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Abstract. We present a three-parameter streamflow elastic-
ity model as a function of precipitation, potential evapora-
tion, and change in groundwater storage applicable at both
seasonal and annual scales. The model was applied to 245
Model Parameter Estimation Experiment (MOPEX) basins
spread across the continental USA. The analysis of the mod-
ified equation at annual and seasonal scales indicated that the
groundwater and surface water storage change contributes
significantly to the streamflow elasticity. Overall, in case
of annual as well as seasonal water balances, precipitation
has higher elasticity values when compared to both poten-
tial evapotranspiration and storage changes. The streamflow
elasticities show significant nonlinear associations with the
climate conditions of the catchments indicating a complex
interplay between elasticities and climate variables with sub-
stantial seasonal variations.

1 Introduction

Several studies have emphasized on the sensitivity of stream-
flow to fluctuations in climate for river basins across the
world. Many studies used atmospheric forcings as an in-
put to a hydrologic model to quantify the resulting changes
in streamflow. For example, hydrologic models like the
Sacramento model (Němec and Schaake, 1982), abcd model
(Sankarasubramanian et al., 2001), SIMHYD and AWBM
models (Chiew, 2006) were applied to evaluate the influ-
ence of various climate variables on streamflow. Another
popular approach involves analytically deriving the sensi-
tivity of streamflow based on various conceptual models.
For example, Schaake (1990) first formulated the stream-

flow elasticity due to precipitation only. Later, Dooge (1992)
devised a method to quantify sensitivity of streamflow to
both precipitation and potential evapotranspiration (PET).
Arora (2002) extended this work of assessing streamflow
sensitivities to PET and P utilizing general circulation model
(GCM) data. He derived the streamflow sensitivities to PET
and P by using five different empirical formulae, namely the
Schreiber equation (Schreiber, 1904), the Ol’dekop equation
(Ol’dekop, 1911), the Budyko equation (Budyko, 1961. ), the
Turc–Pike equation (Pike, 1964; Turc, 1954), and the Zhang
et al. equation (2001). More recently, Yang and Yang (2011)
derived streamflow sensitivities to various climatic variables
by combining an analytical solution of the Budyko hypothe-
sis and differential form of the Penman equation. Multivari-
ate statistical methods are used to estimate the relationship
between climate variables and streamflow at a particular site.
For example, a bivariate linear regression method based on
precipitation and temperature anomalies (Potter et al., 2011)
and a bivariate generalized linear regression method based
on precipitation and potential evapotranspiration anomalies
(Andréassian et al., 2015) were applied for determining the
streamflow sensitivities.

The sensitivity of the streamflow is usually expressed in
terms of a nondimensional quantity called elasticity where
a positive elasticity value indicates an increase in stream-
flow with increase in the climate variable, whereas a negative
elasticity value indicates a decrease in streamflow with an
increase in the climate variable (Sankarasubramanian et al.
2001; Potter et al., 2011). Hence, climate elasticities link the
climate factors to variations of streamflow. Most of the an-
nual elasticity-based model studies point to a common con-
clusion of higher precipitation influence on streamflow when
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compared to other climate variables like PET, temperature,
wind speed, etc. Fu et al. (2007) indicated that in locations
with low temperatures, the streamflow elasticity to precipita-
tion is higher than locations with higher temperatures. Yang
and Yang (2011) has identified positive and negative stream-
flow elasticity due to relative humidity and wind speed, re-
spectively. More recently, Andréassian et al. (2015) has iden-
tified a negative elasticity due to potential evapotranspiration.

Most of the elasticity models are applied at annual scales,
however, the dominant control of climatic and landscape
properties on hydrologic responses are timescale dependent
(Atkinson et al., 2002; Farmer et al., 2003; Wang and Al-
imohammadi, 2011). Estimating this seasonal control of cli-
mate on streamflow can be beneficial to water resources’
managers and planners. The water availability and demand
change across each season and as a water resource manager
or planner, it is very important to balance these needs by con-
structing storage facilities or by implementing efficient water
conservation practices. However, before implementing these
strategies, we first need to understand how different climate
factors affect streamflow at seasonal scales in conjunction. In
this direction, previous studies (Vano et al., 2014; Guo et al.,
2008; Berghuijs et al., 2014, 2016; Chen et al., 2013; Istan-
bulluoglu et al., 2012; Jiang et al., 2015; Ye et al., 2015) have
investigated water balance dynamics by considering season-
ality, storage change, and extremes. However, these studies
have not investigated the combined effect of various climate
factors on streamflow at a seasonal scale. A conjunct analy-
sis would likely provide a more robust solution by consider-
ing the coevolution of elasticities and climate variables. As
discussed above, climate elasticity provides an easy way to
integrate the effects of various climate factors on streamflow
without directly considering the effects of soil, land cover,
etc. For example, a positive precipitation elasticity value of
2 indicates a 2 % increase of streamflow with 1 % increase
in precipitation, whereas a negative storage change elastic-
ity value of 2 indicates a 2 % decrease in streamflow with
1 % increase in groundwater storage. Further, several studied
have explored the relationship between mean annual catch-
ment properties and the elasticities (Sankarasubramanium et
al., 2001; Chiew, 2006; Fu et al., 2011). A similar exploration
extended to seasonal scale would further assist the planners
to create a catchment scale strategy for efficient management
of seasonal water resources. Hence, a natural extension of
this climate elasticity framework to a seasonal scale would
serve our purpose of understanding the seasonal climate and
physical controls on water resource availability.

Usually, most of the climate elasticity models assume that
at annual scale both water storage change and groundwater
loss are insignificant (Yang and Yang, 2011; Arora 2002).
This assumption leads to a simplified water balance equation,
which represents precipitation as a sum of evapotranspiration
and streamflow. However, this assumption holds true only
if the deep groundwater storage is negligible over the con-
sidered time period for annual studies (Wang, 2014; Tomer

and Schilling, 2009). Therefore, we also check the validity of
this assumption by including a term of ground and soil water
storage at annual scale. Similarly, on a seasonal scale these
changes also cannot be neglected. Hence, the purpose of the
article is threefold: (a) to test the performance of the elas-
ticity model at annual scale by incorporating storage change
as an influencing component, (b) to evaluate climate elastici-
ties at the seasonal scale, and (c) to explore the relationships
between estimated elasticities and catchment properties.

The paper is organized as follows. In Sect. 2, data and
methodology are discussed. Section 3 discusses the results
by evaluating the modified climate elasticity model at an
annual scale by incorporating precipitation, potential evap-
otranspiration, and change in storage components. Further,
we present the streamflow elasticity at a seasonal scale and
evaluate their spatial variability. Finally, Sect. 4 presents the
conclusions along with the implications of these results.

2 Data sources and methodology

2.1 Data

The hydrometeorological data (1948–2003) were collected
from the Model Parameter Estimation Experiment (MOPEX)
basins located in the USA, which are considered to have
limited human influence (Schaake et al.,2006) and hence al-
low this study to focus on seasonal climate controls. In the
MOPEX data set, daily precipitation (P ) is processed by the
NWS Hydrology Laboratory, and streamflow (Q) is obtained
from USGS National Water Information System (NWIS).
Monthly actual evaporation from 1986 to 2006 was obtained
from the data set provided by Zhang et al. (2010) at 0.5◦ res-
olution hosted at the University of Montana website. We se-
lected PET values from climate research unit (CRU) database
available at 0.5◦ resolution based on an improved Penman–
Monteith method (Harris et al., 2014). The actual evapora-
tion and potential evaporation data are temporally averaged
to annual scale values for annual analysis and to seasonal
scale for seasonal values. Also, the gridded values of actual
evapotranspiration (AET) and PET are spatially averaged to
the watershed scales for further analysis. This research is fo-
cused on the overlapping time period of all the data sets, i.e.,
1983–2003. We considered 245 MOPEX basins located in
the US since there are no missing data for those regions.

3 Methodology

3.1 Modified streamflow elasticity model applicable at
seasonal and annual scales

Schaake (1990) first derived the relationship between elastic-
ity of runoff (Q) to precipitation (P ) as

εQ/P =
1Q

1P

P

Q
. (1)
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Figure 1. Mean of annual precipitation, potential evapotranspiration, streamflow, and storage changes in millimeters per day from 1983 to
2003.

Later, Arora (2002) proposed the bivariate climate elasticity
based on PET and precipitation (P ) as expressed in Eq. (2).

1Q

Q
= εQ

P

1P

P
+ ε Q

PET

1PET
PET

, (2)

where εQ
P

and ε Q
PET

are elasticities due to precipitation and
potential evapotranspiration, respectively. Recently, Yang
and Yang (2011) extended the bivariate framework (Eq. 2) by
replacing the 1PET term with the differential model devel-
oped by Roderick et al. (2007). This modification will even-
tually include precipitation (P ), temperature (T ), net radia-
tion (Rn), and wind speed (U2) leading to Eq. (3):

1Q

Q
= εQ

P

1P

P
+ εQ

T

1T

T
+ ε Q

Rn

1Rn

Rn
+ ε Q

U2

1U2

U2
. (3)

We followed a similar approach as the above studies but
replaced the model-based results with observational data.
Hence, to represent the co-variations of streamflow with pre-
cipitation, potential evapotranspiration, and storage change,
we formulate a trivariate relationship as illustrated in Eq. (4):

Qt −Q

Q
= εQ

P

Pt −P

P
+ ε Q

PET

PETt −PET
PET

+ ε Q
DS

DSt −DS
DS

, (4)

where Qt , Pt , PETt , and DSt are streamflow, precipitation,
potential evapotranspiration, and storage change. The wa-
ter storage change was averaged annually (seasonally) for
year t , respectively, whereas Q, P , PET, and DS repre-
sent their long-term averages. Storage change (DSt ) is es-
timated as residuals of the water balance closure (DSt = Pt -
AETt −Qt ). Figure 1 shows the MOPEX basins considered
in our study and the spatial distribution of the long-term aver-
ages of P ,Q, PET, and DS. The precipitation and streamflow
are higher in the northwestern and southwestern regions of

the USA, whereas the potential evapotranspiration is higher
in the southern part of the USA. The northeastern and cen-
tral parts witness a decrease in groundwater and surface stor-
age, whereas in other regions it has increased. In situations
where the underlying processes are unknown, it is possible
to use a statistical model. Hence, a multivariate regression
approach was adopted as in Andréassian et al. (2015). The
streamflow elasticities (εQ

P
, ε Q

PET
, and ε Q

DS
) were determined

by fitting data on annual anomalies using a multiple gen-
eralized least square (GLS) regression equation (Johnston,
1972) and model parameters are obtained by the maximum
likelihood method. GLS can be used to perform linear re-
gression when there is significant correlation between the ex-
planatory variables used in the regression analysis. In these
cases, ordinary least squares or weighted least squares can
be statistically inefficient, or even give misleading inferences
(Greene, 2008). Here, the GLS model was fitted to 245 se-
lected watersheds with all the values aggregated to annual
means. Then, the significance of regression coefficients was
evaluated with a bootstrap approach as mentioned in An-
dréassian et al. (2015) by considering 999 sample parame-
ters with 95 % significance level. We apply Eq. (4) for cal-
culating the seasonal elasticities. In this case, we replaced
the annual mean with the seasonal mean by aggregating the
data into spring (March–May), summer (June–August), fall
(September–November), and winter (December–February)
averages. Hence, we obtain statistically significant stream-
flow elasticities due to precipitation, potential evapotranspi-
ration, and storage change for each season.
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3.2 Evaluation of performance of the modified climate
elasticity model at annual scale

We evaluated our trivariate elasticity model (Eq. 4) against
the bivariate elasticity regression model (Eq. 2) using Akaike
information criterion (AIC) (Akiake, 1998) and Bayesian in-
formation criterion (BIC) (Schwarz, 1978).

AIC is given by the following equation as

AIC=−2
n∑
i=1

log {g(xi |θk)}+ 2k, (5)

where n is the number of observations, g(x) can be either
Eq. (4) or Eq. (2) θk are the streamflow elasticities of the cor-
responding models, and k is the number of parameters. In our
context, AIC offers a relative estimate of the information lost
when the elasticity model is fitted to the data to represent the
processes involved. As when building any statistical model,
our aim is to model the processes with minimum informa-
tion loss (better goodness of fit), and the preferred model is
the one in which the absolute value of AIC would be mini-
mum. As evident from Eq. (5), we can see that the first term
in the equation tends to decrease with the model parameters,
whereas the second term increases. Hence, AIC penalizes for
the increase in the number of parameters. For example, if
model A has an absolute AIC value of 10 and model B has
a value of 20, model A is supposed to lose less information
and hence it is the preferred model. Another metric useful for
calculating information loss similar to AIC is called Bayesian
information criterion (BIC). It is computed using following
equation:

BIC=−2
n∑
i=1

log {g(xi |θk)}+ log(n)k. (6)

As we can see, the BIC is similar to AIC except that the sec-
ond term is multiplied by a factor of 0.5 ln(n) with respect
to AIC. As a result, BIC leans more towards less parameter-
ized models. Hence, BIC should also be interpreted in a sim-
ilar way to AIC. The only difference is that BIC gives more
weight to the number of parameters in a model and penalizes
more for the modified trivariate modeling our context. Over-
all, the preferred model would be the one which has both
minimum AIC and BIC values.

3.3 Relationship between elasticity and hydroclimatic
characteristics of the catchments

Previous studies (Sankarasubramanium et al., 2001; Chiew,
2006; Fu et al., 2011) highlighted the nonlinear relation be-
tween the annual elasticities and the considered hydrocli-
matic variables. Expecting a similar behavior at seasonal
scale, we quantify the strength of association using both lin-
ear and nonlinear association metrics. For the purpose of es-
timating the linear and nonlinear associations, we considered

the seasonal precipitation (P ), storage changes (DS), PO-
TENTIAL evapotranspiration (PET), aridity index (AI), and
evaporative index (EI). Even though we have estimated the
elasticities based on seasonal variations in P , Q, and DS,
we want to further explore the relationship between seasonal
magnitudes of these variables and the calculated elasticities.
In addition to that, aridity index (AI) and evaporative index
(EI), which are indicators of catchment (climate) and physi-
cal characteristics can explore the seasonal control of catch-
ment properties on elasticities. Hence, we aggregate P , Q,
DS, PET, and AET at seasonal scales and calculate their aver-
ages over the study period. Based on these averages, seasonal
AI and EI are estimated as PET / (P –DS) and AET / (P –
DS), respectively (Chen et al, 2012). We estimated the linear
association based on Pearson correlation coefficients and es-
timated the level of significance based on p values derived
from a two-sided permutation test of 999 replicates (Helsel
and Hirsch, 1992). Several nonlinear association metrics like
mutual information (MI) (Cover and Thomas, 1991), maxi-
mal information coefficient (MIC) (Reshef et al., 2011), Ho-
effding distance (Hoeffding, 1948), and distance correlation
(Szekely and Rizzo, 2009) are prevalent in literature. Among
these measures, distance correlation coefficient is easier to
implement and has comparatively better statistical power
(Kinney and Atwal, 2014), which is used in this study. As
this metric is new to the field of hydrology, we provided an
overview of distance correlation coefficient as follows.

For computing the distance correlation measure between
two random variables (X, Y ), we first compute the pairwise
distances matrices (ai,j ) and (bi,j ) as

ai,j =
∥∥Xi −Xj∥∥ (7)

bi,j =
∥∥Yi −Yj∥∥ , (8)

where i, j = 1, 2, 3, 4, 5, . . . , n and ‖. . .‖ denotes the Eu-
clidean (in our case) distance. Now, we center these distances
matrices as shown below

Ai,j = ai,j − āi.− ā.j + ā.. (9)

Bi,j = bi,j − b̄i.− b̄.j + b̄.., (10)

where āi. and b̄i. are the ith row means; ā.j and b̄.j are the
j th column means; and ā.. and b̄.. are the overall mean of the
(ai,j ) and (bi,j ) matrices, respectively. Then, we estimate the
squared distance covariance as the arithmetic average of the
products Ai,j and Bi,j

dCov2
n(X,Y )=

1
n2

n∑
i,j=1

Ai,j ·Bi,j . (11)

Similarly, we estimate the distance variance as

dVar2
n(X)= dCov2

n(X,X)=
1
n2

n∑
i,j=1

A2
i,j . (12)
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Figure 2. AIC values of the bivariate and trivariate models for the
selected MOPEX basins.

Finally, the distance correlation is obtained as

dCor(X,Y )=
dCov(X,Y )

√
dVar(X)× dVar(Y )

. (13)

The significance of the calculated correlation is estimated by
a one-sided permutation test of 999 replicates. In both the
linear and nonlinear cases, only the relations which satisfy
the 95 % significance level (p < 0.05) are presented.

4 Results and discussion

The trivariate and bivariate models were applied to 245 wa-
tersheds across the continental USA. In this section, we first
discuss the validity of the three-parameter elasticity model
at an annual scale based on AIC and BIC criterion. Later,
we assess how the inclusion of the storage coefficient term
has changed the streamflow elasticity of precipitation in the
trivariate model compared to the previous elasticity model.
Then, we evaluate the change in streamflow elasticity at sea-
sonal scale and explore the various climatic controls on the
computed elasticities.

4.1 Performance of the modified climate elasticity
model

The proposed trivariate model was evaluated against the bi-
variate model using AIC and BIC. As mentioned earlier, AIC
gives the relative quality of a statistical model with the pre-
ferred model having the lowest absolute value. Figure 2 gives
the AIC values of both the bivariate and trivariate models for
each of the 245 watersheds. We can see that in all of the wa-
tersheds, AIC values pertaining to the trivariate model are
less than their counterparts in the bivariate model. To pe-
nalize the added storage coefficient term, we also computed
the BIC for both the bivariate and trivariate models for each
of the selected watersheds. Figure 3 illustrates the BIC val-

Figure 3. BIC values of the bivariate and trivariate models for the
selected MOPEX basins.

ues for these watersheds. This also indicates that BIC val-
ues for the trivariate model are less than those for the bivari-
ate model. These results indicate that the proposed trivariate
model is obviously a better choice when compared to bivari-
ate model. The BIC result indicates that even if we give more
weight to penalize the added term, the modified model per-
forms better than the bivariate method. In addition to that,
Fig. 4 highlights the increase in the number of watersheds
with the statistically significant streamflow elasticities due to
PET in the trivariate equation. We can see that the number
of statistically significant streamflow elasticity values due to
PET is lesser in number indicating that PET might be a less
influential factor to the streamflow variability at some of the
selected MOPEX basins. Overall, this increase in number of
statistically significant watersheds due to the addition of stor-
age term further suggests that the trivariate model is a better
fit than the bivariate model.

4.2 Changes in annual streamflow elasticity using the
trivariate model

We calculated the difference in streamflow elasticity between
the trivariate and bivariate models as ε Q

PTri
− ε Q

PBi
. Figure 5

shows the spatial distribution (left side) of arithmetic dif-
ferences between trivariate and bivariate streamflow elastici-
ties due to precipitation and its probability distribution based
on numerical values obtained from 245 watersheds shown
as a violin plot (right side). The differences in elasticity are
mostly positive, indicating that neglecting the effect of stor-
age change has resulted in underestimating the elasticities
due to precipitation in most of the watersheds. This under-
estimation appears to be more significant in the western part
of the USA. In the central and northeastern USA, the differ-
ences hover slightly above zero indicating not much change
in elasticity in those regions. The violin plot on the right
side also shows that the majority of the basins have under-
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Figure 4. Number of statistically significant watersheds (p < 0.1)
for the elasticities of bivariate and trivariate equations.

estimated elasticities due to precipitation. The changes in
streamflow elasticities due to PET are not shown here be-
cause there is less overlap between statistically significant
watersheds of trivariate and bivariate equations.

4.3 Annual streamflow elasticities due to storage
change

Figure 6 illustrates the spatial distribution (left side) of
streamflow elasticity due to the addition of storage change
whereas the violin plot (right side) shows the probability
distribution of streamflow elasticities due to storage change.
These values suggest that groundwater has a net negative ef-
fect on the streamflow indicating that at an annual scale, a
notable amount of water is being stored either as groundwa-
ter or as surface water. We can see that in the central and
northeastern parts of the USA, the elasticity values are in the
range from 0 to −1. Nevertheless, as we go further west, we
can see that the elasticity is decreasing below −1. It was ob-
served that the high elasticity values are more prevalent in
the western USA, which has also caused the significant dif-
ference in streamflow elasticity due to precipitation. This in-
dicates that in those regions the change in storage plays an
important role in streamflow variability at an annual scale
and neglecting these changes would result in improper as-
sessment of streamflow elasticities.

Overall, the low values of streamflow elasticities due to
PET highlighted the fact that PET plays a lesser role in in-
fluencing the annual streamflow (Zhao et al., 2009, 2010;
Wang et al., 2014). Also, there is a lesser number of statis-
tically significant streamflow elasticities due to PET. HHow-
ever, lower PET would result in higher precipitation elastic-
ity (Fu et al., 2007). In addition to that, we observed that

the modified elasticity model clearly strengthens the inter-
relationship between precipitation, potential evapotranspira-
tion, streamflow, and storage changes. This would eventually
point to a prominent role of storage changes in the generation
of streamflow at annual scales as concluded in other studies
(Wang et al., 2009; Miguez-Macho and Fan, 2012; Hunting-
ton and Niswonger, 2012). Hence, neglecting these changes
would result in either underestimation or overestimation of
precipitation and PET elasticities. Moreover, in the situation
where DS= 0, we can always go back to Eq. (2) which ne-
glects the effect of DS on annual streamflow. However, even
though the trivariate elasticity model performs better than
the bivariate model, we can see that DS is calculated as a
residual (P-Q-AET) and likely to be plagued by uncertain-
ties due to usage of data from different sources and bias does
exist. Thus, this may result in improper assessment of storage
change. Hence, until more information with decreased uncer-
tainty in the data sources is obtained, this can be viewed as a
hypothesis that remains to be tested.

4.4 Spatial distribution of seasonal streamflow
elasticities

4.4.1 Streamflow elasticities due to precipitation

Figure 7 illustrates the seasonal (i.e., fall, spring, summer,
and winter) pattern of elasticities derived based on the pre-
cipitation. It is observed that, in the fall season, higher elas-
ticity values were observed for watersheds located in the hu-
mid north central and northeastern USA, but as the season
transformed to winter, these regions had lesser elasticity val-
ues compared to other regions. Whereas during spring some
of the watersheds located in north central region seem to re-
cover their lost elasticity. Finally, in summer the eastern part
of the USA also regains its elasticity. We can see that the
snow-dominated western part of the USA does not follow
the same cycle as the humid eastern region. There appears
to be a lag in the response of streamflow to rainfall with the
high elasticity values starting in winter in the western part
of the USA. However, it also appears to follow a cycle sim-
ilar to what we have seen in the eastern part of the USA.
This clearly highlights the differential behavior of western
and eastern USA streamflow elasticities due to precipitation.

4.4.2 Seasonal streamflow elasticities due to potential
evapotranspiration

Figure 7 highlights the seasonal pattern of streamflow elas-
ticities due to evapotranspiration. It can be seen that there are
comparatively less watersheds that have statistically signif-
icant elasticities due to potential evapotranspiration. Higher
numbers of statistically significant watersheds were observed
during spring followed by winter, summer, and fall. We can
see that during fall, the eastern region has a negative elas-
ticity indicating a decrease in streamflow due to an increase
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Figure 5. The difference between trivariate and bivariate precipitation elasticities (dimensionless). On the right side, a violin plot shows the
distribution of these differences.

Figure 6. Annual streamflow elasticity due to change in storage (dimensionless) as derived from trivariate equation. On the left side, a violin
plot shows the distribution of elasticity due to storage change.

Figure 7. Seasonal distribution of streamflow elasticity due to pre-
cipitation (dimensionless).

in potential evapotranspiration. However, in the southwest-
ern watersheds we can see a positive elasticity value indicat-
ing an increase in streamflow due to potential evapotranspi-
ration. In previous studies, certain catchments have shown
positive streamflow elasticities due to potential evapotran-

spiration (Andréassian et al., 2015; Yang et al., 2014). The
positive PET elasticity may be caused by the local climate
feedback. For example, based on previous studies (Koster et
al. 2004; Guo et al., 2006; Mei and Wang, 2012), the cen-
tral USA has strong land–atmosphere coupling strength. The
PET plays an important role in the linkage of soil moisture
and precipitation in the land–atmosphere interactions. Based
on the positive land–atmosphere interactions, the increased
soil moisture would lead to a cascading effect of increase
of temperature (indirectly PET) and precipitation. The in-
creased precipitation would therefore lead to the increase
of streamflow. In this notation, the PET has a positive re-
lationship with precipitation, which would lead to a positive
PET elasticity. The positive PET elasticities are within these
hotspots in the summer season. Similarly, in summer the
central USA exhibits positive elasticity values whereas the
northeastern USA exhibits negative elasticity. During spring
most of the watersheds exhibit negative elasticity and the
higher magnitudes were observed for the central part of the
US.
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Figure 8. Seasonal distribution of streamflow elasticity due to PET
(dimensionless).

Figure 9. Seasonal distribution of streamflow elasticity due to stor-
age change (dimensionless).

4.4.3 Seasonal streamflow elasticities due to storage
change

Figure 8 illustrates the seasonal pattern of streamflow elastic-
ities due to storage change. It was observed that the seasonal
elasticities exhibit change in spatial clusters. For example,
the eastern USA seems to exhibit a cycle of negative elastic-
ities in fall, then its intensity decreases in winter, becomes
almost negligible in spring, and exhibits positive elasticity in
summer. However, the watersheds on the southeastern coast
seem to exhibit negative elasticities in summer followed by a
decrease in negative elasticity values in fall and winter. This
region exhibits positive elasticity values in spring whereas
the rest of the eastern USA exhibits positive elasticity in later
seasons. Similarly, in the case of the western USA, it exhibits
a cycle of negative elasticity values starting in winter, fol-
lowed by its decrease in spring, transforms into positive elas-
ticity values during the summer season, and again goes back
to negative values in fall. Hence, we can see that the south-
eastern region has a seasonal cycle that leads the eastern re-

Figure 10. The linear and nonlinear association strengths as deter-
mined by Pearson and distance correlation coefficients. (Note: in
the figure, we have sorted the strength of association separately for
each season and the hydroclimatic variables are represented by dif-
ferent colors and only statistically significant (p < 0.05) correlation
strengths are shown here.)

gion by a season, whereas the western USA lags behind the
eastern region. During summer, the streamflow is extremely
low, whereas precipitation is high. Also, the evapotranspira-
tion does not seem to be completely out of bounds. Hence,
we assumed that most of the rainfall is either evaporating or
being converted into soil water storage. However, we do ac-
knowledge the fact that the streamflow in those catchments
is influenced by storage facilities (Wang and Hejazhi, 2011).
The positive elasticity values indicate that for particular sea-
sons, there is an increase in water storage resulting in an in-
crease in runoff. This is mainly because, for that season, the
streamflow is contributed by the storage sources in addition
to precipitation. Similarly, the negative elasticity values for
a particular season indicate that streamflow is withdrawn by
the storage sources indicating an inverse relationship.
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Overall, as previously put forth by numerous studies in
the case of annual water balances, precipitation has higher
elasticity values when compared to both PET and storage
changes even at seasonal scale. Considerable seasonality of
rainfall elasticity is observed in most of the MOPEX basins
in the USA. However, the catchments in the eastern USA
exhibit contrasting features of less rainfall seasonality but
more streamflow seasonality (Supplement figures). This sug-
gests a prominent role of DS, AET, and PET in streamflow
seasonality since human influence is considered minimal in
the eastern region (Wang and Hejazi, 2011). Another im-
portant observation is the lag time exhibited by the catch-
ments in the western USA in terms of precipitation elasticity.
There appears to be a precipitation plus snowfall excess dur-
ing fall and streamflow excess during spring, whereas dur-
ing winter, the precipitation plus snowmelt is in phase with
streamflow during winter (Berghuilius, 2014). This might be
the reason for the high elasticities during winter. However,
this result should be interpreted with caution, since the west-
ern USA has significant human-induced streamflow changes
(Wang and Hejazi, 2011). Also, the storage changes have
shown considerable seasonal elasticity values. The seasonal
DS elasticities indicate that soils act as a natural reservoir
and subsequently supply and store the streamflow during var-
ious seasons. For example, during the higher water demand
in summer, the groundwater (storage) supplies water to the
streamflow resulting in a positive elasticity in most of the
MOPEX basins, whereas during winter and spring, the soil
gets recharged and that leads to negative elasticity values.
However, we observed that in the western USA, the negative
elasticity magnitude peaks during winter unlike the rest of
US MOPEX basins. This may be mainly because ground-
water contribution to streamflow is inversely correlated to
snowmelt runoff (Huntington and Niswonger, 2012). Hence,
it possibly has high negative elasticity values when the snow
accumulates in winter, whereas when the snowmelt runoff
starts in the spring, it starts contributing to streamflow indi-
cating positive elasticities.

4.5 Relationship between elasticity and hydroclimatic
characteristics of the catchments

This analysis allows for a quantitative investigation of rela-
tions between the seasonal elasticities and catchment climate
properties and gives an understanding of the possible gov-
erning factors. Figure 10 shows the statistically significant
linear (top panel) and nonlinear correlations (bottom panel)
between the considered seasonal hydroclimatic variables and
elasticities. We excluded high elasticity values greater than
10 and less than −5 in this analysis which may be unreal-
istic due to uncertainty in the data sources by visual exam-
ination of the scatterplots provided in the Supplement. As
we expected, there does exist significant nonlinear associa-
tions between elasticities and considered catchment proper-
ties. Hence, we base most of our discussions in this text on

the nonlinear associations presented in the figure, but some-
times refer the linear association for determining the direc-
tionality of the relationships.

It is interesting to see how the hydroclimatic variables’ re-
lationship changes with each season. For example, during
summer there exists a stronger association of rainfall mag-
nitude and less predominant association of streamflow with
elasticities than in other seasons. During summer, due to rel-
atively high temperatures and inadequacy of available water
as streamflow, the catchments become water limited lead-
ing them to be more dependent on rainfall as a source of
water. This behavior is more prevalent in storage changes
elasticity. Also, it is obvious that the elasticities are more
governed by the magnitudes of streamflow in most of the
other cases. However, the linear associations suggest that the
streamflow is inversely proportional to precipitation and po-
tential evapotranspiration elasticities. Usually, if the catch-
ments with high streamflow are highly elastic in nature, even
a minimal amount of rainfall would result in high stream-
flow generation, which might impact existing flood and wa-
ter management activities. Hence, this inverse relationship
which is achieved either through artificial or natural storage
facilities is beneficial to water management. In the case of
elasticity due to storage change, when the elasticities have
negative values (in fall and winter), there exists a positive lin-
ear relationship with streamflow achieving a similar goal of
efficient water management. However, we suspect that this
might not be a natural behavior of a catchment as signif-
icant human interference might have created this behavior
(Wang and Hezaidi, 2011; Ye et al., 2014). Also, there ex-
ists a significant inter-relationship between the hydroclimatic
variables and determined elasticities. For example, the sea-
sonal magnitude of DS affects PET elasticity as well as pre-
cipitation elasticity in most of the seasons. The same conclu-
sion can be reached in other cases too.

The aridity index (AI), which is a possible indicator of
catchment and climate (the higher the aridity index, the drier
the catchment) (Jones et al., 2012) also has a significant as-
sociation with climate elasticities. The negative correlations
between AI and DS elasticities indicate that the dry catch-
ments have higher DS elasticities. Hence, drier catchments
have the capacity to store streamflow during wet seasons and
aid in streamflow generation during dry seasons. This study
could further help in investigating the discharge and recharge
mechanisms of the available MOPEX basins. Similarly, in-
terpretations can be made in terms of precipitation elastic-
ity for positive correlations. In addition to that, AI plays a
more significant role in the spring season, indicating that the
elasticities are more susceptible to catchment (climate) con-
ditions in that season. Similarly, the evaporative index, which
is an indirect gauge of the physical properties of catchments
(Jones et al., 2012), has significant associations as well as
higher magnitude in the spring season. This analysis comple-
ments many studies which have linked the catchment prop-
erties at different scales to streamflow dynamics (Chiverton
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et al., 2015; Van Loon and Laaha, 2015; Gaál et al., 2012;
Ye et al., 2015). However, we do not want to stress a single
dominant factor affecting the streamflow elasticities, since
there appears to be a strong interplay between elasticities and
all the considered catchment properties with substantial sea-
sonal variations.

5 Summary and conclusions

a. The proposed three-parameter streamflow elasticity
model can be a better model than the two-parameter
elasticity model as it underestimated the streamflow
elasticity due to precipitation. This is because the three-
parameter model was able to account for the covaria-
tion of precipitation, potential evaporation, and storage
change.

b. Seasonality plays a prominent role in streamflow elas-
ticities with more complex behavior in western USA
basins. This complex behavior may be linked to snow
cover in the selected western basins. However, a ded-
icated study in this direction could further strengthen
this hypothesis.

c. The streamflow elasticities show significant nonlinear
associations with the MOPEX catchment properties.
However, we do not want to stress any single domi-
nant factor affecting the streamflow elasticities, since
there appears to be a strong interplay between elastic-
ities and catchment properties with substantial seasonal
variations.

d. We have tested our hypothesis based on the assump-
tion of significant deep groundwater losses at annual
and seasonal scales. However, due to shortage of actual
evapotranspiration data sets, there may be uncertainties
in the results and it can be improved by evaluating high-
quality observations. This can be viewed as a hypothesis
that remains to be tested using high-quality climate data
as and when available.

The Supplement related to this article is available online
at doi:10.5194/hess-20-2545-2016-supplement.
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