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Abstract. This is the second paper of a two-part series on in-
troducing an experimental seasonal hydrological forecasting
system over the Yellow River basin in northern China. While
the natural hydrological predictability in terms of initial hy-
drological conditions (ICs) is investigated in a companion pa-
per, the added value from eight North American Multimodel
Ensemble (NMME) climate forecast models with a grand en-
semble of 99 members is assessed in this paper, with an im-
plicit consideration of human-induced uncertainty in the hy-
drological models through a post-processing procedure. The
forecast skill in terms of anomaly correlation (AC) for 2 m
air temperature and precipitation does not necessarily de-
crease over leads but is dependent on the target month due
to a strong seasonality for the climate over the Yellow River
basin. As there is more diversity in the model performance
for the temperature forecasts than the precipitation forecasts,
the grand NMME ensemble mean forecast has consistently
higher skill than the best single model up to 6 months for
the temperature but up to 2 months for the precipitation.
The NMME climate predictions are downscaled to drive the
variable infiltration capacity (VIC) land surface hydrologi-
cal model and a global routing model regionalized over the
Yellow River basin to produce forecasts of soil moisture,
runoff and streamflow. And the NMME/VIC forecasts are
compared with the Ensemble Streamflow Prediction method
(ESP/VIC) through 6-month hindcast experiments for each
calendar month during 1982–2010. As verified by the VIC
offline simulations, the NMME/VIC is comparable to the
ESP/VIC for the soil moisture forecasts, and the former has
higher skill than the latter only for the forecasts at long leads
and for those initialized in the rainy season. The forecast
skill for runoff is lower for both forecast approaches, but the

added value from NMME/VIC is more obvious, with an in-
crease of the average AC by 0.08–0.2. To compare with the
observed streamflow, both the hindcasts from NMME/VIC
and ESP/VIC are post-processed through a linear regression
model fitted by using VIC offline-simulated streamflow. The
post-processed NMME/VIC reduces the root mean squared
error (RMSE) from the post-processed ESP/VIC by 5–15 %.
And the reduction occurs mostly during the transition from
wet to dry seasons. With the consideration of the uncertainty
in the hydrological models, the added value from climate
forecast models is decreased especially at short leads, sug-
gesting the necessity of improving the large-scale hydrologi-
cal models in human-intervened river basins.

1 Introduction

Seasonal climate forecasts have now been used to provide
early warnings for health and food security (Thomson et al.,
2006; Lizumi et al., 2013) and can be skillful for the applica-
tions that are mainly affected by temperature. However, due
to a more chaotic nature and limited physical understanding,
seasonal forecasting of precipitation has only marginal im-
provement (Smith et al., 2012; Saha et al., 2014), and the
skill over land is not so favorable unless during the period
with strong oceanic anomalies like El Niño (Stockdale et al.,
1998). An intermediate solution is the ensemble forecasting
technique, including the ensembles of different initial condi-
tions by perturbing sea surface temperature (SST) and wind
stress (Slingo and Palmer, 2011) or by running the climate
model with different start dates (Saha et al., 2014), as well as
the ensembles from multiple climate forecast models (Krish-
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namurti et al., 1999). Ensembles of initial conditions based
on a single model do not necessarily sample the forecast
space completely and usually result in under-dispersion er-
rors. Therefore, multimodel ensemble forecasts receive more
attention from a variety of perspectives, including the appli-
cations in the hydrological forecasting (Luo and Wood, 2008;
Pappenberger et al., 2008; Demargne et al., 2014; Yuan et al.,
2015a).

In fact, multimodel ensemble weather forecasts have al-
ready been successfully used for short-term hydrological
forecasts. For example, Pappenberger et al. (2008) found
that if the grand THORPEX International Grand Global En-
semble (TIGGE) forecasts had been used, flood warnings
could be issued 8 days before the event, whereas the warning
based on a single ensemble system would only allow for a
lead time of 4 days (Swinbank et al., 2016). The continua-
tion of the TIGGE project (Swinbank et al., 2016) will fur-
ther benefit the flood forecasting. Similarly, the seasonal cli-
mate prediction from the Development of a European Mul-
timodel Ensemble System for Seasonal-to-Interannual Pre-
diction (DEMETER) project (Palmer et al., 2004) was used
to improve the hydrological forecasting over the Ohio River
basin during the first 2 months (Luo and Wood, 2008). How-
ever, as compared with the short-term flood forecasting (Pap-
penberger et al., 2005; Cloke and Pappenberger, 2009), the
seasonal hydrological forecasting based on multiple climate
forecast models is less widely applied in general. One of the
reasons is that it is difficult to find the added value from
climate-model-based seasonal hydrological forecasting as
compared with the traditional Ensemble Streamflow Predic-
tion (Day, 1985) method because significant climate predic-
tion skill that is useful for hydrological forecasting is usually
regime-dependent (Wood et al., 2002; Luo and Wood, 2007;
Mo et al., 2012; Sinha and Sankarasubramanian, 2013; Yuan
et al., 2013; Shukla et al., 2014; Trambauer et al., 2015). An-
other important reason is the lack of an open source of mul-
timodel seasonal climate hindcast datasets that can be used
to understand the hydro-climate predictability from global to
river basin scales and to develop climate-model-based exper-
imental or operational seasonal hydrological forecasting sys-
tems for an adaptive hydrological service.

Since 2011, the National Oceanic and Atmospheric Ad-
ministration (NOAA) Modeling, Analysis, Prediction, and
Projections (MAPP) program has been supporting the imple-
mentation and assessment of an experimental North Amer-
ican Multimodel Ensemble (NMME; Kirtman et al., 2014)
seasonal forecast system as part of the NOAA Climate Test
Bed and Climate Prediction Task Force research (Wood et
al., 2015). Several decades of NMME hindcast datasets are
available to the public research community, which provides
an unprecedented opportunity to assess the added value for
seasonal hydrological forecasting. In addition, the NMME is
now being made to produce global seasonal climate predic-
tion in a real-time mode, which motivates the development
of experimental seasonal hydrological forecasting systems

based on the downscaled NMME prediction at regional, con-
tinental and global scales.

Recently, a few studies have been carried out to inves-
tigate the usefulness of the NMME in advancing seasonal
hydrological forecasting. Driving a hydrological model with
the NMME seasonal climate hindcasts, Mo and Letten-
maier (2014) analyzed the skill of monthly and seasonal
soil moisture and runoff forecasts over the United States by
comparison with the ESP-based forecasts, and they found
that the climate forecasts contribute to the hydrological fore-
cast skill over wet regimes. Thober et al. (2015) used a
similar method to assess the soil moisture drought predic-
tion over the Europe, and they found that the NMME-based
method outperforms the ESP-based method for drought fore-
casting at all lead times. Besides continental-scale hydro-
logical forecasting, Yuan et al. (2015a) assessed the value
of NMME in improving the seasonal forecasting of hydro-
logical extremes over global major river basins, and the
NMME/hydrology method showed higher detectability for
soil moisture drought, more reliable low- and high-flow en-
semble forecasts as compared with the ESP approach.

However, even the state-of-the-art NMME climate predic-
tions could not help the hydrological forecasting over the
river basins with limited hydrological gauges and less re-
liable meteorological observations that are used to correct
the errors in the hydrological model and climate prediction
(Sikder et al., 2016). In addition, most NMME/hydrology as-
sessments neglected the uncertainty in hydrological model
for the forecast verification (Mo and Lettenmaier, 2014;
Thober et al., 2015; Yuan et al., 2015a; Sikder et al., 2016),
except for an assessment of a “real-time” forecasting of the
2012 North American drought where the model-predicted
soil moisture drought area is verified against the satellite re-
trievals (Yuan et al., 2015a). As shown by Yuan et al. (2013),
the added value from climate-model-based streamflow fore-
casting tends to diminish over some river basins if the ob-
served streamflow instead of the simulated streamflow is
used for forecast verification. For those river basins, uncer-
tainty in the hydrological modeling might be larger than
the uncertainty in climate forecast at short leads, or the
error in the hydrological model might be too large to re-
flect the improved skill in precipitation. Actually, Yuan and
Wood (2012) discussed whether the downscaling of climate
prediction or the bias correction of streamflow is more im-
portant for the seasonal streamflow forecasting, and they hy-
pothesized that the errors in the climate prediction could be
amplified through the nonlinear rainfall–runoff processes and
resulted in a unreliable streamflow forecast even if the cli-
mate prediction had been corrected as reliable. Therefore,
a hydrological post-processor that is used to correct the er-
rors in hydrological models and/or the propagation of climate
forecast errors is essential to seasonal hydrological forecast-
ing, especially over those river basins with heavy human in-
terventions.
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Table 1. List of NMME models used in this study.

Model Version Ensemble

Community Climate System Model 4 (COLA-RSMAS-CCSM4) 10
Geophysical Fluid Dynamics Laboratory Climate Model 2.1 (GFDL-CM2p1) 10

2.5 (GFDL-CM2p5-FLOR-A06) 12
2.5 (GFDL-CM2p5-FLOR-B01) 12

Goddard Earth Observing System Model 5 (NASA-GMAO) 11
Climate Forecast System 2 (NCEP-CFSv2) 24
Canadian Coupled Global Climate Model 3 (CMC1-CanCM3) 10

4 (CMC2-CanCM4) 10

The Yellow River basin is a heavily managed river basin
located in northern China. For the upper reaches, the ob-
served flow is much more steady (less variant) with less ex-
tremes during both dry and wet seasons. However, for the
lower reaches, the observed streamflow is consistently lower
than the naturalized streamflow due to heavy human wa-
ter consumption. The surface water resources in the Yellow
River account for only about 2 % of total surface water re-
sources in China, but they are used to irrigate 15 % of the
cropland and to raise 12 % of the population in China. Be-
fore establishing an operational forecasting system that can
handle the detailed physical processes of irrigation and inter-
basin water diversion in a climate-hydrology coupled mode
that is currently not available due to the scarcity of man-
agement data and the deficiency in the human component in
most hydrological models, it is necessary to understand the
naturalized hydrological predictability and the added value
from climate forecast models by using an experimental sea-
sonal hydrological forecasting system over the Yellow River
basin, and to use the hydrological post-processing as an in-
termediate approach to account for the human interventions
implicitly in the forecasting system.

The first paper of the two-part series introduced the
climate-hydrology forecasting system and investigated the
naturalized hydrological predictability in terms of initial hy-
drological conditions through the reverse ESP-type simula-
tion (Yuan et al., 2016). This paper focuses on the evalu-
ation of the NMME-based seasonal hydrological forecast-
ing by comparison with the ESP approach over the Yellow
River basin. Besides assessing the added value from climate
forecast models by neglecting the errors in the hydrolog-
ical models (i.e., verifying the hydrological forecasts with
model offline simulations driven by observed meteorologi-
cal forcings), this paper also tries to evaluate the seasonal
forecast skill in a “real” world by using a hydrological post-
processing procedure.

2 Data and method

2.1 Downscaling of NMME climate prediction

As described in the companion paper (Yuan et al., 2016), hy-
drometeorological datasets from 324 meteorological stations
and 12 mainstream hydrological gauges are used to calibrate
the variable infiltration capacity (VIC; Liang et al., 1996)
land surface hydrological model and a global routing model
(Yuan et al., 2015a) regionalized over the Yellow River. To
our understanding, this is the first time that over 300 meteo-
rological station observations have been used to study the hy-
drological forecasting over the Yellow River. The improved
quality of the meteorological observations not only facilitates
a more objective calibration of the hydrological models but
also helps the downscaling and bias correction of the sea-
sonal climate predictions. The meteorological datasets for
precipitation, 2 m maximum and minimum air temperature,
and 10 m wind speed are interpolated into 1321 grid cells at
a 0.25 ◦ resolution, with a lapse rate correction for tempera-
ture at different elevations.

In this study, eight NMME models with 99 realizations in
total (Table 1) are used for the seasonal hydrological fore-
casting. The NMME leverages considerable research and de-
velopment activities on coupled model prediction systems
carried out at universities and various research laborato-
ries throughout North America (Kirtman et al., 2014). Be-
sides using the NMME hindcasts for hydrological forecast-
ing over the USA, Europe, southern Asia and global major
river basins (Mo and Lettenmaier, 2014; Thober et al., 2015;
Yuan et al., 2015a; Sikder et al., 2016), the NMME was also
used to assess the potential drought predictability over China
(Ma et al., 2015). Given that one of the NMME models, the
NCEP-CFSv2, has an ensemble with different initialization
dates (Saha et al., 2014), the month-1 forecast is called a fore-
cast at a 0.5-month lead, and the month-2 is at a 1.5-month
lead, and so on.

Similar to Yuan et al. (2015a), the NMME hindcasts are
downscaled and bias-corrected through the quantile-mapping
method (Wood et al., 2002) as follows: (1) the 1◦ NMME
global hindcasts of monthly precipitation and temperature
during 1982–2010 are first bilinearly interpolated into 0.25 ◦

www.hydrol-earth-syst-sci.net/20/2453/2016/ Hydrol. Earth Syst. Sci., 20, 2453–2466, 2016



2456 X. Yuan: An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2

Table 2. Information at 12 hydrological gauges and the Nash–Sutcliffe efficiency (NSE) verified by using the naturalized and observed
streamflow during 1982–2010. When it verified against the observed streamflow, the simulated streamflow is post-processed before calculat-
ing the NSE.

Gauge Latitude Longitude Drainage NSE with NSE with
(◦ N) (◦ E) area naturalized observed

(103 km2) streamflow streamflow

Tangnaihai 35.5 100.15 122 0.87 0.91
Xunhua 35.83 102.5 145 0.88 0.42
Xiaochuan 35.93 103.03 182 0.84 0.58
Lanzhou 36.07 103.82 223 0.91 0.67
Xiaheyan 37.45 105.05 254 0.90 0.63
Shizuishan 39.25 106.78 309 0.89 0.58
Hekouzhen 40.25 111.17 368 0.76 0.53
Longmen 35.67 110.58 498 0.74 0.55
Sanmenxia 34.82 111.37 688 0.77 0.63
Huayuankou 34.92 113.65 730 0.81 0.57
Gaocun 35.38 115.08 734 0.78 0.59
Lijin 37.52 118.3 752 0.71 0.63

over the Yellow River; (2) for each calendar month and each
NMME model, all hindcasts (excluding the target year) with
all ensemble members for the target month are used to con-
struct cumulative distribution functions (CDFs) of the fore-
casts, the CDFs of observations are constructed similarly (ex-
cluding the target year), and the hindcast in the target year is
adjusted by matching its rank in the CDF of the forecasts
and that in the CDF of the observations to remove the bias;
and (3) the bias-corrected monthly hindcasts of precipitation
and temperature are temporally downscaled to a daily time
step by sampling from the observation dataset and rescaling
to match the monthly hindcasts.

2.2 Hydrological post-processing

The downscaled NMME climate predictions are used to
drive the VIC land surface hydrological model to provide
soil moisture and runoff forecasts up to 6 months, and the
runoff forecasts are used to drive the routing model to pro-
vide streamflow forecasts. The results represent “natural-
ized hydrological forecasts” because the hydrological models
were calibrated against naturalized streamflow as described
in Yuan et al. (2016). To make the forecasts comparable to
the hydrological observations over the Yellow River where
human interventions occur at middle and lower reaches, a
hydrological post-processing procedure is necessary to cor-
rect the raw forecasts without human components. In this
study, a linear regression is applied to correct the streamflow
forecasts at 12 mainstream gauges where the observations
are available. For each gauge, the regression coefficients are
firstly fitted between observed and offline-simulated stream-
flow for each calendar month to account for the seasonality
in the human water usage. Then, the coefficients are applied
to correct the streamflow forecasts for their target months.

The coefficients are estimated during 1982–2010 in a cross-
validation mode (i.e., dropping the target year).

Table 2 lists the Nash–Sutcliffe efficiency (NSE) for the
post-processed streamflow simulations during 1982–2010.
As compared with the results that are verified by using the
naturalized streamflow, the NSE values decrease by 0.1–0.4
(except for the Tangnaihai gauge at the headwater region
where almost no human interventions occur). However, there
are many negative NSE values without implementing the
post-processing procedure (not shown), which is because of
large systematic biases in the simulations neglecting the pro-
cesses such as irrigation water withdraw. Therefore, the post-
processing is an effective intermediate method to reduce the
uncertainty in the hydrological modeling. In fact, the NSE
averaged among the 12 gauges is about 0.61, which is still
much higher than the climatology (with NSE= 0). For the
Tangnaihai gauge in the headwater region, the naturalized
streamflow is almost the same as the observed streamflow,
so a higher NSE after post-processing (Table 2) indicates that
the post-processing can also reduce the errors in hydrological
modeling that is less relevant to human intervention. In other
words, the post-processing procedure reduces both the “nat-
ural” and “anthropogenic” errors in the hydrological model
in an integral manner.

2.3 Experimental design and evaluation metrics

As described in Yuan et al. (2016), a continuous offline
hydrological simulation driven by observed meteorological
forcings from 1951 to 2010 was conducted to generate the
initial hydrological conditions (ICs) for the VIC land sur-
face hydrological model and the river routing model, and the
6-month ESP/VIC hydrological hindcasts with 28 ensemble
members during 1982–2010 were carried out to provide a
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Figure 1. Anomaly correlation (AC) of ensemble mean forecasts from eight NMME models (a–h) and the grand NMME ensemble averaged
among 99 realizations as a function of lead and target month for monthly mean 2 m temperature over the Yellow River basin during the
period of 1982–2010.

reference forecast. The NMME/VIC hindcasts use the same
ICs as the ESP/VIC, i.e., those generated by the offline simu-
lations, and use meteorological hindcasts from eight NMME
models. The grand NMME/VIC ensemble is an average of
99 ensemble hydrological hindcasts.

One of the metrics for assessing the hydroclimate forecast
skill is the anomaly correlation (AC; Wilks, 2011), which is
defined as

AC=
∑∑

X′(s, t)Y ′(s, t)[∑∑
X′(s, t)2 ·

∑∑
Y ′(s, t)2

]1/2 , (1)

where X′(s, t) is the hydrological forecast and Y ′(s, t) is
the verification data; for a given lead and forecast target
month/season, the summation is both over time (t , 29 years
in this study) and space (s, 1321 grid cells for the Yellow
River basin). The AC is widely used in the hydro-climate
forecast evaluations (Becker et al., 2014; Saha et al., 2014;
Mo and Lettenmaier, 2014; Ma et al., 2015), and can be re-
garded as a measure of forecast skill both in space and time.
If the AC is used for each grid cell within the Yellow River
basin (i.e., there is only a summation over time), it is reduced
to the Pearson correlation. And if the AC is used for each
year, it is reduced to the pattern correlation.

Another measure to determine whether the target fore-
cast (NMME/VIC) is more skillful than the reference
forecast (ESP/VIC) is the root mean squared error skill
score (SSRMSE; Wilks, 2011). The SSRMSE is defined

as 1−RMSENMME/RMSEESP, where RMSENMME and
RMSEESP are the root mean squared errors for NMME/VIC
and ESP/VIC forecasts respectively. Here, SSRMSE= 1 indi-
cates a perfect forecast, while a SSRMSE less than zero means
that the NMME/VIC forecast is worse than ESP. Unless oth-
erwise specified, the ensemble mean for ESP, individual cli-
mate models and the grand NMME mean are used for the
skill assessment.

3 Temperature and precipitation forecast skill

Figure 1 shows the skill of monthly mean (ensemble mean)
surface air temperature at 2 m above ground over the Yellow
River basin. The x axis is the target or verification month,
and the y axis is the forecast lead in months. For example,
forecasts for June at a lead of 3.5 months for the COLA-
RSMAS-CCSM4 have an AC around 0.35 (Fig. 1a); they are
for the forecasts initialized in March but verified in June.
Most climate models show a forecast skill that is not nec-
essarily lower at longer leads but is dependent on the target
month. For example, Fig. 1b shows that the GFDL-CM2p1
model has a low skill in the first month (less than 0.2) for
the forecasts initialized in May, but the skill increases to 0.35
in the second month (June). A similar skill dependence on
the target month can be found for another two GFDL models
(Fig. 1c and d) for March and June, and the NCEP-CFSv2
model for the summertime (Fig. 1f) etc. For the GFDL mod-
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Figure 2. The same as Fig. 1 but for monthly mean precipitation.

els at higher resolution (Fig. 1c and d), the skill is low during
the first month, but the skill increases at longer leads. This
might be caused by the initialization procedure over land be-
cause these two models are experimental forecasting models.

For the forecasts in the first month, the NCEP-CFSv2
has the highest skill in general (Fig. 1f), with an average
AC of 0.46. However, other models have the best forecast
skill for a specific month/season. For instance, the COLA-
RSMAS-CCSM4 has higher forecast skill than the NCEP-
CFSv2 for the forecasts of November at a 0.5-month lead
(Fig. 1a). Such complementary feature is more obvious for
the forecasts at long leads. As a result, the grand NMME en-
semble mean forecast (Fig. 1i) has consistently higher skill
than the best single model, with an average AC of 0.5 at
a 0.5-month lead, and about 0.3 up to 6 months. Figure 1i
shows that the highest forecast skill for 2 m temperature oc-
curs during the summer and late winter, and the lowest skill
occurs during the late spring. The low temperature forecast
skill for the spring months at long leads might be related to
the snow processes during the early winter.

Figure 2 shows similar plots for the precipitation fore-
casts. Again, the forecast skill does not necessarily decline
over leads due to a strong seasonality in the precipitation.
The NASA-GMAO is the best model for the precipitation
forecast at a 0.5-month lead (Fig. 2e), with an average AC
of 0.31. The NCEP-CFSv2 starts to rank the first for the
forecast at 1.5 months and beyond (Fig. 2f), with average
ACs of 0.06–0.08. The grand NMME ensemble for precip-
itation forecast (Fig. 2i) has a higher skill than individual

models during the first 2 months, with average ACs of 0.35
and 0.09 at 0.5- and 1.5-month leads respectively. Beyond
the first 2 months, the forecast skill of NMME is compara-
ble to the best single model (i.e., NCEP-CFSv2), but both
have an AC lower than 0.1. One may wonder about the sig-
nificance of the low correlations. The uncertainty (sampling
error) in a correlation is 1/

√
N − 2, where N is the effective

number of cases. For the AC over the Yellow River basin,
the N is 29 (years)× 1321 (grid cells)= 38 309, so an AC
of 0.05 would be enough for the statistical significance. How-
ever, this does not mean that the low correlation is practically
useful.

Figure 3 shows the spatial distribution of AC for the grand
NMME ensemble forecasts for the precipitation averaged
over the first season. As described in Sect. 2.3, the grid-scale
AC reduces to the Pearson correlation. And given that the
hindcast period is 1982–2010, the correlation is significant if
it is larger than 0.37 (0.31) at the 5 % (10 %) level. For the up-
per reaches of the Yellow River, there is significant forecast
skill at the beginning of the cold season (Fig. 3i and j). For
the middle and lower reaches, forecasts starting in November
have the highest skill (Fig. 3k). During the spring, the fore-
casts are skillful over the northern part (Fig. 3c–e). And dur-
ing the summer, the forecasts are skillful over a wet region
in the southern part of the Yellow River, with correlations
higher than 0.37 (p < 0.05).
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Figure 3. Spatial distributions of grid-scale AC of grand NMME ensemble forecasts for seasonal mean precipitation.

4 Soil moisture and streamflow forecast skill

The precipitation and temperature forecasts with 99 NMME
ensemble members are downscaled and used to drive the
VIC land surface hydrological model to provide seasonal hy-
drological forecasts. The grand NMME/VIC ensemble mean
values are used for the analysis hereafter. Figure 4 shows
the AC of soil moisture and runoff ensemble mean fore-
casts from ESP/VIC and NMME/VIC, where the forecasts
are verified against offline simulations. Unlike the precipi-
tation and temperature forecasts that the skill does not nec-
essarily decline over leads, the forecast skill for soil mois-
ture and runoff generally decreases as the forecast leads pro-
ceed, especially during the dry seasons. This indicates that
the ICs have strong impacts on the forecast skill for the land
surface variables (but note that this result may be model-
dependent since the hydrological hindcasts in this section are
verified against VIC offline simulations by neglecting the er-
rors in the hydrological model). The skill is very high for
the soil moisture forecasts, especially for the target months
during winter and spring (Fig. 4a and b). The AC averaged
over 12 target months for the ESP/VIC soil moisture fore-
casts is higher than 0.8 up to 3 months. The NMME/VIC
shows no improvement against the ESP/VIC in cold seasons
given the strong memory of the soil moisture. However, the
added value occurs for the target months in autumn at long
leads: NMME/VIC can improve the skill for the forecasts
initialized in the rainy season, and the improvement becomes
more obvious after the rainy season (Fig. 4a and b).

runoff runoff

Figure 4. AC of ensemble mean hydrological forecasts from a
climatology method (ESP/VIC) and the climate-model-based ap-
proach (NMME/VIC) as a function of lead and target month for
monthly mean soil moisture (a, b) and runoff (c, d) over the Yellow
River basin during the period of 1982–2010. The soil moisture and
runoff used for the verification are from VIC offline simulation.

Figure 4c shows that ESP/VIC has lower forecast skill
for the runoff than that for the soil moisture. The AC av-
eraged over 12 target months for the ESP/VIC runoff fore-
casts is 0.64 at a 0.5-month lead, drops to 0.2 at a 2.5-month
lead, and even becomes negative after the first 4 months. As
the ICs have less control on the runoff forecasts than the
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-
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-

Figure 5. Spatial distributions of average AC of ensemble mean forecasts from ESP/VIC (left panel) and NMME/VIC (right panel) for
monthly soil moisture at different leads. The average AC is the mean for the forecasts starting in 12 target months.

meteorological forcings, the added value from climate fore-
cast models becomes more obvious. The skill for the runoff
forecasts from NMME/VIC is consistently higher than that
from the ESP/VIC, especially for the target months from late
spring to early autumn (Fig. 4c and d). The AC averaged
over 12 target months for the NMME/VIC runoff forecasts
is 0.72 at a 0.5-month lead, drops to 0.38 at a 2.5-month lead,
and keeps a value larger than 0.2 up to 6 months. Therefore,
NMME/VIC increases the average AC by 0.08–0.2, and the
increase is larger at long leads.

Figure 5 shows the spatial distributions of the correlations
for the soil moisture forecasts. For each grid cell, the corre-
lation is an average of 12 target months. Similar to the pre-
dictability analysis in Yuan et al. (2016), strong soil moisture
memory exists over the middle reaches of the Yellow River,
with an averaged correlation higher than 0.5 up to 6 months
for the ESP/VIC soil moisture forecasts (Fig. 5a–c). For the
upper and part of the lower reaches, there are no signifi-
cant correlations for the ESP/VIC forecasts beyond 3 months
(Fig. 5b and c). As a result, significant improvements from
NMME/VIC for the soil moisture forecast mainly occur over
the upper and lower reaches of the Yellow River at a lead
beyond 2 months (Fig. 5d–f).

Figure 6 shows similar average correlation plots but for
the streamflow along the mainstream and major tributaries of
the Yellow River. Given that the ICs control the first month
streamflow forecasting greatly, ESP/VIC has an average cor-
relation that is higher than 0.7 for the streamflow forecasts
along the mainstream at a 0.5-month lead (Fig. 6a), and there
is only a marginal improvement from the NMME/VIC at up-

per reaches of the mainstream and tributaries (Fig. 6d). Be-
yond the first month, the added value from the NMME/VIC
emerges, with an average correlation consistently higher than
the ESP/VIC along the mainstream and major tributaries
(Fig. 6b, c, e and f). The NMME/VIC increases the correla-
tion for the streamflow forecast by 0.1–0.4, and the increase
is more significant at long leads.

5 The impact of hydrological post-processing

The above section shows the evaluation against model of-
fline simulations of soil moisture, runoff and streamflow: it
explores the added value from climate forecast models by
neglecting the errors in the hydrological models. To go one
step further, it is necessary to assess the climate-model-based
seasonal hydrological forecasting with the consideration of
the uncertainty in the hydrological models. Therefore, the
hydrological forecasts should be verified with the observa-
tions. In terms of runoff, there is no direct observation at
a large scale. The runoff is usually derived from water bal-
ance models or obtained from the inverse streamflow routing
through the data assimilation method (Pan and Wood, 2013).
But again these estimates are more or less a model prod-
uct. The soil moisture can be measured at local scale, but its
representativeness at a large scale is questionable given the
strong heterogeneity of the land surface. The satellite remote
sensing is a promising method to measure the soil moisture
at a large scale, while currently its quality on representing the
short-term variability is still a concern (Yuan et al., 2015b).
Different from runoff and soil moisture, the streamflow can
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-
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Figure 6. The same as Fig. 5 but for streamflow along the mainstream and major tributaries of the Yellow River.

be measured at a hydrological gauge for a certain drainage
area. Therefore, the streamflow forecasts both from ESP/VIC
and NMME/VIC are verified by observation after the post-
processing procedure described in Sect. 2.2.

Figure 7 shows the time series of the post-processed model
streamflow and the observed streamflow at five hydrologi-
cal gauges from the upper to lower mainstream of the Yel-
low River. As compared with the naturalized streamflow, the
observed streamflow shows a nonstationary feature, suggest-
ing a human perturbation combined with the climate change
impact over the Yellow River basin. After post-processing,
the VIC-simulated streamflow matches with the observation
quite well at the upper gauges but has a decadal change dur-
ing the 1980s and 1990s for the lower gauges.

Figure 8 shows the RMSE skill score for the streamflow
forecasts at 12 mainstream gauges, without considering the
error in the hydrological models. The reference forecast is the
ESP/VIC, and a skill score above zero represents the added
value from climate forecast models. Figure 9 shows similar
plots, but the RMSEs are calculated between post-processed
forecasts and the observed streamflow. Regardless of the er-
rors in the hydrological models, the NMME/VIC reduces the
RMSE for the streamflow forecasts by 10–25 % (Fig. 8). As
compared with the observed streamflow, the NMME/VIC re-
duces the RMSE by less than 5–15 % (Fig. 9). And the reduc-
tion occurs mostly during the transition from wet to dry sea-
sons. The decrease in the RMSE skill score is consistent with
previous findings over the USA (Yuan et al., 2013), which
is because of the increase in the uncertainty of hydrologi-
cal models. Given that the VIC model used in this study has
no parameterization in the human water consumption, a lin-

ear regression in the post-processing procedure may reduce
the systematic bias with the consideration of seasonality, but
it does not necessarily correct the errors in the variability.
Connecting the VIC model with water subtraction model
with different complexities (e.g., from statistical to process-
based models) will reduce the uncertainty in the hydrological
model and, thus, amplify the added value from climate fore-
cast models.

Without the consideration of the errors in hydrological
models, the RMSE skill score generally decreases over leads
(Fig. 8); however, it may increase as verified by the observed
streamflow (Fig. 9). This suggests that the added value from
climate models at a long forecast lead might not be negligible
as one expected, or they might be underestimated by previous
studies that verify the forecasts with model simulations.

6 Concluding remarks

This is the second paper of a two-part series on introduc-
ing an experimental seasonal hydrological forecasting sys-
tem over the Yellow River basin in northern China. The
system downscales the seasonal climate forecasts from the
North American Multimodel Ensemble (NMME) models
and drives the variable infiltration capacity (VIC) land sur-
face hydrological model and a global routing model regional-
ized over the Yellow River basin to produce seasonal hydro-
logical forecasting of soil moisture, runoff and streamflow
at a 0.25◦ resolution. The first paper investigates the hydro-
logical predictability in terms of initial hydrological condi-
tions (ICs) by performing the reverse Ensemble Streamflow
Prediction (revESP) simulations using the hydrological mod-
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Figure 7. Naturalized (cyan) and observed (blue) monthly streamflow (108 m3 s−1), and VIC-simulated monthly streamflow (108 m3 s−1)
before (orange) and after (red) the post-processing at five hydrological gauges located from upper to lower mainstream of the Yellow River.
During the post-processing procedure, the simulated streamflow without human interventions is linearly regressed against the observed
streamflow for each target month.

els in the forecasting system. This paper evaluates the added
value for the seasonal hydrological forecasting from climate
forecast models by using 99 ensemble forecasts of surface air
2 m temperature and precipitation from eight NMME models
during 1982–2010, as compared with ESP-type forecasts.

The forecast skill in terms of Anomaly Correlation (AC)
for 2 m temperature and precipitation does not necessarily
decrease over leads but is dependent on the target month due
to a strong seasonality for the climate over the Yellow River
basin. The highest forecast skill for 2 m temperature oc-
curs during the summer and late winter, and the lowest skill
occurs during the late spring. Among eight NMME mod-
els used in this study, the NCEP-CFSv2 and NASA-GMAO
models have the highest AC for the 2 m temperature and pre-
cipitation forecasts in the first month respectively. After the
first month, the skill for NCEP-CFSv2 is consistently higher

than other NMME models for the precipitation forecasts but
not for the temperature forecasts. As there is more diver-
sity in the model performance for the temperature forecasts,
the grand NMME ensemble mean forecast has consistently
higher skill than the best single model, with an average AC
of 0.5 for the 0.5-month lead, and about 0.3 up to 6 months.
For the precipitation forecasts, the grand NMME ensemble
mean forecast has higher skill than the best individual mod-
els during the first 2 months, and its skill is comparable to
the best individual model beyond the first 2 months. Dur-
ing the first season, the NMME ensemble mean precipitation
forecasts have statistically significant skill over the northern
part of the Yellow River basin for the forecasts initialized in
spring, over southern marginal regions with wet climate for
the forecasts initialized in summer, over the upper reaches for
the forecasts initialized at the beginning of the cold season,
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Figure 8. The root mean square error skill score (SSRMSE) for streamflow as a function of start month and lead time at 12 hydrological
gauges. The SSRMSE is defined as 1−RMSENMME/RMSEESP, where RMSENMME and RMSEESP are the RMSEs for the streamflow
forecasts from NMME/VIC and ESP/VIC verified against the offline-simulated streamflow.

and over the middle and lower reaches for that initialized in
November.

Due to the strong control of ICs in the forecasting of land
surface conditions, the forecast skill for soil moisture and
runoff as verified with offline VIC simulation without con-
sidering the model errors decreases generally as the lead in-
creases especially during the dry seasons. The soil moisture
forecast skill for the ESP method is very high, with an av-
eraged AC among 12 target months higher than 0.8 up to 3
months. The NMME climate models can improve the fore-
cast skill against the ESP for the forecasts at long leads and
for those initialized in the rainy season. As the ICs have
weaker control on the runoff than the soil moisture, the added
value from climate forecast models is more obvious for the
runoff forecasts. Compared with the ESP/VIC runoff fore-
casts, the NMME/VIC increases the average AC by 0.08–0.2,
and the increase is larger at long leads. In terms of spatial
distributions, both the ESP/VIC and NMME/VIC have high
forecast skill for the soil moisture over the middle reaches.
The latter increases the average AC from the former by 0.08–
0.2 over upper and lower reaches of the Yellow River basin,

and the increase is larger at long leads. For the streamflow
forecasting, the ESP/VIC has an averaged correlation higher
than 0.7 along the mainstream at a 0.5-month lead, where
there is only a marginal improvement from NMME/VIC at
upper reaches and tributaries. However, the NMME/VIC in-
creases the correlation for the streamflow forecasts at long
leads by 0.1–0.4.

The NMME/VIC reduces the root mean squared er-
ror (RMSE) from ESP/VIC by 10–25 % across all target
months for the streamflow forecasts verified by neglecting
the uncertainty in hydrological models (i.e., verified by the
offline-simulated streamflow). To compare with the observed
streamflow, the predicted streamflows from both ESP/VIC
and NMME/VIC are post-processed through a linear regres-
sion, with the regression model fitted by offline simulation
results. As verified by observed streamflow, the NMME/VIC
reduces the RMSE from ESP/VIC by 5–15 %, especially dur-
ing the transition from wet to dry seasons. Regardless of the
errors in hydrological models, the added value from climate
forecast models decreases over leads, which is consistent
with the increase of error in the climate forecast. However,
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Figure 9. The same as Fig. 8, but the RMSEs are calculated against observed streamflow.

with the consideration of the uncertainty in the hydrological
models, the added value from climate model may increase
over leads, which suggests that the usefulness of the climate
forecasts in the hydrological forecasts at long leads might be
underestimated in studies that verify the forecasts with model
offline simulations.

This study shows that the NMME-based forecasting out-
performs the IC-based forecast method over the Yellow River
basin, with or without the consideration of the errors in the
hydrological models. Toward establishing an operational sea-
sonal hydrological forecasting system, future efforts could be
applied to the following:

1. A linear time-series post-processing model, although
considering the seasonality in the water subtraction by
calibrating the parameters against observed streamflow
month by month, is not sufficient to simulate and fore-
cast a hydrological system with intensive human inter-
ventions because of the nonlinearity and nonstationar-
ity. Either connecting with a seasonally dependent water
subtraction sub-model based on the subtraction statis-
tics or explicitly representing the human intervention
processes in the forecasting system is not only neces-

sary to further reduce the uncertainty in the hydrologi-
cal models but also to facilitate the understanding of the
hydrological predictability with human dimension.

2. For the variables that are not easily to be corrected
due to limited observations (e.g., soil moisture, runoff),
forecasting with multiple hydrological models might be
useful to quantify the uncertainty in the hydrological
model.

3. There is a decadal variation for the observed streamflow
over the Yellow River basin, which is a result of both
decadal climate change and the human water use change
such as the water allocation in the 1980s, and water con-
servation through planting more trees over the Loess
Plateau. Attribution of the natural and anthropogenic
changes in the environment and assessment of their im-
pacts on the terrestrial hydrology are not only inter-
esting questions within the scope of the global change
but are also relevant for developing the short-term hy-
drological forecasting systems because they will influ-
ence the downscaling statistics, the calibration of hydro-
logical models, and the hydrological post-processing.
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Therefore, more collaborations between the climate re-
search scientists and operational hydrological forecast-
ers should be put on the agenda, and the Global Frame-
work for Climate Services (GFCS) is a good concept
that facilitates the transfer of the advances in climate
research to climate services including the seasonal hy-
drological forecasting that is targeted for adaption to hy-
drologic extremes.

4. Given that ensemble seasonal hydrological forecasting
becomes popular, it is the time to think about the inter-
pretation of the ensemble forecast results to the decision
makers (Hoss and Fischbeck, 2016). A useful ensemble
forecast should be reliable but also sharper than a cli-
matological forecast (toward a more deterministic fore-
cast), which is not always the case. There should be a
balance between the reliability and the sharpness, and
how to determine an effective balance is a question both
for scientists and managers.
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