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Abstract. Global climate change can have impacts on char-
acteristics of rainfall–runoff events and subsequently on
the hydrological regime. Meanwhile, the catchment itself
changes due to anthropogenic influences. However, it is not
easy to prove the link between the hydrology and the forc-
ings. In this context, it might be meaningful to detect the
temporal changes of catchments independent from climate
change by investigating existing long-term discharge records.
For this purpose, a new stochastic system based on copulas
for time series analysis is introduced in this study.

A statistical tool like copula has the advantage to scrutinize
the dependence structure of the data and, thus, can be used
to attribute the catchment behavior by focusing on the fol-
lowing aspects of the statistics defined in the copula domain:
(1) copula asymmetry, which can capture the nonsymmetric
property of discharge data, differs from one catchment to an-
other due to the intrinsic nature of both runoff and catchment;
and (2) copula distances can assist in identifying catchment
change by revealing the variability and interdependency of
dependence structures.

These measures were calculated for 100 years of daily
discharges for the Rhine River and these analyses detected
epochs of change in the flow sequences. In a follow-up study,
we compared the results of copula asymmetry and copula
distance applied to two flow models: (i) antecedent precipita-
tion index (API) and (ii) simulated discharge time series gen-
erated by a hydrological model. The results of copula-based
analysis of hydrological time series seem to support the as-
sumption that the Neckar catchment had started to change
around 1976 and stayed unusual until 1990.

1 Introduction

In order to understand the water cycle behavior of a region, it
is important to determine its characteristics, but this is diffi-
cult to achieve due to the diversity of the system response at
different time and space scales. In particular, temporal vari-
ability makes parameter estimation difficult and the assess-
ment of model uncertainty essential. As a part of the en-
deavor to understand the hydrological system, the objective
of this research, assessing the anthropogenic impacts on the
catchment characteristic independent of the climate change,
is therefore important, yet hard to accomplish.

The first possible approach is to statistically test the exis-
tence or change of trend in hydrological time series which
can be related to climate changes or anthropogenic impacts.
Mann–Kendall’s test was performed to confirm the existence
of a trend in the annual discharge, precipitation and sedi-
ment loads, then the human intervention and climate impacts
based on the available information of the catchments were
discussed (Wu et al., 2012). Pettitt’s method (Pettitt, 1979)
can be used to detect the time point of trend alternation and
analyze the impacts based on a double mass curve (Gao et
al., 2013) or a hydrological model (Karlsson et al., 2014).
These nonparametric methods for detecting the signal seem,
however, not capable enough of explaining when and how
much the system had changed, thus making it still difficult to
relate the change to human activities.

On the other hand, runoff events are initiated by pre-
cipitation, then modified by the state and physical features
of the catchment. This implies that the integrated informa-
tion of catchment status might be retrieved by analyzing
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the discharge time series itself. Focusing on this property,
the attempts can be made for capturing the temporal depen-
dence structure of runoff by time series models. The classical
time series model, autoregressive integrated moving average
(ARIMA), is designed to describe a stationary stochastic pro-
cess based on the temporal correlation structure of Gaussian
random variables (Box and Jenkins, 1976). However, the sta-
tionarity of the data is not guaranteed in reality, thus a num-
ber of alternative approaches have been suggested. While
the application of Fourier analysis is basically for stationary
processes, the analysis using empirical mode decomposition
(Huang et al., 1998) overcomes the restriction of stationarity
by allowing the frequency and local variance of a time series
to vary within a component and to separate the signals adap-
tively by scale. Autoregressive conditional heteroskedastic-
ity (ARCH) models lose the assumption of stationarity to a
certain extent so that variance is not constant; however, they
model the variance in a similar way to ARIMA. Although
inventions and efforts to overcome the limitation of station-
arity have been made, it seems still inadequate to model dy-
namic changes of hydrological processes with these time se-
ries models.

Alternatively there is a statistical concept, the copula,
which has advantages to model the multivariate dependence
independently from marginals and recently adopted in the
field of hydrology. A copula (Sklar, 1959) is a multivariate
probability distribution designed to flexibly model depen-
dence structure in the uniform (quantile) domain. The use
of copulas in hydrology can be found for the assessment of
extreme events by considering flooding as a joint behavior of
peak and volume (De Michele and Salvadori, 2003). Cop-
ulas have been applied to describe the spatiotemporal un-
certainty of precipitation (Bárdossy and Pegram, 2009) or
the inhomogeneity of groundwater parameters (Bárdossy and
Li, 2008). Asymmetry of dependence in a time series can be
tested in the framework of a finite-state Markov’s chain tran-
sition probability matrix (Sharifdoost et al., 2009). Dissim-
ilarity measures can be defined by means of a copula mod-
eling the correlation structure of pairs of discharge time se-
ries in order to identify the similarity of catchments with the
purpose of transferring catchment properties from one to the
other (Samaniego et al., 2010). We aim at utilizing copulas as
an alternative to classical time series models and an efficient
tool for time series analysis to overcome these hydrological
challenges.

The main interest of this study is to assess the human inter-
vention and climate change impacts on hydrological regime
for the strategy of future development in the region. For
achieving this goal, seven daily discharge gauging stations in
southwest Germany (Fig. 1), which have 100 years of daily
discharge records, were chosen and extensively analyzed.
The gauging stations Andernach, Kaub, Worms and Maxau
are located in the main stream of the Rhine, while Kalkofen,
Cochem and Plochingen are located on tributaries. For fur-
ther analysis, daily precipitation and temperature records
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Figure 1. Locations of seven discharge gauging stations in the upper
Rhine region.

in the Baden-Württemberg state of Germany for the last
50 years were obtained from the German Weather Service
(DWD, 2014). Also, 77 discharge records obtained from the
Global Runoff Date Centre in Germany (GRDC, 2012) were
utilized.

The following are the novel aspects introduced in this
study:

– (1) The catchment characteristics are defined based on
copulas and estimated from discharge data. Also, the
changes of catchment characteristics are investigated by
tracing the temporal change of these statistics.

– (2) A method to model systematic changes of depen-
dence structure with the help of copulas is suggested,
then its variability and interrelationship with the time
series are examined.

– (3) Anthropogenic impacts are assessed by the
discharge–precipitation relation using API and a hydro-
logical model with copula-based measures.

This article is divided into five sections. After the intro-
duction, the basic methodology for applying copulas to dis-
charge time series is introduced in Sect. 2. Thirdly, the mea-
sures of asymmetry in copulas are defined and estimated for
the discharges of the Rhine River and other catchments. The
determination of the temporal change of the asymmetry of
the copulas is treated in Sect. 3 as well. In Sect. 4 two top-
ics are treated: (i) the analysis based on copula distances for
the observed discharges and (ii) the comparison of observed
discharge with API (antecedent precipitation index) time se-
ries and simulated discharge time series with a hydrological
model. The conclusion is given in Sect. 5.

2 Methodology

In this section, the application of copulas to time series is
articulated after a brief introduction. The very basics about
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copulas are presented here; further information can be ob-
tained from Joe (1997) or Nelsen (2006).

2.1 Basic methodology

In probability theory and statistics, a copula is a multivari-
ate probability distribution for which the marginal probabil-
ity distribution of each variable is uniform.

C : [0,1]n→ [0,1] (1)

C
(
u(i)

)
= ui if u(i) = (1, . . .,1,ui,1, . . .1) (2)

Any multivariate distribution can be described by a copula
and its marginal distributions, as was proven by Sklar’s the-
orem (Sklar, 1959):

F (x)= C
(
FX1 (x1) , . . .,FXn (xn)

)
, (3)

where FXi (xi) represents the ith marginal distribution of a
multivariate random variable X. The copula density can be
derived by taking partial derivatives of the copula:

c (u1, . . .,un)=
∂nC (u1, . . .,un)

∂u1. . .∂un
. (4)

The advantage of using copulas is that the marginal is de-
tached from the multivariate distribution and the dependence
structure can be examined in the uniform compact domain
for different types of data.

2.1.1 Basic hypothesis of temporal copulas

For the application of copulas to time series analysis, a
stochastic system should be presumed to be similar to the
case of spatial copulas (Bárdossy and Li, 2008): the random
variable at time t is described as Z(t) and in general there
may exist non-Gaussian dependency among the elements of
Z(t). Then, stationarity is defined for each subset of times
t1, . . ., tn ⊂N and time lag k such that {t1+ k. . ., tn+ k} ⊂N
and for each set of possible values z1, . . .,zn:

P
(
Z(t1) < z1, . . .,Z (tn) < zn

)
= P

(
Z(t1+ k) < z1, . . .,Z (tn+ k) < zn

)
. (5)

For the given random function Z(t), a set S (k) containing
pairs of ranked values is defined as a function of time lag k
as follows:

S (k)=
{(
FZ (z(t)) ,FZ (z (t + k))

)}
. (6)

Thus, a 2-dimensional autocopula for stochastic time series
is a function of time lag k for the set S (k) similar to the case
of spatial copula (Bárdossy and Li, 2008):

Ct (k,u1,u2)= P
[
Fz (Z(t)) < u1,Fz (Z (t + k)) < u2

]
, (7)

where (u1,u2) ∈ S (k). Thus, a 2-dimensional empirical cop-
ula density can be constructed based on conditional empir-
ical frequencies on a regular g× g grid and kernel density
smoothing (Bárdossy, 2006):

c∗
(

2i− 1
2g

,
2j − 1

2g

)
=

g2

|S (k)|

·

∣∣∣∣{(u1,u2) ∈ S (k) ;
i− 1
g

< u1 <
i

g
and

j − 1
g

< u2 <
j

g

}∣∣∣∣ , (8)

where |S (k)| denotes the cardinality (the number of elements
in a set) of set S (k).

3 Copula asymmetry in discharge time series

High and low values might have different dependences in
general. Measuring the asymmetry of copulas could reveal
substantial aspects of time series data, which are not illumi-
nated in the Gaussian approach. We believe statistics defined
by copula shape and calculated from observed discharge time
series to be a new idea. The two types of asymmetry, “asym-
metry1” and “asymmetry2”, are considered for two diago-
nals on 2-dimensional copulas, which can be described as a
function of time lag k (Li, 2010):

A1(k)= E
[
(Ut − 0.5)(Ut+k − 0.5)

(
(Ut − 0.5)+ (Ut+k − 0.5)

)]

=

1∫
0

1∫
0

(ut − 0.5)(ut+k − 0.5)(ut + ut+k − 1)

· c (ut ,ut+k)dutdut+k, (9)

A2(k)= E
[
− (Ut − 0.5)(Ut+k − 0.5)

(
(Ut − 0.5)− (Ut+k − 0.5)

)]

=

1∫
0

1∫
0

−(ut − 0.5)(ut+k − 0.5)(ut − ut+k)

· c (ut ,ut+k)dutdut+k, (10)

where ut = FZ (z(t)) and ut+k = FZ (z (t + k)). A1(k) and
A2(k) are asymmetry functions corresponding to asymme-
try1 and asymmetry2, respectively. Figure 2 shows an ideal-
ization of the asymmetries between a pair of variables U(t)
and U (t + k), showing that the tails of the distributions have
a large impact on each type of asymmetry. The measure of
asymmetry compares the dependency between low and high
values and quantifies how much it is not symmetric. For ex-
ample, in a 2-dimensional copula, A1(k) is positive if the
probability density is higher in the upper right corner than in
the lower left corner. On the contrary,A1 (k) is negative if the
probability density is higher in the lower left corner. A2(k) is
the asymmetry for the other diagonal of a 2-dimensional cop-
ula.

Figure 3 shows the scatterplot of ranked values of a dis-
charge time series with time lag k = 1 as a sample of an em-
pirical autocopula and its relation with storm hydrographs.

www.hydrol-earth-syst-sci.net/20/2705/2016/ Hydrol. Earth Syst. Sci., 20, 2705–2720, 2016



2708 T. Sugimoto et al.: Investigation of hydrological time series

ut0.0
0.2

0.4
0.6

0.8
1.0

u
t+
k

0.0

0.2

0.4

0.6

0.8

1.0

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

a
1
(u

t
,u
t
+
k
)

ut

0.0
0.2

0.4
0.6

0.8
1.0

u
t+
k

0.0

0.2

0.4

0.6

0.8

1.0

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

a
2
(u

t
,u
t
+
k
)

Figure 2. Visualization of a1
(
ut ,ut+k

)
= (ut − 0.5)

(
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)(
(ut − 0.5)+

(
ut+k − 0.5

))
(left) and a2

(
ut ,ut+k

)
=

(ut − 0.5)
(
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)(
(ut − 0.5)−

(
ut+k − 0.5

))
(right) which displays the contribution of single realization of(

Ut ,Ut+k
)

to asymmetry functions A1 (k)= E
[
(Ut − 0.5)

(
Ut+k − 0.5

)(
(Ut − 0.5)+

(
Ut+k − 0.5

))]
and A2(k)=

E
[
−(Ut − 0.5)

(
Ut+k − 0.5

)(
(Ut − 0.5)−

(
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.
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Figure 3. Sketch of the transformation of the values from sam-
ple hydrograph (left) to the points on the scatterplot of ranks
(right): empirical copula calculated from two values separated by
time lag k = 1 (days) in a discharge time series of Andernach
where rank correlation is 0.9870, A1 (k = 1)=−0.0002398 and
A2 (k = 1)=−0.00011037. The possible combinations of high and
low values, which have large impacts on asymmetry, are numbered:
(1) low to high, (2) high to high, (3) high to low, (4) low to low.
Negative contribution to A2 is drawn with a red circle and positive
contribution with a blue oval.

This figure displays (i) where each pair of values on a hydro-
graph can be plotted on an empirical copula, demonstrating
that (ii) the dependence structure is not symmetric especially
forA2(k). This illustration provides the insight that asymme-
try can be related to the shape of a unit hydrograph as well as
the notion that asymmetry might be used for advanced mod-
eling of hydrological time series.

3.1 Asymmetry and catchment characteristics

Asymmetry functions can be considered as statistics calcu-
lated from the observed discharge time series and an im-
portant assumption can be made: “asymmetry2 is related to
catchment characteristics”. This idea will be discussed and
demonstrated in this section. Figure 5 (upper left) shows
parts of the hydrographs of seven gauging stations in south-
west Germany.

First, an important natural property of discharge seen in
this figure is that the durations of high flow and low flow pe-
riods are not symmetric: flood events, which are initiated by
rainfall or snowmelt, do not continue for a long time because
the duration of runoff to rivers is comparatively short. On
the other hand, discharge keeps decreasing and stays low for
no rain periods. This means that, if two consecutive values
in a time series are chosen for small time lag k (day), these
two values are likely to be less correlated for high values but
more correlated for low values, which leads to negative value
of A1(k). This implies that the intrinsic temporal distribution
of precipitation can be investigated based on this asymme-
try, possibly with advanced asymmetry functions such as bi-
variate moments based on L-moments (Brahimi et al., 2015;
Serfling and Xiao, 2007).

Second, the rates of increase and decrease of discharge are
not symmetrical in the upper limb compared to the lower
limb of the hydrograph (Fig. 3): soon after the rainfall, the
river flow rises sharply, but once the rain stops and peak dis-
charge is observed, then the water level starts to decrease,
typically more slowly on the recession than the rising limb
of the hydrograph. This leads to the negative values of A2(k)

for small time lags k (day) and the notion that asymmetry2
can be related to the shape of the hydrograph, and therefore
the characteristics of the runoff and catchment. In addition, it
can be said the annual cycle in Fig. 4 is not symmetric in the
same sense that a hydrograph is not symmetric.

The change of A2(k) with time lag k is now discussed.
The point is that these statistics for small time lags k can
be more related to the catchment and rainfall characteristics
of the region, while asymmetry for larger time lags k can
capture the interseasonal characteristic of the climate in the
region.

In order to reduce such seasonal impacts on the analysis of
hydrological time series, deseasonalization measures can be
applied, for example, for daily stream flow (Grimaldi, 2004).
Adopting Grimaldi’s method, all the time series are normal-
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Figure 4. Annual cycles of mean discharge measured at seven sites in the Rhine basin after smoothing (left) and annual cycle of standard
deviation after smoothing (right).
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Figure 5. Discharge time series measured at seven sites in the Rhine basin between 1950 and 1955 before applying normalization (upper
left) and after applying normalization (upper right). A2(k) calculated for entire time series before applying normalization (bottom left) and
after applying normalization (bottom right) with 90 % confidence intervals (grey) calculated for 100 realizations of Gaussian process (dashed
line is A2(k) calculated for 1 of the realizations of Gaussian process).

ized in this study. First, the mean µi on the ith calendar day
is calculated as the expectation of the random variable Xi .
Then, the annual cycle of the mean µ∗i (Fig. 4, left) is cal-
culated as a smoothed version of µi by linearly weighting
the neighboring values along i and summing them up. The
smoothed annual cycle of standard deviations σ ∗i (Fig. 4,
right) can be obtained in the same way. Then the normalized
time series is defined by dividing the original time seriesZ(t)
by σ ∗i after subtracting µ∗i as follows:

Znorm(t)=
Z(t)−µ∗t |365

σ ∗t |365
, (11)

where t |365 is t (mod 365) and represents calendar day at
time t (day). Figure 5 (upper right) shows parts of normal-
ized discharge time series from the seven gauging stations.
It should be noted that the process still appears to be non-

Gaussian after this transformation and the seasonality for
small time lags k might not have been fully eliminated. Fig-
ure 5 (bottom left and bottom right) shows the variation of
asymmetry functions for seven discharge time series corre-
sponding to time lag k, similar to correlograms, in addition
to the confidence interval of Gaussian process.

The confidence intervals in the figures are gained by cal-
culating A2(k) for 100 realizations of stationary Gaussian
process which are fitted to the observed discharge of An-
dernach. The result shows that the process is clearly differ-
ent from Gaussian and the influence of asymmetry is signifi-
cantly large.

It can be seen that the variation of A2(k) of discharge
without normalization (Fig. 5, bottom left) has a larger im-
pact of seasonality for bigger k (k > 40), while its impacts
are mitigated after the normalization (Fig. 5, bottom right).
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Furthermore, as a consequence of normalization, a sharp
drop down of A2(k) for small time lags k emerged, which
might be regarded as a catchment indicator. Therefore, the se-
lected/critical properties for small time lags k is formulated
by (i) taking the minimum value of A2(k) for the time lag
k < 50 and (ii) the lag k at the minimum of A2(k):

A2,min = min
k<50

A2 (k) , (12)

L2,min = min
0<k<50

{
k;A2 (k)= A2,min

}
. (13)

The question is whether they are really related to catchment
characteristics. Now, these statistics estimated for 77 dis-
charge data recorded at the gauging stations in Germany are
compared with the catchment area as one of the simplest pos-
sible indicators of the catchment as shown in Fig. 6. A2,min
area (Fig. 6, top) and L2,min area (Fig. 6, middle) both show
a linear relationship with the log-scaled x axis of catchment
area, with positive correlation. There seems also to be a lin-
ear relation between A2,min and L2,min (Fig. 6, bottom) as a
consequence of the above relationships.

This result demonstrates that the information extracted
from discharge is related to the basic information of its catch-
ment to a certain extent. Since the principal objective is to
assess anthropogenic impacts, the idea introduced now is to
use this measure for evaluating the catchment change by cal-
culating chronological changes of A2,min.

3.1.1 Time series analysis with asymmetry

Temporal change of asymmetry2 is defined A2 (k, t) on the
set representing a moving time window of size w.

S∗ (k, t)

=

{(
FZ (z (a)) ,FZ (z (a+ k))

)
; t −

w

2
< a < t +

w

2

}
, (14)

A2 (k, t)

= E
[
−(Ut − 0.5)(Ut+k − 0.5)((Ut − 0.5)− (Ut+k − 0.5))

]
=

1∫
0

1∫
0

−(ut − 0.5)(ut+k − 0.5)(ut − ut+k)

· c (ut ,ut+k)dutdut+k, (15)

where ut ∈ Ut ,ut+k ∈ Ut+k, (ut ,ut+k) ∈ S∗ (k, t). Then the
minimum of A2(k) and lag k at the at time t are given by

A2,min(t)= min
k<30

A2 (k, t) , (16)

L2,min(t)= min
0<k<30

{
k;A2 (k, t)= A2,min(t)

}
. (17)

Figure 7 shows the temporal changes of A2,min(t) with win-
dow size w = 3000 (days) for seven gauging stations in
southwest Germany in addition to the confidence interval cal-
culated for the 100 independently generated realizations of
Gaussian process.
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Figure 6. Relation between asymmetry of discharge data and catch-
ment characteristics: A2,min of discharge and catchment area (top),
L2,min of discharge and catchment area (middle), A2,min of dis-
charge and L2,min of discharge (bottom).

The comparison of A2,min(t) from observed discharges
with A2,min(t) from a Gaussian process exhibits (i) the in-
fluence of asymmetry in discharge is significantly large as
was seen in Fig. 5; (ii) the fluctuations of A2,min(t) of seven
observed discharge time series appear to be bigger than the
one calculated for a realization of a Gaussian process; and
(iii) A2,min(t) of these seven discharge records shows a simi-
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Figure 7. Temporal change of asymmetry2:A2,min(t) for seven dis-
charge records and, for comparison, confidence intervals calculated
from the Gaussian process (90 % confidence interval with grey color
and 60 % confidence interval with dark grey color) and one of its re-
alizations (dashed line).

lar trend: there are big drops around 1945 and after 1980 for
all the discharges.

However, it cannot be ascertained whether this is caused
by the simultaneous change of the catchments, the long-term
meteorological behavior in the region or just randomness in
the stationary process. To overcome this, temporal behavior
of discharge and temperature were first checked by calculat-
ing the mean, the standard deviation and the minimum in a
time window centered on time t . These are defined by

Mean(t)=
1
w

t+w/2∫
t−w/2

z(a)da (18)

SD(t)=
√

Var(t)=
1
w

t+w/2∫
t−w/2

(
z(a)−E [Z(t)]

)2
da


1
2

, (19)

Min(t)=min
{
z(a); t −

w

2
< a < t +

w

2

}
, (20)

where w is the size of time window. Figure 8 shows the
moving average and moving standard deviation of discharge
records with windows size w = 3000 (days), but it is hard
to say whether the behavior around 1945 and after 1980 is
unusual. Figure 9 shows mean and minimum of temperature
in the time window of size 365 days which correspond to
annual mean and minimum. Roughly speaking, there are cer-
tain cold periods around 1940, 1955 and 1985, which might
influence the snow accumulation and melting in the region,
but the relation with A2(k) is rather obscure.

What seems to be a useful outcome from the above ex-
ploratory analysis is that (i) the behavior of A2(k) is differ-
ent from catchment to catchment, showing a statistical rela-
tion with the catchment area and (ii) temporal behaviors of
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Figure 8. Moving average and standard deviation of the seven daily
discharge records for the window size w = 3000 (days).
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Figure 9. Annual minimum (upper panel) and mean of aggregated
daily temperature (lower panel) in the Baden-Württemberg state of
Germany.

A2(k) of seven discharge time series are dependent on each
other, which implies the existence of a background mecha-
nism common to the region.

4 Analysis of hydrological time series with copula
distance

As an alternative to copula asymmetry, which emphasizes the
behavior in the corners of copulas, copula distance is sug-
gested here so that the characteristic behavior can be cap-
tured in the entire domain of the copula. Calculating this for
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each time step for different time series and comparing them
hopefully exhibits the changes of dependence structure and
therefore the catchment change.

4.1 Introduction of copula distance

The basic idea behind the copula distance is to apply the
Cramér–Von Mises type distance, which by design measures
the goodness of fit for two distribution functions, to two cop-
ulas as follows:

D =

1∫
0

1∫
0

(
C∗ (u1,u2)−C (u1,u2)

)2du1du2, (21)

This type of distance was tested to measure the differ-
ence between empirical and theoretical copulas in the boot-
strap framework for the evaluation of spatial dependence of
groundwater quality (Bárdossy, 2006). For the analysis of
time series data, it still needs to be carefully thought out how
(and which) copulas should be chosen.

4.1.1 Introduction of copula distance to single time
series

In order to apply the concept of copula distance to time se-
ries, the adoption of two copulas in different timescales is
considered. An empirical copula can be obtained from an en-
tire time series which contains the averaged information of
all the time points (global copula). Another empirical cop-
ula can be obtained for a certain time window of width w
centered at time step t (local copula). In order to make the
concept clear, two sets containing pairs of ranked values with
different timescales are specified.

Sglobal(k)

=

{(
FZ (z(t)) ,FZ (z (t + k))

)
; t1 < t < tn

}
(22)

Slocal(k, t)

=

{(
FZ (z(a)) ,FZ (z (a+ k))

)
; t −

w

2
< a < t +

w

2

}
(23)

Slocal (k, t) can be interpreted as a moving time window
where the reference time t is set to the middle of the win-
dow of size w, while Sglobal(k) represents a set of the entire
time series. Global copula and local copula are the empirical
autocopula densities defined on these sets based on Eq. (8),
there denoted by c∗global (u) and c∗local (u, t,w), respectively,
for the n-dimensional case. In this analysis, 3000 days for the
time window w and a 3-dimensional copula separated with a
1-day gap between each variable are employed. This means
that

u= (u0,u1,u2) , (24)

where u0 = Fz (Z(t)), u1 = Fz (Z (t + 1)),
u2 = Fz (Z (t + 2)), then the deviation of local copula from

global copula is defined by

1c(u, t)= c∗local (u, t)− c
∗

global (u) . (25)

For the first approach, the comparison of dependence struc-
tures between entire and local time series is done for detect-
ing unusual dependence structures. To this end, copula dis-
tance type1 is defined by taking the copula distance between
global and local copulas at each time step t .

D1(c, t)=

1∫
0

. . .

1∫
0

(
c∗global (u)− c

∗

local (u, t)
)2

du1. . .dun

=

1∫
0

. . .

1∫
0

1c(u, t)2du1. . .dun (26)

Second, copula distance type2 is introduced for indicating
the point at which the structure of copulas starts to change.
For this method, the distance between two local copulas is
calculated at two instants:

D2(c, t)

=

1∫
0

. . .

1∫
0

(
c∗local

(
u, t −

w

2

)
− c∗local

(
u, t +

w

2

))2

· du1. . .dun. (27)

Note that reference time is set to the middle of both time win-
dows and shifted for w/2 (days) from each other where the
size of the time windows isw. Therefore, there is no overlap-
ping part between the two time intervals of these two local
copulas. For the comparison, the moving variance is intro-
duced as follows:

E [Z(t)]=
1
w

t+w/2∫
t−w/2

z(a)da,

Var(t)=
1
w

t+w/2∫
t−w/2

(z(a)−E [Z(t)])2da. (28)

Figure 10 shows the result of D1(t), D2(t) and Var(t) in the
moving time window for the normalized discharge time se-
ries between 1940 and 2000 at four gauging stations located
in the main stream of the Rhine (Andernach, Maxau) and
its two different tributaries (Cochem, Plochingen) in addition
to the 90 % confidence intervals calculated for the Gaussian
process fitted to the discharge data of Andernach.

First of all, the values of D1(t) and D2(t) at Cochem and
Plochingen are bigger and more fluctuating than in general.
The reason could be that their catchments and discharges are
smaller, thus more sensitive to changes. Second, it can be
said that the dependence structure is not homogeneous over
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Figure 10. Copula distances of discharge time series in moving
time window: variance (top), distance type1 (middle) and distance
type2 (bottom); each panel contains the 80 % confidence interval of
Gaussian process and one of its realizations (dashed line). The ar-
rows point to 1947, 1982, 2000 and 1977 in which the clear signals
of anomalies are detected for all four discharge time series: An-
dernach (ANDE), Cochem (COCH), Maxau (MAXA) and Plochin-
gen (PLOC).

the time period, but the local copula clearly deviates from the
global copula for certain time periods. For example, the value
of D1(t) is remarkably big around 1947, 1982 and 2000 for
all the four discharge records (indicated by white arrows).
D2(t) is also big around 1977 for all the data. The signal
of D2(t) implies that a simultaneous change of runoff be-
havior occurred in this region in 1977, which can be related
to the high value of D1(t) at 1982. Var(t) is also changing,
but a direct relation with D1(t) and D2(t) is hard to recog-
nize. Also the confidence interval of the Gaussian process
is clearly smaller than the observed one. This indicates the
copula distances of the stationary process are small while the
nature process is nonstationary and its dependence structure
is more varying.

For copula distance type1, the global copula can be consid-
ered as an average state of the copula, while the local copula
can be regarded as a realization of a possible state of a cop-
ula at time step t . This concept can be comparable to vari-
ance and leads to a new measure, copula variance, which is
the summation of copula distances between global and local

Table 1. Variance and copula variance calculated for four discharge
time series (ANDE: Andernach, COCH: Cochem, MAXA: Maxau,
PLOC: Plochingen).

ANDE COCH MAXA PLOC

Var 1.79 2.24 1.75 2.72
Varcop (× 10−5) 3.01 1.64 5.39 1.27

copula over the time.

Varcop(c)=
1

tn− t1

tn∫
t1

D1 (c, t)dt (29)

Table 1 shows the variance and copula variance calculated for
the four discharge data. The result demonstrates that copula
variance of the time series can be higher, even if the conven-
tional variance is lower (for example, in the case of Maxau).

4.1.2 Copula distance for two time series

In the previous section, copula variance was defined as a
measure of the variability characteristic of the copula itself.
Here, it is determined whether covariance can be defined for
two copula densities c1 and c2 from two time series as copula
distance type3, which shows whether the variability charac-
teristic of each copula is related to the other. The measure
introduced is

D3 (c1,c2, t)=

1∫
0

. . .

1∫
0

1c1 (u, t)1c2 (u, t)du1. . .dun, (30)

where

1c1 (u, t)= c
∗

1,local (u, t)− c
∗

1,global (u) ,

1c2 (u, t)= c
∗

2,local (u, t)− c
∗

2,global (u) . (31)

By its definition, the value of D3(t) can be related to D1(t)

because D3(t) compares the deviation of local copulas from
global copulas in a similar way to D1(t) in Eq. (26). In or-
der to reduce the influence of D1(t) on D3(t), copula dis-
tance type4 is introduced as a normalized measure bounded
between −1 and 1 analogous to correlation.

D4 (c1,c2, t)=
D3 (c1,c2, t)

√
D1 (c1, t) ·

√
D1 (c2, t)

, (32)

where |D4 (c1,c2, t)| ≤ 1. For comparison, covariance and
correlation in a moving window are introduced for two ran-
dom variables Z1(t) and Z2(t) as follows:

Cov(t)=
t+w/2∫
t−w/2

(z1 (a)−E [Z1(t)])(z2 (a)−E [Z2(t)])da, (33)
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Corr(t)=
Cov(t)

√
Var(Z1(t)) ·

√
Var(Z2(t))

. (34)

Figure 11 shows the copula distance between two time series
D3(t) andD4(t) in addition to the covariance and correlation
in a moving time window.

First, it can be said that the behavior of covariance and
correlation in a moving window are different fromD3(t) and
D4(t). This implies these two copula-based statistics exhibit
different properties of the time series from ordinary statis-
tics. Second,D3(t) shows high values around 1947, 1982 and
2000, which is similar to the case ofD1(t) in Fig. 10. This in-
dicates that unusual states of copulas in four discharge time
series can be related to each other. Third, D4(t) is, in gen-
eral, high except for the period around 1970 and 1990. This
means, the temporal behavior of dependence structures for
these four discharges are actually similar except for these pe-
riods even if D1(t) and D3(t) are small.

Copula covariance and copula correlation can be defined
similar to copula variance in order to quantify the overall be-
havior of two time series (Sugimoto, 2014).

Covcop (c1,c2)=
1

t2− t1

t1∫
t2

D3(t)dt, (35)

Corrcop (c1,c2)=
Covcop (c1,c2)√

Varcop (c1) ·
√

Varcop (c2)
, (36)

where
∣∣Corrcop (c1,c2)

∣∣≤ 1 and its derivation can be found
in Appendix A. In Table 2, these copula-based statistics are
compared with ordinary statistics. For example, Cochem and
Plochingen are located remotely in different tributaries, thus
covariance and correlation are lower than the others, but cop-
ula covariance and copula correlation are not the lowest.

The measures using copula distance are different from the
conventional statistics. This behavior can be explained by
the fact that the autocopula has more substantial informa-
tion about temporal dependence structure than the autocor-
relation. Using these measures might enable us to take ad-
vantage of a different way of seeing the dependence between
time series.

What is new in the analysis of this section is that (i) mea-
sures based on copula distance show the different properties
of time series in comparison to conventional statistics and
(ii) there are significant signals of copula distances for cer-
tain time periods common to all the discharge data.

4.2 Copula-based stochastic analysis with API and a
hydrological model

The difficulty of analyzing discharge time series in order
to detect catchment change is that it is not clear whether
the temporal change of stochastic information is caused by
catchment change or merely by random behavior of pre-
cipitation. To gain an understanding of this process, we at-
tempted to eliminate the influence of precipitation using,
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Figure 11. Copula distances of discharge time series in moving
time window: covariance (top), correlation (second), copula dis-
tance type3 (third) and copula distance type4 (bottom). The arrows
point 1947, 1982 and 2000 in which the clear signals of anomalies
are detected for the comparisons between four discharge time series:
Andernach (ANDE), Cochem (COCH), Maxau (MAXA), Plochin-
gen (PLOC).

first, an antecedent precipitation index (API) for comparison
with discharge, second, using a hydrological model with the
parameter sets calibrated and fixed for the entire simulation
time period.

4.2.1 Copula distance analysis with API

An API time series, which is generated from observed pre-
cipitation time series and behaves similarly to discharge, is
used instead of precipitation.

API(t + 1)= αAPI(t)+P (t + 1) , (37)

where P(t) is daily precipitation (mmday−1), API(t) is the
time series of API (mmday−1) and α = 0.85 was chosen. The
assumption for this method is that the API time series has the
stochastic information purely originated from the precipita-
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Table 2. Covariance, correlation, copula covariance and copula correlation between four discharge data (AN: Andernach, CO: Cochem, MA:
Maxau, PL: Plochingen).

AN–CO AN–MA AN–PL CO–MA CO–PL MA–PL

Cov 1.68 1.60 1.33 1.38 1.31 1.41
Cor 0.84 0.90 0.60 0.70 0.53 0.64
Covcop (× 10−6) 4.90 3.40 3.39 7.16 9.90 5.47
Corrcop 0.60 0.77 0.46 0.71 0.60 0.59
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Figure 12. Locations of the precipitation gauge stations within
Baden-Württemberg (Germany) indicated by colored circles. The
upper Neckar catchment (USGS, 2014) is identified by the light
green area and the location of the gauging station is indicated by
a square.

tion, while observed discharge is influenced by both catch-
ment and precipitation characteristics. If the stochastic in-
formation derived from these two data sets is the same, this
indicates that the stochastic turbulence is originating from
precipitation; otherwise the change is from the catchment.

For this investigation, precipitation data were carefully
chosen for four regions (northwest, northeast, southwest and
central) in Baden-Württemberg (Germany) so that they have
several almost continuous daily records between 1935 and
2005. Figure 12 shows the locations of measuring stations.
The precipitation time series were aggregated into one for
each region by taking their daily average, then four API time
series were calculated in total by Eq. (35). Figure 13 shows
the resulting copula distances D1(t), D2(t) and moving av-
erage Var(t) for API time series with the 90 % confidence
intervals of the Gaussian process. In Table 3, the variances
and copula variances calculated for these API time series are
shown. Figure 14 shows the result of copula distancesD3(t),
D4(t) and moving covariance and correlation for API time
series. In Table 4, the covariances, correlations, copula co-
variances and copula correlations calculated for these API
time series are shown.
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Figure 13. Copula distances of API time series in moving time win-
dow: variance (top), copula distance type1 (middle) and copula dis-
tance type2 (bottom), where “C” denotes the central, “SW” denotes
the southwest, “NW” denotes the northwest and “NE” denotes the
northeast parts of the Baden-Württemberg state of Germany, each
containing 80 % confidence intervals of Gaussian process and one
of its realizations (dashed line). The arrows indicate the years in
which anomalies are detected in the previous analysis (Fig. 10).

What can be recognized first from Fig. 13 is that the mag-
nitudes of D1(t) and D2(t) are smaller than the case of dis-
charge. This is considered to be a result of aggregation of pre-
cipitation time series and adoption of API, but some signals
can be still identified: D1(t) around 1947 and 2000 is high,
but not as high for 1982. The signal of D2(t) which was de-
tected around 1977 in Fig. 11 does not seem to exist for API.
This is even more clear forD3(t) in Fig. 14 in that there is no
common change of the dependence structure around 1982 in
API time series. This is interesting due to the following im-
plications: (i) the noises ofD1(t) in Fig. 13 were reduced and
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Table 3. Variance and copula variance calculated for API time series
of four regions in the Baden-Württemberg state of Germany (C:
central, SW: southwest, NW: northwest, NE: northeast).

C SW NW NE

Var 1.70 1.66 1.72 1.78
Varcop (× 10−6) 3.00 4.02 3.35 3.21
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Figure 14. Copula distances of API time series in moving time win-
dow: covariance (top), correlation (second), copula distance type3
(third) and copula distance type4 (bottom). The arrows indicate
the years in which anomalies are detected in the previous analysis
(Fig. 11).

signals in common were amplified, and (ii) the unusual state
of the copula around 1982 is not caused by precipitation, but
could be caused by the catchment change.

For further verification, copula distance type3 and type4
between discharge and API time series were calculated as
shown in Fig. 15. This result also shows there is no clear
relation between API and discharge time series around 1982.

0.000005
0.000000
0.000005
0.000010
0.000015
0.000020
0.000025

Q
−

A
P

I
D

3(
t)

ANDE-API COCH-API MAXA-API PLOC-API

1950
1960

1970
1980

1990
2000

 Time [year]

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

Q
−

A
P

I
D

4(
t)

Figure 15. Copula distance type3 (top) and type4 (bottom) between
four discharge and one API time series which is aggregated for
all the daily precipitations depicted in Fig. 12. The arrows indicate
the years in which anomalies are detected in the previous analysis
(Fig. 11).

4.2.2 Copula-based analysis with a hydrological model

In this section, simulated discharge time series are gener-
ated by a conceptual hydrological model, HBV (Bergström,
1976, 1995), which takes daily precipitation and temperature
records as input and simulates discharges for smaller catch-
ments as an example of discharge, to compare with observed
discharge, in order to check if differences might occur due to
the method.

Thus the idea behind this methodology is similar to the
case of API: a hydrological model with the parameters fixed
for the entire time period represents the catchment not influ-
enced by anthropogenic impacts. Then, the discharges simu-
lated by this model should not depend on catchment change,
while observed discharge is assumed to be influenced by both
catchment and precipitation.

For the study area, the upper Neckar catchment was cho-
sen as shown in Fig. 12. One parameter set needed for this
model consists of 13 parameters which are calibrated based
on the Nash–Sutcliffe model efficiency coefficient using the
simulated annealing algorithm for the period between 1960
and 2000. Then, 30 parameter sets are independently cali-
brated in total and, subsequently, 30 simulated discharge time
series are generated to compare with one observed discharge.

Figure 16 shows the result of copula-based analysis cal-
culated for single time series (D1(t), D2(t), A2,min(t)). It
can be seen that A2,min(t) in Fig. 16 (top) that (i) fluctua-
tions of A2,min(t) of observed and simulated discharge are
locally identical. This implies that the short-term behavior of
A2,min(t) originated from the temporal behavior of precip-
itation but (ii) there exists a change of trend around 1976:
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Table 4. Covariance, correlation, copula covariance and copula correlation between API time series from four regions in the Baden-
Württemberg state of Germany (C: central, SW: southwest, NW: northwest, NE: northeast).

C-SW C-NW C-NE SW-NW SW-NE NW-NE

Cov 1.35 1.33 1.44 1.25 1.41 1.42
Cor 0.80 0.77 0.84 0.74 0.84 0.83
Covcop (× 10−7) 1.46 1.16 8.94 4.42 1.11 8.80
Corrcop 0.36 0.29 0.29 0.09 0.26 0.24

A2,min(t) of observed discharge is slightly bigger than simu-
lated discharge before 1976, while A2,min(t) of observed dis-
charge clearly undershoots the simulated ones of after 1976.
This change of trend was also seen in the previous analyses
(D2(t) in Fig. 10). Furthermore, D1(t) in Fig. 16 (middle)
is high before 1976 which indicates the state of the copula
is different from the rest, while the result of simulated dis-
charges does not show such tendency. D2(t) in Fig. 16 (bot-
tom) indicates the change of dependence structure happened
around 1970 and 1977. These results using the HBV model
indicate the change of the dependence structure detected us-
ing copulas around 1976 is not caused by the random be-
havior of precipitation, but by the behavior of the catchment
itself.

The fact and the notion obtained in this section is that
(i) both results from API and HBV based on copula mea-
sures indicate that the catchment changed around 1976, and
(ii) by comparing the simulated discharge with observed dis-
charge, the origin of the change of stochastical information
can be assessed.

5 Conclusion

In this paper the application of copulas for hydrological time
series data is newly explored for the detection of catchment
characteristics and their temporal changes.

1. A copula-based measure of asymmetry, A1(k) and
A2(k), was defined and newly applied for the identifi-
cation of catchment characteristics. Indeed, it was pre-
sumed that asymmetry2 is related to the runoff charac-
teristics.

2. The relation between asymmetry2 and catchment char-
acteristics was tested for 77 discharge records. A2,min
has a certain relation especially with the size of catch-
ments and this strengthens the notion that asymmetry2
of discharge data can be used to describe the catchment
characteristic and state.

3. A2,min(t) was defined for evaluating the temporal
change of asymmetry2 and calculated as an indicator of
the catchment state. The result indicatesA2,min(t) keeps
changing coincidentally with time. However, it is diffi-
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Figure 16. Copula asymmetry and copula distances for 30 simu-
lated and 1 observed discharge time series at Plochingen between
1965 and 2000: A2,min for the time lag k = 2 days (top), copula
distance type1 (middle), copula distance type2 (bottom).

cult to explain the causality, at least, by long-term be-
havior of discharge and temperature time series.

4. A method based on copula distance was examined for
the investigation of temporal behavior of hydrological
time series. This measure can detect the time period
where dependence structure is unusual and its interde-
pendency between different time series. Clear signals
were detected that the dependence structure is unusual
for a certain time period and this signal was not found
by investigating the time series with variance, covari-
ance or correlation.

5. API time series were calculated for each region in the
Baden-Württemberg state and simulated discharge time
series were generated using the HBV model for the up-
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per Neckar catchment. These are the data not influenced
by catchment change, thus compared with observed dis-
charge to assess the anthropogenic impacts. The results
showed that there was a signal detected only in the ob-
served discharge around 1982, but not in the API or
simulated time series, which implies the anthropogenic
impacts on the catchment. Also, it was shown in the re-
sults of copula asymmetry that the trend clearly changed
around 1976.

The results of copula-based analysis of hydrological time
series seem to support the assumption that the catchment
had started to change around 1976 and stayed unusual un-
til 1990. These changes could correspond to the construction
of flood retention basins started around 1982 (Lammersen
et al., 2002) and ecological flooding strategy, which allowed
small floods to happen for the rehabilitation of ecological
systems in the floodplain, introduced in the upper Rhine from
1989 (Siepe, 2006).

Copulas can be seen as an alternative method to analyze
hydrological time series data by focusing on the dependence
structure, but further exploratory applications and theoretical
developments are expected. The copula-based measures in-
troduced in this study can be related to the potential model
uncertainty, that is, how much the natural system is vary-
ing. Empirical autocopula analysis is a more data-driven ap-
proach which retains more information than the copulas esti-
mated with parametric methods, but it is also numerically de-
manding. The effective way to analyze time series and build
up a time series model based on copulas can be further ex-
plored.

6 Data availability

The 77 discharge records used for this research are provided
by Global Runoff Data Centre http://www.bafg.de/GRDC/
EN/Home/homepage_node.html. Precipitation and temper-
ature, which are necessary for the calculation of API and
the HBV model, can be requested at the German Weather
Service http://www.dwd.de/EN/Home/home_node.html and
accessible from web-based Service of German Weather
Service (WebWerdis) https://werdis.dwd.de/werdis/start_js_
JSP.do. Geographical information used for the simulation
with the HBV model is available at USGS http://hydrosheds.
cr.usgs.gov/index.php.
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Appendix A: Derivation of copula correlation

Suppose that a random variable at time t is denoted as X(t)
and cX (u, t) is an autocopula obtained from X(t). Assum-
ing cX,mean (u) as an average state of cX (u, t), deviation of
copula 1cX (u, t) at time t is defined by

1cX (u, t)= cX (u, t)− cX,mean (u) . (A1)

For the empirical case, cX (u, t) and cX,mean (u) can be re-
garded as local copula and global copula, respectively, sim-
ilar to Eq. (29). Since global and local copula are empirical
copula density as defined in Eq. (8), 1cX (u, t) can be re-
garded as a vector of values on a finite number of grids:

1cX(t)=
(
1cX,1(t),1cX,2(t), . . .,1cX,i (t), . . .,1cX,N (t)

)
, (A2)

where1cX,i(t) denotes the value of copula density at ith grid
and N is the number of grids. From the Cauchy–Schwarz
inequality

‖1cX(t)‖ ‖1cY (t)‖ ≥ | 〈1cX(t),1cY (t)〉 |
2, (A3)

where ‖1cX(t)‖ is norm and 〈1cX(t),1cY (t)〉 is the inner
product of vector 1cX(t) and 1cY (t). Then∥∥∥1cX(t)

∥∥∥= N∑
i=1

1cX,i(t)
2

=

1∫
0

. . .

1∫
0

(1cX (u, t))
2du1 . . .dun =D1 (cX, t) (A4)

〈
1cX(t),1cY (t)

〉
=

N∑
i=1

1cX,i(t) ·1cY,i(t)=

1∫
0

· · ·

1∫
0

·1cX (u, t)1cY (u, t)du1. . .dun =D3 (cX,cY , t) (A5)

|〈1cX(t),1cY (t)〉|
2

‖1cX(t)‖ ‖1cY (t)‖
=
|D3 (cX,cY , t)|

2

D1 (cX, t) ·D1 (cY , t)

= |D4 (cX,cY , t)|
2
≤ 1. (A6)

Therefore |D4 (cX,cY , t)| ≤ 1 in Eq. (30). The above in-
equality is valid for a certain time point t and summing up
Eq. (A6) for all the time steps t leads to

T∑
t=1

(
‖1cX(t)‖ · ‖1cY (t)‖

)
≥

T∑
t=1

∣∣∣〈1cX(t),1cY (t)
〉∣∣∣2, (A7)

where T is the number of time steps. ‖1cX(t)‖ is a norm and
can be denoted for simplicity as xt = ‖1cX(t)‖. Then

T∑
t=1

(
‖1cX(t)‖ · ‖1cY (t)‖

)
= 〈x,y〉 , (A8)

where x = (x1,x2, . . .,xT ), y = (y1,y2, . . .,yT ) for t =

1 . . . T . Again from the Cauchy–Schwarz inequality

|〈x,y〉|2 ≤ ‖x‖ · ‖y‖ , (A9)

where

‖x‖ · ‖y‖ =

T∑
t=1

x2
t ·

T∑
t=1

y2
t =

T∑
t=1

‖1cX(t)‖
2
·

T∑
t=1

‖1cY (t)‖
2

=

T∑
t=1

D1(cX, t)
2
·

T∑
t=1

D1(cY , t)
2

= T 2
·Varcop (cX) ·Varcop (cY ) (A10)

〈x,y〉 =

T∑
t=1

(xt · yt )=

T∑
t=1

(
‖1cX(t)‖ · ‖1cY (t)‖

)
≥

T∑
t=1

∣∣∣〈1cX(t),1cY (t)
〉∣∣∣2 = T∑

t=1
D3 (cX,cY , t)

= T ·Covcop (cX,cY ) . (A11)

Then |〈x,y〉|2 ≤ ‖x‖ · ‖y‖ indicates∣∣Covcop (cX,cY )
∣∣2 ≤ Varcop (cX) ·Varcop (cY ) ,∣∣Corrcop

∣∣= ∣∣Covcop (cX,cY )
∣∣√

Varcop (cX) ·
√

Varcop (cY )
≤ 1. (A12)
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