abstraction, industry

Combined factors

Sensitivity NUTS-2
√ √

De Stefano et al. (2015)
Adaptive capacity NUTS-2

√ √
De Stefano et al. (2015)

Vulnerability NUTS-2
√ √

De Stefano et al. (2015)

Scale: indicates the spatial detail of information. Multiple time steps: vulnerability data have been available for different time steps or only the most recent state of
the system. Composed: vulnerability factors are a composition of different data. Applied to MLRM: factor has been analysed in multivariable logistic regression
models (step two) as a possible best-performing predictor for impact detection. A.= area of, SR= socioeconomic relevance, WR=water use relevance,
NC=NUTS-combo region, N2=NUTS-2 region, RBD= river basin district, MLRM=multivariable logistic regression model.

mainly from Eurostat (Eurostat, http://ec.europa.eu/eurostat/
data/database) and the European Environment Agency (http:
//www.eea.europa.eu/data-and-maps). Data on land cover as
derived from the CORINE Land Cover Datasets (http://www.
eea.europa.eu/data-and-maps) were expressed as a percent-

age of the NUTS-combo region area. All selected vulnerabil-
ity factors with their respective spatial and temporal resolu-
tion are shown in Table 2. In summary, 69 vulnerability fac-
tors were considered for analyses. Some data sets are listed
multiple times, as they were created for different spatial ag-
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gregations (e.g. “Population density” for NUTS-2 or country
level), for different time steps (e.g. “Water use” for single
or multiple time steps), or related to different spatial scales
(e.g. “Area of agriculture” to “Area of agriculture” by NUTS-
combo level). Furthermore, individual components of com-
bined vulnerability factors are analysed (e.g. “Dams capac-
ity” and “Groundwater resources” for “Dams+ groundwater
resources”).

For vulnerability data which did not have multiple time
steps available, the most recent information for the en-
tire period of investigation was applied. Vulnerability data
with multiple time steps were assigned to the corresponding
year, and preceding years up to the next time step available
(e.g. available time steps were 1976, 1990 and 2003; data for
1970–1976, 1977–1990, and 1991–2012 were applied).

3 Methods

The overall approach followed a series of steps to find the
best logistic regression models. Hereby one model is deter-
mined for each European macro region and impact category,
using annual impact occurrence as a target variable and cor-
responding hazard and vulnerability observations as predic-
tors. This is achieved by employing a regionally pooled set of
target and predictor variables that includes all NUTS-combo
regions that lie within the macro region. NUTS regions that
did not have any reported impact or information on a given
vulnerability factor were disregarded. Step 1 tested the pre-
dictors SPEI and SPI for the temporal aggregations of 1, 2,
3, 4, 5, 6, 9, 12, and 24 months and 69 vulnerability fac-
tors as individual predictors in a univariate binary logistic
regression. Step 2 employed a stepwise selection process to
evaluate the best-performing combination of five possible
predictors in a multivariable logistic regression model. Fi-
nally, Step 3 applied the best multivariate models for selected
hazard-level scenarios to create pan-European drought risk
maps.

In Step 1, the ability of each single predictor (drought in-
dices and vulnerability factors) to predict the occurrence of
drought impacts on an annual basis was tested separately.
Following Blauhut et al. (2015a), the likelihood of drought
impact occurrence LIO is assessed using binary logistic re-
gression models (BLMs) (Eq. 1).

log
(

LIONUTS

1−LIONUTS

)
= αMacro+βMacro ·PNUTS (1)

The logit transformation of LIO equals the sum of the model
parameter α and the product of the model parameter βMacro
with the selected predictor PNUTS of the NUTS-combo re-
gion. All model parameters were estimated using standard
regression techniques within the framework of generalised
linear models (GLMs) (Harrel Jr., 2001; Venables and Rip-
ley, 2002; Zuur et al., 2009). Hence, the LIO is a mea-
sure of the probability of drought impact occurrence from 0

to 1, depending on the selected predictor. The predictive
power of each selected predictor was quantified by predictor-
significance (p value for the parameter β) to estimate LIO
and by the overall model performance. The latter is mea-
sured using the area under the ROC (receiver operating char-
acteristics) curve, AROC, which quantifies the skill of proba-
bilistic models (Mason and Graham, 2002; Wilks, 2011) in a
range from 0 to 1. Significant predictors (p values< 0.05)
with AROC> 0.5 indicate that the resulting model will be
superior to random guessing, but are still considered poor
model performance (marked by a single star ∗). Significant
predictors with AROC> 0.7 are considered good model per-
formance (∗∗), while significant predictors with AROC> 0.9
are considered excellent model performance (∗∗∗).

In Step 2, the approach was expanded by stepwise model
building to include multiple hazard indices and vulnerability
predictors (hybrid approach) into one statistical model. This
analysis follows Stagge et al. (2015b) and Blauhut and Stahl
et al. (2015) and applies multivariable logistic regression to
assess the LIO (Eq. 2).

log
(

LIONUTS

1−LIONUTS

)
= αMacro+

∑
i

(
βi,Macro ·HNUTS

)
+

∑
j

(
βj,Macro ·VNUTS

)
(2)

Again, the left-hand side is the logit transformation of LIO,
while α and β are estimated using standard regression tech-
niques within the framework of GLMs (Harrel Jr., 2001; Ven-
ables and Ripley, 2002; Zuur et al., 2009). Multivariable lo-
gistic regression models (MLRMs) are fitted for each impact
category and macro region. For each macro region and im-
pact category, the aim was to find the best combination of
one or two hazard indices (H ) and up to three vulnerability
factors (V ). Due to the short period of available data (2001–
2014) of 1fAPAR, 1pF, and CDI, only SPEI data of differ-
ent aggregation periods were used as hazard indices for this
part of analyses. The combined vulnerability factors “Sensi-
tivity and adaptive capacity” were also neglected as they are
predetermined combinations of individual factors that might
also enter the model as predictors, resulting in multicollinear-
ity.

Emphasising the effect of climatic hazard indices on
drought impacts, the stepwise multivariate logistic regres-
sion began with the detection of the best single hazard in-
dex (from the univariate logistic regression model in Step 1).
The best-performing hazard index was selected by predic-
tor significance, measured by p values, and model perfor-
mance measured by AROC. Then, a second hazard index was
selected following two criteria: it is not correlated (r2< 0.5)
with the best-performing hazard index and it significantly im-
proves the model. Again, the best-performing predictor was
assessed by predictor significance and overall model per-
formance. Furthermore, overfitting by additional variables
was penalised by the Bayesian information criterion (BIC),
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with smaller numbers indicating better models. Accordingly,
a second hazard index is only chosen for the final MLRM
if AROC increases or remains constant and BIC decreases.
A maximum of two hazard indices are allowed in the final
MLRM.

Furthermore then, up to three vulnerability factors are in-
cluded into the model in a stepwise fashion based on the
same criteria. Proceeding as in the previous step, the best-
performing vulnerability factors are only considered for the
final MLRM if they improve the overall model, either in-
creasing AROC or producing equal AROC, but a lower BIC.
If AROC decreases or remains constant with a poor BIC, the
factor was not added to the final MLRM and further vulner-
ability factors were not analysed. A maximum of three vul-
nerability factors were included into the resultant MLRM.

In Step 3 of the study, the resultant MLRMs were applied
to construct drought risk maps that show the likelihood of
impact occurrence for three selected hazard levels, based on
the standard deviation from normal −0.5, −1.5, and −2.5.
The hazard predictors were all standardised indices repre-
senting a certain hazard severity and likely frequency of oc-
currence. The definition of drought severity for SPI, SPEI,
1pF, and 1fAPAR is inspired by the definition of McKee et
al. (1993) who assigned standard deviations from normal to
hazard severity levels for SPI, with a threshold of 1 corre-
sponding to a return period of 6.3 years, classified as mod-
erate drought, and −2 as extreme drought conditions. The
final pan-European drought risk map presents the LIO by the
best-performing combination of predictors for 15 impact cat-
egories and for 3 hazard levels. For countries with a lack of
sufficient vulnerability data (Table S1 in the Supplement),
LIO was estimated using the best hazard-only model.

4 Results

4.1 Distribution of drought impacts and impact
characteristics

As shown in Fig. 2, the majority of the reported drought
impacts occurred during well-known major drought events:
1975–1976 in central Europe, 1991–1995 in the Mediter-
ranean, 2003 all over Europe (except the Mediterranean),
and 2004–2007 in the western Mediterranean (Stagge et
al., 2013; Stahl et al., 2016), as well as in more recent
events, e.g. the drought of 2010–2012 in the United King-
dom (Kendon et al., 2013; Parry et al., 2013), the Eu-
ropean drought of 2011 (DWD, 2011), and the 2011–
2012 drought in southeastern Europe (Spinoni et al., 2015).
The highest number of reports is represented by the drought
events of “1975–1976 Europe”, “2003 Europe”, and “2010–
2012 UK”.

Except for northeastern Europe, almost all impact cate-
gories (except “Air Quality”) have at least one annual im-
pact recorded per macro region (Blauhut et al., 2015a). An

increasing trend of impact reports with time is observed for
all macro regions. Overall, maritime Europe has the high-
est number of impacted years in total, which is consistent
with this region’s higher number of overall impact reports.
Generally, the number of reported impacts cluster with well-
known drought events, although impacts on “Forestry” show
a delay and longer duration compared to the meteorological
hazard. “Waterborne Transportation”, “Tourism and Recre-
ation”, “Public Water Supply”, “Water Quality”, and “Fresh-
water Ecosystems” show a similar temporal pattern of impact
occurrence. Impacts on “Agriculture and Livestock Farm-
ing”, Public Water Supply, and Freshwater Ecosystems are
reported for almost every year. For southeastern Europe,
Agriculture and Livestock Farming has the most frequent im-
pacts. Furthermore, Public Water Supply and “Human Health
and Public Safety” have a continuous presence of impacts
from 1983 to 1996. From 2000 on, all impact categories have
reported impacts. Northeastern Europe has only a few impact
categories with drought-impacted years, but Forestry shows a
long continuous time with impacts, from 1991 on. The west-
ern Mediterranean region shows a less scattered pattern. Be-
sides a low number of impacts from the middle of the 1970s
until the beginning of the 1980s for Agriculture and Live-
stock Farming, Forestry, “Energy and Industry”, and Public
Water Supply impacts occurred during the two major long-
term drought events of 1989–1995 and 2003–2008.

The observed increase in the occurrence of reported im-
pacts from 2000 onwards may have several reasons; one of
the most important being an increased reporting behaviour
(governmental and news) due to an increased awareness of
natural hazard impacts and the possibility of easy and fast
communicated information (internet). Nevertheless, we can-
not exclude the fact that Europe is warming and that this
warming may lead to an increase in reported drought im-
pacts.

4.2 Suitable predictor variables for hazard and
vulnerability

First, the individual predictors in binary logistic regres-
sion models, BLMs, were evaluated by impact category and
macro region. Data availability allowed the identification of
robust BLMs for all impact categories only for the mar-
itime Europe region. For southeastern Europe, the impact
category “Terrestrial Ecosystems”, for northeastern Europe
Water Quality, and for the western Mediterranean Terres-
trial Ecosystems, Air Quality, and Human Health and Public
Safety could not be modelled. All hazard indices performed
differently across regions and impact categories. Tables S2
to S4 show the model performance for the individual hazard
indices and the vulnerability factors. These detailed results
are only briefly summarised here as they only represent a
preliminary screening step in the model-building process.

Among the indices used within the EDO, the index
1fAPAR generally results in robust models during the grow-
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ing season, but the annual average 1fAPAR appears not to
be a suitable predictor. The 1pF performs as the overall
best predictor with mostly good models between March and
November and the best overall performance of the annual
average of 1pF. The CDI resulted in only few poor to good
models.

For the indices of SPEI, a longer period of hazard data was
available (1970–2012) than for the EDO indices and hence
overall better model fits were achieved. The best-performing
indices (in terms of aggregation times) are more specific to
the impact category than to the macro region and tend to span
from 6- to 12-month aggregation times. SPEI-12 performs
with good to excellent models for the majority of impact
categories and macro regions from August to September. In
comparison to the other impact categories, few robust models
were identified for Forestry and Public Water Supply. In gen-
eral, SPI follows the similar performance pattern as SPEI, but
with consistently lower model performance and is therefore
not shown in the tables. To estimate the influence of longer
time series for model input, Table S5 shows model perfor-
mance for SPEI applied for the shorter time period 2001–
2012. Resultant model performance follows a similar but less
strong performance pattern as the longer time series.

To identify patterns in the many vulnerability factor vari-
ables tested, Table S4 groups the individual vulnerability fac-
tors by the vulnerability components of adaptive capacity
and sensitivity. In general, none of these obtained an excel-
lent model performance. Factors related to “Sensitivity” that
characterise land use and are based on multiple time steps,
such as “Area of Agriculture”, “Area of Forest”, “Area of
Semi-natural Areas”, and “Percentage of Area of Agricul-
ture” proved to be significant in many cases. In addition, ro-
bust model predictors for all macro regions include “Dams
and Groundwater Resources” and “Water related Participa-
tion EC” for Agriculture and Livestock Farming or “Social
relevance for services sector” for Energy and Industry. For
the remaining vulnerability factors, no clear patterns were
detectable. Only few robust models could be identified. Pre-
dictive skill for vulnerability factors such as “GDP by coun-
try”, “Public Water Supply connection by NUTS-2” or “Bio-
diversity, Areas protected” was not found. The combined vul-
nerability factors resulted in few macro region and impact
category robust models. Impact occurrence for the categories
“Aquacultures and Fisheries”, “Soil Systems”, “Wildfires”
and Air Quality were generally difficult to model by vulner-
ability factors.

In summary, the drought hazard indices SPEI and SPI
alone were better suited than the rather static vulnerability
factors alone to estimate the likelihood of annual drought
impact occurrence, and will therefore be treated as more im-
portant for the identification of the best-performing MLRMs
(Step 2, ref. Sect. 3).

4.3 Estimating the best-performing combinations of
hazard indices and vulnerability factors to assess
the likelihood of impact occurrence

Out of the final 44 best-performing MLRMs, 18 models used
the maximum of three vulnerability predictors, 14 models
used two, 9 models only one, and 3 models did not use any
vulnerability predictor at all. For the majority of MLRMs,
two hazard predictors are used, whereas four models found
that one hazard index alone was sufficient to obtain the opti-
mum model performance.

Table 3 shows the MLRM performance for the best-
performing hazard indices and the improvement for the final
models that include vulnerability factors. In general, integrat-
ing vulnerability factors to the MLRMs improved the model
performance, except for models of the impact categories Soil
Systems and Wildfires for southeastern Europe and Forestry
for the western Mediterranean region. The improvement in
model performance differed by region and impact category,
whereas an increase of AROC and a decrease of BIC reflect
model performance improvement. 1ROC (improvement of
AROC with vulnerability factor predictors) ranges from 0
to 0.32 with an average increase of 0.08, whereas 1BIC
range between 9 and −347 with an average value of −65.

Figure 3 summarises the selected hazard predictors and
vulnerability factor predictors for all models. Among the
drought hazard indices, 34 short-, 32 mid-, and 18 long-
term SPEI predictors were selected for the best model perfor-
mance (with short-, mid-, and long-term periods correspond-
ing to 1–3, 4–9, and 12–24 month accumulation). The major-
ity of MLRMs with two selected hazard indices are combina-
tions of SPEIs with one longer and one shorter accumulation
period. Generally, the most frequent SPEI predictors cover
the summer months from May to August with accumulation
intervals between 1 and 6 months.

For all regions, about 40 % of the selected vulnerabil-
ity factors describe land surface characteristics related to
agricultural and semi-natural land cover. Among the vul-
nerability factors, only 16 % of those selected are associ-
ated with Adaptive Capacity components. For the western
Mediterranean, all selected vulnerability factors, apart from
“Drought Management Tools”, describe Sensitivity.

4.4 Mapping drought risk

For each impact category, a robust MLRM was identified
for at least one macro region. Figures 4–6 show the results
of applying these robust models for risk mapping, i.e. map-
ping the likelihood of drought impact occurrence (LIO) for
15 sectors (columns) and 3 hazard severity levels (rows), in
total 35 drought risk maps. Overall, the maps illustrate that
with increasing hazard severity (from top to lower row) the
spatial patterns of LIO begin to diverge for each impact cat-
egory, macro region, and NUTS-combo regions. LIOs start
with rather low values at low severity levels and increase as
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the hazard intensifies, whereas the characteristics of drought
risk differ with impact category and macro region. In general,
southeastern Europe and northern Europe (Iceland, Norway,
Finland) are under low drought risk in comparison to the
other European regions, whereas parts of maritime Europe
and the western Mediterranean show increasing drought risk
with hazard conditions for the majority of impact categories.

The largest differences in drought risk are present under
severe hazard conditions. Agriculture and Livestock Farm-
ing results in highest LIO in southern Sweden, the Nether-
lands, Portugal, Spain, and southern Italy, whereas Forestry
is more likely to be affected in Sweden, southern Finland,
central Europe and Hungary, Slovenia, and Romania. In con-
trast to these rather spatially consistent risk patterns, Aqua-
culture and Fisheries shows rather dispersed regions with
increased LIOs: in Spain (Andalucía and La Rioja), south-
ern France (Provence–Alpes–Côte d’Azur and Languedoc–
Roussillon), northeast Italy, and southern Austria. The risk
for impacts in the category Energy and Industry is high for
the majority of maritime Europe and the western Mediter-
ranean, with hotspots in Portugal, Croatia, southeastern Ger-
many (Bavaria), and central France (the Centre region). For
impacts in the category Waterborne transportation, high LIO
was found for Croatia and eastern Hungary (high risk), cen-
tral Europe, and southern UK. Impacts on Tourism and
Recreation under the most severe hazard conditions are very
likely for the majority of maritime Europe and the west-
ern Mediterranean, with highest LIOs for Portugal, south-
ern Italy, the Netherlands, Scotland, and central and northern
Sweden, whereas southeastern Europe is not at risk for any
hazard level. Impacts on Public Water Supply appear not to
be present for the majority of southeastern Europe, and are
less likely for central European regions, but show high LIOs
for the Mediterranean, Bulgaria, Slovakia, Denmark, and the
UK. For the impact category of Water Quality these pattern
change with higher drought risk for central Europe. Hot spots
of drought risk for this impact category are identified for the
majority of the western Mediterranean, Bulgaria, northern
central Europe, and England. Northeastern Europe and the
majority of southeastern Europe are not at risk. High risk es-
timates for Freshwater Ecosystems are rather spatially exten-
sive and present for the majority of the Iberian Peninsula,
England, and northern central Europe. Impacts on Terrestrial
Ecosystems, which could only be modelled for maritime Eu-
rope, display high risk for England, the Benelux countries,
Switzerland, Bavaria, and southern Austria under the most
severe hazard conditions. Drought risk for the impact cate-
gory of Soil Systems is limited to the Netherlands (high risk)
and the region of Paris (Île de France), England, Belgium,
and some French NUTS-combo regions (low risk). Impacts
related to Wildfires are very likely for the majority of the
western Mediterranean, Lithuania, and northern Finland. Air
Quality is the only impact category with almost no risk of
drought impacts for all hazard severity levels. In contrast,
under the most severe hazard conditions, impacts on Human
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Figure 3. Selected of the best-performing predictors, yellow: SPEI with short temporal accumulation, light yellow to brown: SPEI with
increasing temporal aggregation (short, medium, and long temporal accumulation), red: vulnerability factors associated with sensitivity,
blue: vulnerability factors associated with adaptive capacity, A.=Area of, GW=Groundwater, norm.= normalised, NC=NUTS-combo
region, N2=NUTS-2 region, SR=Socioeconomic relevance, WR=Water use relevance.

Health and Public Safety are at high risk for Bulgaria, Czech
Republic, Switzerland, the Netherlands and Sweden and in-
creased risk for the remaining maritime regions. The risk
of “Conflicts” under extreme dry conditions is either very
high (majority of the western Mediterranean and Germany,
Switzerland, the Netherlands, and the southeast UK) or not a
risk at all.

5 Discussion

5.1 Hazard indices and vulnerability factors’
individual predictive potential

The systematic test of a series of hazard indices and vul-
nerability factors individually allowed a first order assess-
ment of their potential to predict impact occurrence. Despite

their short period of data availability, soil moisture anoma-
lies from the JRC’s EDO proved to have high potential as an
index for drought impact prediction in all impact categories.
Concurring e.g. with Skakun et al. (2014), fAPAR proved
its usage as a drought index for vegetation-process-related
impact categories, for the growing season particularly. Thus,
of the use of a fAPAR-based seasonal index in further stud-
ies appears promising. The combined index CDI, however,
was not found to be a good predictor of impact occurrence
in our study. Given that its individual contributing indices
(1fAPAR and 1pF) performed generally well, and the fact
that the CDI had been tested successfully against quantita-
tive impacts in the agricultural sector by Sepulcre-Canto et
al. (2012), suggest that further studies should explore pos-
sible reasons for this poor performance, e.g. through further
sector-specific data stratification.
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Figure 4. Drought risk maps with the likelihood of impact occurrence (LIO) in the impact categories Agriculture and Livestock Farming,
Forestry, Aquaculture and Fisheries, Energy and Industry, and Waterborne transportation (columns) for three hazard levels of SPEI with
−0.5: near normal, −1.5: severely dry, and −2.5: extremely dry (rows).

Figure 5. Drought risk maps with the likelihood of impact occurrence (LIO) in the impact categories Tourism and Recreation, Public Water
Supply, Water Quality, Freshwater Ecosystems, and Terrestrial Ecosystems (columns) for three hazard levels of SPEI with−0.5: near normal,
−1.5: severely dry, and −2.5: extremely dry (rows).
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Figure 6. Drought risk maps with the likelihood of impact occurrence (LIO) in the impact categories Soil System, Wildfires, Air Quality,
Human Health and Public Safety, and Conflicts; (columns) for three hazard levels of SPEI with −0.5: near normal, −1.5: severely dry, and
−2.5: extremely dry (rows).

Generally, the tests showed that the hazard impact link-
age will benefit from longer time series and thus a wider
range of drought conditions. Furthermore, it was found that
the overall better performance of SPI and SPEI to JRC haz-
ard indices was not due to the differences in time series
length. SPEI shows an overall better model performance
than SPI for all accumulation times and impact categories.
This is in agreement with the studies of Lorenzo-Lacruz et
al. (2010) and López-Moreno et al. (2013), who found the
SPEI to be better correlated than the SPI with environmen-
tal impacts. The overall best-performing (across all impact
categories and macro regions) temporal accumulation was
12 months, which is as expected, since the target variables
are impact occurrences on an annual basis. The best perfor-
mance was found for SPEI-12 of September and December.
SPEI-12 of December measures the same calendar year used
for aggregating annual impact information. Alternatively, the
SPEI-12 of September measures water balance during a wa-
ter year, defined by the US Geological Survey as 1 October–
30 September, which captures the growing season along with
the entire preceding winter. Thus, both indices can be recom-
mended for analyses at an annual scale.

The tested vulnerability factors alone revealed generally
limited skills to predict impact occurrence, with exceptions
of land surface cover types or information on regional wa-
ter uses/storages. This is somehow at odds with the fact that
the most commonly used vulnerability factors in vulnerabil-
ity assessments are related to “Economic and financial re-

sources” and to technical, technological, and infrastructural
aspects (González-Tánago et al., 2015). As few of the fac-
tors varied in time, the models reflect mostly spatial differ-
ences of impact occurrence among the pooled NUTS-combo
regions rather than temporal differences. Although data to
characterise vulnerability in Europe are numerous, there are
important gaps that implied constraints in our analysis and
predictor selection. Much of the data are available only at
country level or are not available in a centralised data reposi-
tory. For instance, De Stefano et al. (2015) observe that there
are no European-wide data of water use efficiency, or data
about alternative water sources such as desalination, reused
water, or rainwater harvesting, especially in those locations
where these sources are important, such as the islands or
tourist areas on the Mediterranean coast. We found that vul-
nerability factor normalisation practices did not improve the
predictive potential model performance and composed vul-
nerability factors were not better than individual ones. For an
application like in our study, this can be interpreted as mean-
ing that prior standardisation, composition, and weighting of
vulnerability factors appears unnecessary.

5.2 Building hybrid models with hazard indices and
vulnerability factors

The stepwise procedure employed to find predictor combi-
nations for the multivariable models may have excluded pos-
sible similar or even better combinations. However, a full
permutation of all possible combinations was computation-
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ally too expensive for this study. Nevertheless, it was possi-
ble to identify suitable models for most cases and the multi-
variable selection process further elucidated joint important
controls on drought risk. The majority of SPEIs selected for
final model application were combinations of SPEI with dif-
ferent accumulation times, often short and long periods. The
stepwise procedure showed that hazard indices with tempo-
ral accumulations from 3 to 12 months generally performed
best, depending on the region and impact. These results con-
firmed previous case studies on the best combinations, e.g. by
Stagge et al. (2015b), and common practice using combined
drought monitoring indices, such as the US Drought Mon-
itor (Svoboda et al., 2002). The majority of MLRMs also
performed better by adding at least one vulnerability fac-
tor, suggesting that these can improve the predictability of
annual drought impact occurrence. The vulnerability factors
selected are dominated by factors associated with the vulner-
ability component of Sensitivity. This could be explained by
the fact that adaptive capacity evolves much faster than sen-
sitivity and the values of “Adaptive Capacity” factors used
in the models refer to present conditions while impacts span
over a 50-year time period. Thus, the poor performance of
Adaptive Capacity indicators as predictors of impact could
be due to the mismatch between the adaptive capacity that
existed when impact occurred in the past and the one used
in our models rather than their lack of relevance in absolute
terms.

The predictor selection was likely influenced by some of
the particular biases and characteristics of the underlying
databases. The EDII’s impact categories broadly pool im-
pact types of similar topics. Reported impact types within
a category can be very different and reported impact types
can differ between countries (Stahl et al., 2015). Using Agri-
culture and Livestock Farming impacts as an example, the
large range of SPEIs selected for the final models (with re-
gard to temporal accumulation and month) can be due to sev-
eral reasons. These may include differences in impacts in
irrigated vs. rain-fed agriculture. Whereas impacts on rain-
fed agriculture are often described best by meteorological
drought (short accumulation periods), irrigated agriculture
strongly depends on lagged hydrological drought (Pedro-
Monzonís et al., 2015). Characteristics of location and cul-
tivation may also play a role. Depending on the climatic
and orographic conditions of a NUTS-combo region, impact-
category-specific characteristics differ (e.g. growing season,
dormancy, development). Hence, the most relevant SPEI for
each region may differ in accumulation time and month se-
lected. This corresponds e.g. to Lei et al. (2011) and Po-
topová et al. (2015) who detected different optimal accu-
mulation times of SPEI for maize productivity for north-
ern China and Czech Republic. A reason for the selection
of more unexpected combination of SPEI (e.g. SPEI-6 of
August was selected together with SPEI-1 in December for
Agriculture and Livestock Farming in southeastern Europe)

might be due to the criterion of variable independence em-
ployed.

For wildfires, Gudmundsson et al. (2014) suggested SPI
with lead times not longer than 2 months to indicate ma-
jor effects of wildfires in southern Europe, contradicting the
longer accumulation times selected in this study. However,
Gudmundsson et al. (2014) used the comprehensive Euro-
pean Fire Database, whereas the EDII only contains wildfire
reports that were directly attributed to drought. On the other
hand, our variable selections match the results of Catry et
al. (2010) who estimated that the majority (51 %) of all wild-
fires occur during the summer months.

Hydrological drought takes the longest time to respond
to drought conditions. Accordingly, impact categories for
which surface and groundwater availability is important and
often linked to water quality (e.g. higher water temperatures
due to low flow) (Aquaculture and Freshwater Fisheries, En-
ergy and Industry, Waterborne Transportation, Water Quality,
Freshwater Ecosystems), are best predicted by longer accu-
mulation times (≥SPEI-9). Impacts on Public Water Sup-
ply are generally poorly predicted by SPEI. The best perfor-
mances are obtained for long accumulation times (SPEI-24)
indicating that impacts on water resources rely on the stor-
age characteristics (natural or artificial) and thus depend on a
variety of conditions that cannot be characterised by SPEI on
the larger scale. Other impact categories show weaker pat-
terns, but in general show better results for predictions in
summer.

This seasonal focus points to a related data challenge. The
temporal resolution of reported impacts, which often only re-
fer to an entire season, year, or multiyear drought, does not
allow an identification of the onset, duration, and ending of a
given drought impact. The annual timescale employed here is
a compromise between a sufficient high number of reported
impacts and spatial coverage. Stagge et al. (2015b) showed
that seasonal models can be constrained better, but sufficient
seasonal information on impacts was not available for all re-
gions or countries across Europe. Furthermore, in order to
overcome data availability issues, Europe was divided into
four European macro regions to pool impact information,
some of which may not reflect regions with similar drought
impacts and as such influence the model performance ob-
tained (Blauhut et al., 2015a).

The selection of vulnerability factors for the final MLRMs
in this study is also driven by the model fits and thus based
on empirical relation rather than on commonly applied epis-
temic selection procedures (Gonzáles Tánago et al., 2015). In
several cases, MLRM performance differed only marginally
between different factors included in the models. Due to the
limitation of only selecting the best-performing and model-
performance-increasing vulnerability factors, further impor-
tant factors that might have an influence on regional vulnera-
bility may thus not have been included. Whereas there is con-
siderable variability in the impact-category-specific or macro
regional factors selected, some general trends can be noted.
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More than one-third of applied factors quantitatively charac-
terise regional land use, and almost half of the selected fac-
tors characterise the water resources. This is in accordance
with Gonzáles Tánago et al. (2015) who summarised that
drought vulnerability analyses have often applied informa-
tion on water resources and land use information. Neverthe-
less, according to Gonzáles Tánago et al. (2015), the most
commonly applied information in drought vulnerability as-
sessment is related to economic and financial resources and
technical infrastructure, but these priorities are not reflected
in our findings where e.g. “Economic Wealth”, “Public Water
Supply Connection” or “Drought Recovery Capacity” were
of minor importance or not selected at all in the model build-
ing process. Nevertheless, the results call for a review of the
relevance of vulnerability factors in wider ranges of drought
cases and for progress with regard to thematic content, data
generation, and transformation from qualitative to quantita-
tive data and their rationalisation.

5.3 Regional patterns of modelled sectorial drought
risk across Europe

Statistical models to predict drought impact occurrence re-
main a relatively new approach that has proved successful
within targeted country-scale studies (e.g. Bachmair et al.,
2015; Stagge et al., 2015b). As with any data-driven ap-
proach, the presented risk modelling relies on the quality and
availability of its underlying data. Since its establishment,
the EDII database has been constantly growing and now con-
tains data across Europe, covering the majority of major past
drought events (Stagge et al., 2013). The database used here
was also considerably larger than that used in the previous
pan-European risk modelling study by Blauhut et al. (2015a).
This increased database, as well as addition of vulnerability
factors, led to some differences in the resulting risk maps.
Nevertheless, the updated EDII database still has certain bi-
ases and characteristics (Stahl et al., 2016) that may affect
the results of the risk models and maps this study presents.
One bias in the impact data is a decreasing data availabil-
ity from west to east and poor data availability in northern
Europe. Additionally, using binary information of annual im-
pact occurrence is less sensitive to these reporting biases than
e.g. the number of reports or impacts as discussed by Bach-
mair et al. (2015). Overall, uncertainties of the risk models
are likely higher in regions with lower report availability as
well as with lower availability of vulnerability data as in this
study for the macro region of southeastern Europe.

Agriculture and Livestock Farming is the best-covered im-
pact report data category across Europe and thus an issue
at pan-European scale (Kossida et al., 2012; Stahl et al.,
2016). In accordance with reports of the European Commis-
sion (EC, 2007, 2008), the derived risk maps for Agriculture
and Livestock Farming show high drought risk for most of
the western Mediterranean regions, covering water scarce re-
gions as detected by Strosser et al. (2012). Moderate to high

drought risk for maritime Europe confirms pattern previously
identified by Blauhut et al. (2015a) based on hazard predic-
tors only. A relatively low risk such as for most of France,
may reflect the added vulnerability predictor, particular agri-
cultural land use as well as drought management (e.g. com-
pensation) tools. The relatively high risk for Sweden in the
Nordic countries may reflect that agriculture is a much larger
sector in Sweden than in the neighbouring countries (Eu-
rostat database: “Agricultural production”, 2015). The rela-
tively low drought risk for Agriculture and Livestock Farm-
ing in southeastern Europe may result from the aforemen-
tioned lack of data. Stahl et al. (2015) actually found the im-
pact category in the region to be relatively important among
all impact categories. Regional pooling for this study may
also have affected these results and should be further tested
in future studies.

The pattern of drought risk for Energy and Industry iden-
tified by Blauhut et al. (2015a) were confirmed by this study.
Regions with a high dependency on water resources for en-
ergy production, such as Slovenia or Bavaria, are at higher
risk of impacts in this category. As an example, Slove-
nia’s total energy production is based on∼ 55 % hydropower
sources and ∼ 45 % by thermal power plants (HEP, 2009)
and Bavaria (and also France) has several nuclear power-
plants. Quite contrarily, Norway is at low risk for severe
hazard conditions even though about 98 % of its energy pro-
duction is by hydropower (Christensen et al., 2013). A rela-
tive index should be able to pick up deviations from normal
inducing impacts on hydropower production. Rather there
must be some other reasons (e.g. regional averaging of the
indices, pooling of impact information to macro regions).
Future work will require higher temporally and spatially re-
solved impact information such as daily power production
to solve this issue. Nevertheless, drought indices quantifying
the absolute state of water reservoirs or sources could im-
prove predictions for this impact category.

The pattern of risk of impacts on Public Water Supply
differs somewhat from the results of Blauhut et al. (2015a)
who presented medium risk for extreme conditions (SPEI-
12=−3) all over Europe. For regions with high water stress
(Mediterranean) (EEA, 2009), impacts on Public Water Sup-
ply are more likely, as well as in regions where water storage
capacity is limited (UK). Estimates for southeastern Europe
are likely to be impaired due to data availability and regional
pooling.

Water Quality aggregates very different impact causes
within one impact category, ranging from water quality dete-
rioration (e.g. algal bloom) to salt water intrusion, bathing
water quality, and economic losses. Risk patterns show
high LIOs for the majority of the maritime region (exclud-
ing Scandinavia), the western Mediterranean, Bulgaria, and
northern Greece. This is in accordance with drought risk as
estimated by Blauhut et al. (2015a). In maritime Europe, rel-
atively high risk areas reflect areas with poor ecological sta-
tus of European waters and lakes for maritime Europe (EEA,
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2012), even though this was not a selected predictor in the
models (as for the other regions). In their study on drivers
of vulnerability, Blauhut et al. (2015b) raised an additional
point of uncertainty to consider for this category: an increase
of reported impacts due to an increased ecological monitor-
ing and increased public and scientific recognition. The UK
has the densest surface water monitoring network in Europe
and the longest history of ecological status care (Royal Geo-
graphical Society (with IBG), 2012). Hence, a higher number
of reported impacts even under less severe drought is likely.
A high risk for southern England, northern central Europe,
and the Iberian Peninsula is also detected for the impact cat-
egory of Freshwater Ecosystems. For maritime Europe, the
regional pattern also resembles that of diffuse agricultural
emissions of nitrogen to freshwater (EEA, 2010), and for the
Mediterranean it resembles that of highly irrigated regions
(EEA, 2014). These relations indicate a strong influence of
agriculture on Freshwater Ecosystems, which could be taken
into account in future impact-data-based risk assessments.

Analysing the risk of Wildfires at the pan-European scale
has particular challenges. According to the European For-
est Fire Information System, over 95 % of forest fires are
human-induced (San-Miguel and Camia, 2009; Ganteaume
et al., 2013). The EDII data only contain reports that have at-
tributed fires to drought (Stahl et al., 2015). Hence, patterns
of high risk as derived for the Mediterranean, the Baltics,
and Finland do not fully agree e.g. with the findings of Gud-
mundsson et al. (2014). However, a comparison to the forest
fire hazard map by the ESPON, which is based on a com-
bination of numbers of observed fires and biogeographic re-
gions (EEA, 2012), and to the fire density map by Catry et
al. (2010), shows high similarities for the western Mediter-
ranean, maritime, and northeastern Europe with only a few
national exceptions. For southeastern Europe, a high num-
ber of fires has been reported, but this is not reflected in the
drought risk maps.

For the impact category of Waterborne Transportation
a specifically high drought risk was modelled mainly for
NUTS regions with rivers of high international importance
for transportation, such as the large rivers draining into the
North and Baltic seas and the Danube (Eurostat, 2015).

Impacts on Tourism and Recreation can occur all over Eu-
rope and throughout the year, whereas drought risk maps in-
dicate comparably low risk for Spain, France, and southeast-
ern Europe. However, this category incorporates a very wide
range of impacts and for more informative characteristics, a
more detailed analyses of impact types or subjects, e.g. light
outdoor activities, freshwater, tourism, and winter sports as
used by Amelung and Moreno (2009) may be required.

Conflicts caused by drought are reported over all of Europe
and affect a wide range of interest groups such as farmers,
fishers, golfers, or citizens. However, the risk for these re-
source conflicts is elevated in southern Europe’s water scarce
regions, regions with high proportion of irrigation in agricul-

ture, and regions with a high water exploitation index (EEA,
2016).

The presented hazard severity levels are based on an ar-
bitrary choice inspired by McKee et al. (1993) and cannot
be used as fixed threshold. In accordance with Blauhut et
al. (2015a) and Stagge et al. (2015b), it should be highlighted
that drought risk is sensitive to impact category and location,
and develops very differently with increasing hazard sever-
ity (deviation from normal). Thus, common overall severity
thresholds are not recommendable.

6 Conclusion

This study tested commonly used drought hazard indices and
vulnerability factors for the empirical modelling of drought
risk in terms of likelihood of impact occurrence and applied
these models to map sector-specific drought risk across Eu-
rope. Building on prior applications of the statistical mod-
elling of drought impact occurrence (Blauhut et al., 2015a;
Stagge et al., 2015b; Bachmair et al., 2015), an important
expansion of this study was the inclusion of vulnerability
factors as predictors into the models in addition to only
the hazard indices previously used. Furthermore, the use of
the updated EDII database allowed a pan-European applica-
tion to the risk modelling and assessment of a wider range
of drought impact categories than previously possible. As
with all empirical modelling, the application demonstrated
the benefits of the availability of high-quality data. Repre-
sentative records on past drought impacts as well as a good
coverage of vulnerability factors are crucial to obtain mean-
ingful models. In regions where data are scarce, modelling
may be biased due to the limited information available. Haz-
ard indices were confirmed to be impact-sector-sensitive and
should thus be selected carefully to enable the characterisa-
tion of different drought causing impacts. Here the distinc-
tion was mainly made through using different accumulation
times of SPEI. However, hydrological drought indices based
on streamflow, groundwater, reservoir levels, etc. may also
improve the drought impact models.

Generally, the addition of vulnerability factors improved
the performance of the empirical drought risk models and
for many impact categories, it added plausible spatial details
to the drought risk. Since only vulnerability, and not hazard,
can be reduced through active measures, a modelling exer-
cise as presented here can shed light into possible opportu-
nities for risk reduction. The collection of relevant data at
a high resolution and at regular interval is key to advance
the refinement of the assessment and the use of such maps
for drought management. Present impact categories pool a
wide range of impact types and further studies may want to
evaluate the use of more specific impact types. Further, to
overcome impact data scarcity, pooling of regions into larger
macro regions based on an existing classification was neces-
sary. A more specific classification could improve future ap-
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plications. As also shown in smaller-scale companion stud-
ies, generally, the smaller the region, the higher is the chance
for appropriate impact detection and the better the impact-
hazard relation can be quantified. Nevertheless, the larger,
regional level applied in this study provide an important scale
to explain regional differences of drought risk on a continen-
tal scale. Additionally, it provides ideas for further improve-
ments towards a quantitative drought risk assessment with
the potential to be adapted to larger scale or refined to focus
on specific aspects of drought risk for the region in question.

The Supplement related to this article is available online
at doi:10.5194/hess-20-2779-2016-supplement.
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