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Abstract. The hydrological cycle over the Yellow River
has been altered by the climate change and human inter-
ventions greatly during past decades, with a decadal dry-
ing trend mixed with a large variation of seasonal hydro-
logical extremes. To provide support for the adaptation to a
changing environment, an experimental seasonal hydrologi-
cal forecasting system is established over the Yellow River
basin. The system draws from a legacy of a global hydro-
logical forecasting system that is able to make use of real-
time seasonal climate predictions from North American Mul-
timodel Ensemble (NMME) climate models through a statis-
tical downscaling approach but with a higher resolution and
a spatially disaggregated calibration procedure that is based
on a newly compiled hydrological observation dataset with 5
decades of naturalized streamflow at 12 mainstream gauges
and a newly released meteorological observation dataset in-
cluding 324 meteorological stations over the Yellow River
basin. While the evaluation of the NMME-based seasonal
hydrological forecasting will be presented in a companion
paper to explore the added values from climate forecast mod-
els, this paper investigates the role of initial hydrological
conditions (ICs) by carrying out 6-month Ensemble Stream-
flow Prediction (ESP) and reverse ESP-type simulations for
each calendar month during 1982-2010 with the hydrologi-
cal models in the forecasting system, i.e., a large-scale land
surface hydrological model and a global routing model that
is regionalized over the Yellow River. In terms of streamflow

predictability, the ICs outweigh the meteorological forcings
up to 2-5 months during the cold and dry seasons, but the lat-
ter prevails over the former in the predictability after the first
month during the warm and wet seasons. For the streamflow
forecasts initialized at the end of the rainy season, the in-
fluence of ICs for lower reaches of the Yellow River can be
5 months longer than that for the upper reaches, while such
a difference drops to 1 month during the rainy season. Based
on an additional ESP-type simulation without the initializa-
tion of the river routing model, it is found that the initial sur-
face water state is the main source of streamflow predictabil-
ity during the first month, beyond which other sources of ter-
restrial memory become more important. During the dry/wet
periods, the dominance of ICs on the streamflow predictabil-
ity can be extended by a month even in the rainy season, sug-
gesting the usefulness of the ESP forecasting approach after
the onset of the hydrological extreme events. Similar results
are found for the soil moisture predictability but with longer
influences from ICs. And the simulations indicate that the
soil moisture memory is longer over the middle reaches than
those over the upper and lower reaches of the Yellow River.
The naturalized hydrological predictability analysis in this
study will provide a guideline for establishing an operational
hydrological forecasting system as well as for managing the
risks of hydrological extremes over the Yellow River basin.
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1 Introduction

Global warming has fundamentally affected terrestrial hy-
drological cycle, as well as water-related sectors. The inten-
sification of the water cycle leads to an increase of hydro-
logical extreme events such as flooding and droughts, which
influences the reservoir regulation and flood mitigation, and
the coordination of the water supply for agricultural, urban
and environmental sustainability (Huntington, 2006; Oki and
Kanae, 2006). While the mitigation activities including the
reduction of carbon emission will not have a significant im-
pact on slowing the global warming until a few decades later
due to the inertia of the climate system, the adaptation can
be an approach that reduces the negative effects from cli-
mate change in a timely manner (IPCC, 2014). Nevertheless,
a well-planned adaptation cannot be achieved without a reli-
able prediction of the future.

In terms of terrestrial hydrology, a basic question is
how to manage the water resources in a way that is adap-
tive to climate change, especially to the extreme events
(e.g., droughts). In other words, how to predict the future hy-
drology at a lead time that is not only long enough for taking
an action but also reliable for an effective adaptation is a big
concern both for science and application. While the decadal
hydrological prediction is still at an exploring stage due to
very limited predictability over land, the seasonal hydrolog-
ical forecasting has been carried out for about half a century
(Pagano et al., 2004) and is being augmented with physi-
cal hydrological models (Day, 1985; Bierkens and van Beek,
2009; van Dijk et al., 2013; Svensson et al., 2015) through
the Ensemble Streamflow Prediction (ESP) method as well as
climate forecast models (Wood et al., 2002; Luo and Wood,
2008; Mo and Lettenmaier, 2014; Yuan et al., 2013, 2015a)
where the climate predictions are downscaled to drive the
physical hydrological models and provide the hydrological
forecasting (Yuan et al., 2015b).

Statistical, dynamical and hybrid seasonal hydrological
forecasting systems are being developed and implemented by
multiple research institutions and operational centers around
the world. For example, a national seasonal streamflow fore-
casting service operated by the Australian Bureau of Me-
teorology (http://www.bom.gov.au/water/ssf), with a statis-
tical forecasting method based on the joint distribution of
future streamflow and their predictors such as antecedent
streamflow and El Nifio—Southern Oscillation (ENSO) in-
dices, now provides forecasts for over 160 locations in-
cluding major water storages and river systems across Aus-
tralia (Wang et al., 2009). A drought monitoring and hy-
drologic forecasting system developed by Princeton Univer-
sity (http://hydrology.princeton.edu/forecast), which is based
on downscaled climate prediction from the Climate Fore-
cast System version 2 (CFSv2) and a distributed hydrologi-
cal model (Luo and Wood, 2008; Yuan et al., 2013), provides
soil moisture forecasts and drought outlook over contermi-
nous US for up to 6 months and is being augmented with
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remote sensing products and multiple climate forecast mod-
els to provide seasonal hydrological forecasting over Africa
(Sheffield et al., 2014) and global major river basins (Yuan
et al., 2015a). Besides the statistical and dynamical forecast-
ing systems, a hybrid system called Hydrological Outlook
UK (http://www.hydoutuk.net) is being developed over Great
Britain by an expert merging of a statistical analogue and per-
sistence method, the ESP method, and a hydrological model-
ing system driven by the UK Met Office climate forecasts.

Similar to the seasonal climate prediction, the initial hy-
drological condition (IC) is also an important source of pre-
dictability for the hydrology at seasonal timescale and should
be carefully treated in developing a hydrological forecasting
system. Basically, IC of snow controls the seasonal hydro-
logical variations significantly over the headwater region of a
river basin, especially over high-altitude areas. For instance,
Koster et al. (2010) found that the hydrological simulations
with the IC of snow can explain up to 50 % of the variance
for the streamflow over the western USA in the following 5
months. The importance of snow for streamflow predictabil-
ity was also confirmed over European basins (Staudinger and
Seibert, 2014) and global major river basins (Yossef et al.,
2013). As compared with snow, soil moisture has less impact
on the hydrological predictability during the snow melting
season but can affect the predictability significantly during
other seasons, where its dominance can last over 6 months
over certain river basins (Mahanama et al., 2012). In ad-
dition, the IC of groundwater is also important during the
low-flow period where the subsurface runoff dominates the
streamflow (Paiva et al., 2012).

To assess the contributions of ICs and meteorological forc-
ings, a theoretical framework called reverse ESP (revESP)
was proposed by Wood and Lettenmaier (2008). For the ESP
method, a hydrological model with realistic ICs is forced
by an ensemble of meteorological forcings resampled from
the history; while for the revESP, the hydrological model is
driven by observed meteorological forcings (a perfect me-
teorological forecast), with ICs resampled from the history.
Wood and Lettenmaier (2008) applied the assessment frame-
work over two river basins in the western USA and found
that ICs yield streamflow forecasting skill for up to 5 months
over northern California during the transition period between
the wet and dry seasons but have less impact over southern
Colorado basin due to a weaker annual cycle of precipita-
tion. Since then, the revESP framework has been widely used
to assess the role of ICs at regional to global scales (Li et
al., 2009; Koster et al., 2010; Shukla and Lettenmaier, 2011;
Paiva et al., 2012; Singla et al., 2012; Shukla et al., 2013;
Yossef et al., 2013; Staudinger and Seibert, 2014; Yang et
al., 2014). However, most assessments did not explicitly in-
vestigate the role of the IC of the surface water state vari-
ables in the streamflow forecasting, where it could be a ma-
jor source of hydrological forecast uncertainty over rivers
with low slope and large floodplains (Paiva et al., 2012). In
addition, the ICs may have different impacts on the hydro-
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Table 1. Information at 12 hydrological gauges and the Nash—Sutcliffe efficiency (NSE) during the periods of calibration (1961-1981) and
validation (1982-2010). The simulated streamflow is verified against naturalized streamflow.

Gauge Latitude Longitude  Drainage NSE for NSE for
°N) (°E) area calibration  validation
(103 km?)
Tangnaihai 35.5 100.15 122 0.90 0.87
Xunhua 35.83 102.5 145 0.91 0.88
Xiaochuan 35.93 103.03 182 0.78 0.84
Lanzhou 36.07 103.82 223 0.92 0.91
Xiaheyan 37.45 105.05 254 0.92 0.90
Shizuishan 39.25 106.78 309 0.92 0.89
Hekouzhen 40.25 111.17 368 0.86 0.76
Longmen 35.67 110.58 498 0.83 0.74
Sanmenxia 34.82 111.37 688 0.83 0.77
Huayuankou  34.92 113.65 730 0.85 0.81
Gaocun 35.38 115.08 734 0.84 0.78
Lijin 37.52 118.3 752 0.79 0.71
N
Yellow River basin A”
/
o Hekouzhen
/G s
Shizuishan gj
=
\\:11\”\ Xiaheyan _ a /3\ L,Jm ]
S e
- ",} anzhqy '
il \ /h 2 %
\Akggna 1 &‘ Hub 4 4,(’
< i“ ¥ /'Huayuan:oa:c“n
~ ,'\ }\ Q;;menxla

. Meteorological station
* Hydrological station

— River

Figure 1. Locations of meteorological and hydrological stations over the Yellow River basin.

logical forecasting over upper and lower reaches of a large
river basin, which is also important for a coordinated water
resource management across the runoff generation and con-
sumption regimes.

As the first paper of a two-part series, this paper introduces
an experimental seasonal hydrological forecasting system
developed over the Yellow River basin in northern China and
investigates the hydrological predictability across the main
stream of the Yellow River. The revESP method is used to as-
sess the contributions from ICs and meteorological forcings.
The assessments conditional on the surface and subsurface
water state variables, and the dry/wet conditions, are being
investigated. Seasonal hydrological forecasting with multi-
ple climate forecast models will be evaluated in a companion
paper, by comparison with the ESP-based hydrological fore-
casting (Yuan, 2016).

www.hydrol-earth-syst-sci.net/20/2437/2016/

2 Data and method
2.1 Data and study domain

The Yellow River is the second longest and the second
largest river in China, with a length of about 5500 km and
a drainage area of 7.52 x 10° km?. Figure 1 shows the loca-
tions of 324 meteorological stations and 12 mainstream hy-
drological gauges within the Yellow River, and Table 1 lists
the latitude, longitude and drainage area for the 12 gauges.
The Yellow River originates from the Qinghai—Tibet Plateau,
wanders through the northern semiarid region including the
Loess Plateau, passes through the eastern low land areas, and
finally discharges into the Bohai Gulf (Yang et al., 2004).
The meteorological forcing datasets from 324 meteorolog-
ical stations are interpolated into 1321 grids at a 0.25° resolu-
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Figure 2. Seasonal mean (a—-d) 2 m air temperature and (e-h) precipitation over the Yellow River averaged during 1982-2014. The four
seasons are December—January—February (DJF), March—April-May (MAM), June-July—August (JJA) and September—October—-November

(SON).

tion, with a lapse rate correction for temperature at different
elevations. The observations from three nearest meteorologi-
cal stations are interpolated to each grid by using the inverse
quadratic distance weighting method. Note that the meteoro-
logical dataset compiled in this study has more regional in-
formation as compared with previous studies that are based
on about 100 meteorological stations over the Yellow River
basin (Yang et al., 2004; Cong et al., 2009). Figure 2 shows
the gridded seasonal mean surface air temperature and pre-
cipitation averaged during 1982-2014, indicating a typical
monsoon climate with hot and wet summer, and cold and
dry winter. The Yellow River flows across nine provinces in
China, where the upstream section of the Tangnaihai gauge
(Fig. 1) is the headwater region, with a cold (Fig. 2a—d) and
humid climate (Fig. 2e—h). The northwestern region between
the Lanzhou and Hekouzhen gauges (Fig. 1) is a semiarid
region, with low rainfall but high temperature (Fig. 2). The
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northeastern region between the Hekouzhen and Longmen
(Fig. 1) is located in the Loess Plateau, again a semiarid area.
There are several main tributaries between the Longmen and
Sanmenxia gauges, including the Weihe, Jinghe and Fenhe
rivers (Fig. 1). The downstream section of the Huayuankou
gauge is located in the alluvial plain, where the riverbed is
elevated above the adjacent floodplains due to sediment de-
position and man-made levees (Fig. 1).

2.2 Description of the seasonal hydrological forecasting
system

Figure 3 shows the flowchart of the experimental seasonal
hydrological forecasting system. The system makes use of
the seasonal climate prediction of precipitation and temper-
ature from multiple climate forecast models participating in
the North American Multimodel Ensemble (NMME) project
(Kirtman et al., 2014), a spatial downscaling and bias correc-

www.hydrol-earth-syst-sci.net/20/2437/2016/



X. Yuan et al.: An experimental seasonal hydrological forecasting system over the Yellow River basin — Part 1 2441

NMME climate
forecast models

Variable Infiltration Capacity - n Layer (VIC-nL)
Macroscale Hydrologic Model

Cell Energy an

Initialization

VIC Land surface
hydrologlcal model

Downscaling

Grid Coll Vegotation Coverage

I Decision making !
: and adaptation |

Hydrological

Current basin conditions
Y

post-processing

\

Streamflow

/s p0)p(y|6)

*, Past streamﬂow\‘ //%

.'4}/ J _
= ey P(0 ] y) = Sl

M

Time

Figure 3. Flowchart of the experimental seasonal hydrological forecasting system over the Yellow River.

tion method (Wood et al., 2002) that is used to transfer global
climate prediction of meteorological forcings for driving a
land surface hydrological model and a routing model at river
basin scale. The soil moisture and streamflow predicted by
the system a few months ahead can be used for decision mak-
ing and adaptation to hydrological extremes (e.g., drought)
especially for agricultural sectors. And the Yellow River is in
a major farmland region in China with intensive irrigations,
where a dynamical-model-based seasonal hydrological fore-
casting system that is targeted for adaptation is quite neces-
sary.

The introduction of the climate prediction part of the sys-
tem and the evaluation of the NMME-based seasonal hydro-
logical hindcasts during 1982-2010 will be presented in the
companion paper. In this paper, the establishment of the hy-
drological part of the forecast system (Fig. 3) is described.
The hydrological modeling part consists of the variable in-
filtration capacity (VIC; Liang et al., 1996) land surface hy-
drological model and a global routing model (Yuan et al.,
2015a) regionalized over the Yellow River. The VIC model
version 4.0.5 is used to predict soil moisture and runoff in this
study. It is a semi-distributed, grid-based hydrological model

www.hydrol-earth-syst-sci.net/20/2437/2016/

with a mosaic representation of land cover and soil water
storage capacity. The VIC model is widely used to simulate
the large-scale hydrology in China (Xie et al., 2007; Zhang
et al., 2014). The routing model, which is based on an aggre-
gated network-response-function routing algorithm (Gong et
al., 2009), uses the topographic data to calculate flow veloc-
ities both in the hillslopes and the channels, and translates
the runoff from the VIC model to streamflow at each grid
cell and routes the flow into rivers and finally into the ocean
(Yuan et al., 2015a). Calibration of the VIC model and the
routing model is described in Sect. 2.3.

Figure 3 also shows that there is a hydrological post-
processing part after the routing, which is necessary be-
cause there are model uncertainties that cannot be calibrated
(e.g., irrigation and inter-basin water diversion that are ne-
glected in most large-scale land surface hydrological mod-
els) and the errors in meteorological forcings from climate
forecast models can propagate nonlinearly after the terrestrial
hydrological processes (Yuan and Wood, 2012). The hydro-
logical post-processing will be used in the companion paper
by matching the predicted streamflow with observed stream-
flow, while in this paper the calibration and predictability as-

Hydrol. Earth Syst. Sci., 20, 2437-2451, 2016
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sessment are based on the naturalized and simulated stream-
flow respectively. In other words, this paper will assess the
role of ICs in seasonal hydrological forecasting by neglect-
ing the errors in calibrated hydrological models, and inves-
tigate the hydrological predictability in a “naturalized” Yel-
low River without human interventions. Assessing the nat-
uralized hydrological predictability is the first step toward
establishing an operational hydrological forecasting system
and will also provide a guideline for water resources man-
agement over the Yellow River basin.

2.3 Calibration with naturalized streamflow

The Yellow River basin is a heavily managed and intervened
basin. As reported by the Bulletin of Water Resources, the
observed annual mean streamflow at the outlet of the basin
(i.e., Lijin station) is about 3.15 x 10'9m? during 1956
2000, while the annual mean consumed and inter-basin di-
verted water is 1.48 x 10'9 m>. These consumed and diverted
water is usually neglected in the large-scale land surface hy-
drological models, and accounting for them in the model
remains a grand challenge due to limited water resources
management data. In the companion paper, the observed
streamflow is used to correct the model simulations and fore-
casts for each target month through the post-processing tech-
niques. However, in this paper, the naturalized streamflow
is used to calibrate the hydrological model and to investi-
gate the naturalized or unperturbed hydrological predictabil-
ity in terms of ICs. The naturalized streamflow is calculated
by using the observed streamflow, the water consumed by
agricultural, industrial and civil sectors, and the water regu-
lated by reservoirs. In this study, the naturalized streamflow
datasets are obtained from the Bulletin of Water Resources
(http://www.yellowriver.gov.cn/).

The naturalized streamflow data at 12 gauges (Fig. 1)
along the main stream of Yellow River and the rainfall data
averaged over the sub-basins are used to calculate the runoff—
rainfall ratios, and the grid-scale runoff time series over
each sub-basin are then obtained by multiplying the runoff—
rainfall ratios with rainfall time series. For the lower reaches,
the difference in streamflow between the target gauge and
the upstream gauge is used to calculate the runoff-rainfall
ratios, with the rainfall selected for those drainage areas
between the two gauges. With the spatially disaggregated
runoff time series, the parameters of the VIC model are cal-
ibrated automatically for each grid cell by using the shuffled
complex evolution (SCE) algorithm (Duan et al., 1994). The
VIC model is run from 1951 to 1981 thousands of times,
with the parameters searched by the SCE algorithm to ob-
tain a maximum Nash—Sutcliffe efficiency (NSE) calculated
between simulated runoff and naturalized runoff during the
period of 1961-1981, where the simulations in the first 10
years (1951-1960) are dropped for spin-up. A similar auto-
matic calibration procedure for the routing model is also car-
ried out. It should be noted that the naturalized streamflow
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may contain errors from the measurement of precipitation
and/or streamflow, and the errors may result in uncertainty in
the calibrated parameters and the hydrological model. In the
future, multisource (e.g., satellite and ground) observations
combined with data assimilation techniques will be needed
to quantify such uncertainty.

Similar to Troy et al. (2008), seven parameters of the VIC
model, including the variable infiltration curve parameter (b,
with the allowed range of 0.001-1), maximum baseflow ve-
locity (Dgmax, 0.1-50 mm day_l), fraction of Dgyax Where
nonlinear baseflow begins (Ds, 0.001-0.99), fraction of max-
imum soil moisture content above which nonlinear baseflow
occurs (W, 0.2-0.99 and W > Dy), depths of the second
and the third soil layers (d2, d3, with the range of 0.1-3 m;
note that the depth of the first layer is fixed at 0.1 m) and the
parameter characterizing the variation of saturated hydraulic
conductivity with soil moisture (the allowed range is 3.1-50),
are selected for calibration. After the calibration of the VIC
model at 1321 grid cells over the Yellow River, the simulated
runoff with the optimized VIC parameters is used as the input
for the routing model, and the flow velocities over the hills-
lope and within the channel are selected for calibration, with
the allowed range of 0-1.0 and 1.0-3.0ms ™! respectively.

Table 1 lists the NSE calculated by using monthly natu-
ralized and simulated streamflow during the calibration and
validation periods, and Fig. 4 shows the time series of the
streamflow at five selected gauges. A NSE value of 1 indi-
cates that the model simulates the reference streamflow per-
fectly, and a value below zero indicates that the simulated
streamflow is worse than the climatology. Across 12 gauges,
the averaged NSE values during the calibration and valida-
tion periods are 0.86 and 0.82, with a range of 0.78-0.92
and 0.71-0.91 respectively (Table 1). This indicates that the
calibrated hydrological simulation system captures the vari-
ations of the naturalized streamflow over the Yellow River
basin quite well, which is also shown in Fig. 4. However,
Fig. 4 also shows that the modeling system underestimates
the high flow at upper reaches (e.g., Tangnaihai) and overes-
timates the low flow at middle and lower reaches (e.g., Hek-
ouzhen, Huayuankou, Lijin) of the Yellow River. The under-
estimation of high flow upstream section might be due to the
deficiency in the snow-melting module since the headwater
region is located in a cold and mountainous area, while the
overestimation of low flow might be related to the uncertain-
ties in the subsurface hydrological processes as well as the
transport of surface water.

2.4 Experimental design

With the calibrated hydrological simulation system, a set
of numerical experiments are carried out to investigate the
role of the initial hydrological conditions (ICs) in the sea-
sonal hydrological forecasting: (1) a continuous simulation
from 1951 to 2010 is used to generate the ICs at the be-
ginning of each calendar month and the reference stream-
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flow and soil moisture for the assessment of the naturalized
hydrological predictability over the Yellow River; (2) the
Ensemble Streamflow Prediction (ESP) simulations initial-
ized at the beginning of each calendar month during 1982—
2010, with ICs taken from the same date of experiment (1)
and 28 realizations of 6-month meteorological forcings taken
from the same period of the target year while excluding the
target year. For example, for the ESP simulation starting in
March 1983, the ICs are exactly the same as the experi-
ment (1) on March 1983, and the 28 ensembles of meteo-
rological forcings are those in the experiment (1) during the
March—August of 1982, 1984, 1985, ..., 2010, without using
the forcings in the target year; (3) the reverse ESP (revESP)
simulations similar to the experiment (2), with the simula-
tions driven by the same meteorological forcings taken from
the experiment (1) during the target year but 28 ensembles of
ICs taken from different years excluding the target year. For

www.hydrol-earth-syst-sci.net/20/2437/2016/

example, for the revESP simulation starting in March 1983,
the meteorological forcings are those in the experiment (1)
during the March—August of 1983, while the 28 ensembles
of ICs are taken from March of 1982, 1984, 1985, ..., 2010,
without using the ICs in March of the target year (i.e., 1983).

In this paper, all the analyses are based on the en-
semble means of the realizations from ESP and revESP.
The root mean square error (RMSE) for ESP and revESP
for each calendar month are calculated by using all 6-
month simulations starting in the same calendar month dur-
ing 1982-2010. And the RMSE ratio, which is defined as
RMSEgsp / RMSE;evEsp, is used to assess whether the ICs or
the meteorological forcings are more important in the predic-
tion of streamflow and soil moisture. If the ratio is lower than
1, the ICs prevail over the meteorological forcings in the pre-
dictability of the target hydrological variable (e.g., stream-
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Figure 5. The root mean square error (RMSE) ratio (RMSEggp / RMSE,yEsp) as a function of start month and lead time at 12 hydrological
gauges. The RMSE is calculated between the streamflow from a continuous simulation (with accurate initial condition and meteorological

forcing) and that from the ESP or revESP experiments.

flow or soil moisture) — and if the ratio is larger than 1, then
the meteorological forcings are more important.

3 Results
3.1 Predictability of streamflow

Figure 5 shows the RMSE ratio for different calendar months
and lead times at 12 selected hydrological gauges from up-
stream to downstream of the Yellow River basin. For exam-
ple, the blue line starting in January and ending in June in
Fig. 5a shows that the RMSE of streamflow from ESP sim-
ulation is lower than the revESP simulation in January and
February, indicating that the ICs prevail over the meteorolog-
ical forcings in the streamflow predictability during the first
2 months; the RMSE ratio is larger than 1 from April to June,
which suggests that the meteorological forcings are more im-
portant for the streamflow prediction after the first 3 months.
In general, there is a gradual increase in the lead time where
the ICs significantly contribute to the streamflow predictabil-
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ity (RMSE ratio less than 1) from upstream to downstream
gauges. From the Tangnaihai gauge to Shizuishan gauge,
the influence of ICs could not persist for 1 month for the
forecasts starting in spring or early summer (green lines in
Fig. 5a—f). However, from the Hekouzhen gauge down to Li-
jin gauge, the ICs significantly contribute to the streamflow
predictability during the first month for all calendar months
(Fig. 5g-1).

From the gauge at the headwater region to that at the out-
let of the Yellow River basin, ICs significantly contribute to
the streamflow predictability for up to 2—5 months for the
forecasts initialized in fall and winter, and the meteorologi-
cal forcings prevail over the ICs in the predictability after the
first month for the forecasts initialized in spring and sum-
mer (Fig. 5). This indicates that the ICs have stronger control
on the streamflow predictability during the dry seasons than
that during the wet seasons. An interesting feature is that ICs
have the weakest control on the streamflow forecasts start-
ing before the rainy season (May in Fig. 5), which suggests
that the memory of the terrestrial hydrological system drops
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to the lowest level at the end of the dry season. This is sim-
ilar to the results of the predictability of soil moisture and
runoff over the river basins with strong seasonality (Shukla
and Lettenmaier, 2011), where the ICs have the strongest and
weakest control at the end of rainy season and dry season re-
spectively.

For the ESP results shown in Fig. 5, both the state vari-
ables for the surface water and subsurface water are set to
the realistic values according to the continuous offline simu-
lation driven by observed meteorological forcings. To distin-
guish the relative importance from different sources of wa-
ter storage, an additional experiment is conducted by setting
the surface water state in the routing model to that used in
the revESP experiment: the ICs of surface water in the ESP
experiment are replaced with the climatology values. The
RMSE ratios of the ESP without the initialization of the sur-
face water over that from the original revESP are then calcu-
lated similarly, and the results are shown in Fig. 6.

The impact of the initialization of the routing model is
less obvious in the headwater region (e.g., Fig. 6a) given
a smaller drainage area and a shorter travel time. When it
goes to the downstream gauges, the RMSE ratios in the first
month increase greatly. As compared with a full initializa-
tion (both the initializations of surface and subsurface water)
in the ESP experiment (Fig. 5), the dominant role of ICs in
the first month forecasts almost disappears for all calendar
months (Fig. 6g-1). Nevertheless, the RMSE ratios for the
forecasts beyond the first month do not change, no matter for
the upstream or downstream gauges (Fig. 6). This suggests
that the memory from initial surface water lasts for less than
a month over the Yellow River basin and would not affect the
streamflow forecasting at long leads. However, it is the most
important sources of predictability for the streamflow over a
large river basin at a short timescale. The ICs of the surface
water states are essential for a seamless hydrological fore-
casting system that aims at integrating short-term flooding
forecast to seasonal drought prediction.

The above analyses are based on the full samples of the
hindcasts. To investigate the role of ICs in the seasonal fore-
casts of hydrological extremes, the results conditional on the
dry/wet conditions are investigated. Previous studies found
that the ESP approach has low forecasting skill before the
onset of the extreme events (Yuan et al., 2015a) but can be
skillful during the recovery stage (Pan et al., 2013). There-
fore, the forecasts with initial streamflow percentile (accord-
ing to the continuous offline simulation) lower than 20 % (or
higher than 80 %) are used to calculate the RMSE ratios, and
the drought cases are shown in Fig. 7. It is found that the
RMSE ratios are increasing as compared with the results of
the full samples (Fig. 5). The dominant role of ICs can per-
sist for 2 months for the forecasts starting in some spring and
summer months at the downstream gauge (Fig. 71).

The orange lines in Fig. 5 show that the RMSE ratios tend
to converge at a specific target month after the rainy season,
regardless of different forecast lead times. This is because the
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river basin enters into the dry seasons where the variability
of meteorological forcings becomes smaller. Such conver-
gence becomes clearer during the drought periods (Fig. 7).
Since the Yellow River has a strong seasonality in the hydro-
climate, it is difficult to recover in a short time once the hy-
drological drought occurs at the end of the rainy season. In
this case, the influence of ICs persists for a longer time, and
the RMSE ratios do not increase with the increase of the lead
times (Fig. 7). This demonstrates the usefulness of the ESP
approach that is mainly based on the information from ICs
in forecasting the persistency of the hydrological droughts.
In other words, the skill of seasonal climate prediction dur-
ing the dry season is less important because the ICs dominate
the hydrological predictability for a long time. The result for
the wet cases (initial streamflow percentile larger than 80 %)
is similar, but the impact of ICs lasts for a longer time (not
shown). This is reasonable because wetter ICs usually con-
tain more memory, and the evaporation process that dries
up the soil is a slower process. For the drier ICs, a single
storm may damage all the prior information and the system
becomes less predictable.

To conclude, Fig. 8 shows the maximum lead
times (MLTs) where the ICs prevail over the meteoro-
logical forcings in the streamflow predictability along the
main stream and major tributaries of the Yellow River.
At the outlet of the Yellow River, the MLT is less than
2 months during March—September (Fig. 8c—i) and longer
than 5 months during October—November (Fig. 8j and k),
then drops to 4, 3 and 2 months for the forecasts starting
in December, January and February respectively (Fig. 8l
and a—b). This is consistent with the results from a global
seasonal streamflow forecasting at a large river basin scale
(Yossef et al., 2013).

Moreover, given that the hydrological forecasting system
established in this study can route the runoff and calculate
the streamflow grid by grid, Fig. 8 also shows the variability
of MLTs upstream and over tributaries. They generally fol-
low the seasonality pattern of MLT at the outlet, with longer
and shorter values during dry and wet seasons respectively.
For the forecasts starting in November, the MLTs are beyond
5 months except for a part of the main course in the upstream
of the Tangnaihai gauge, and the main course between the
Huayuankou and Gaocun gauges (Fig. 8k). While for the
forecasts starting in May, the MLTs are less than 1 month
except for the main course between the Hekouzhen and San-
menxia gauges, and that from the Gaocun gauge down to
the outlet. Regardless the tributaries, the biggest difference
in MLT between the lower reaches and upper reaches of the
Yellow River occurs for the forecasts starting in October (the
end of the rainy season), where the difference can be as large
as 5 months (Fig. 8j). During the rainy season, the difference
in MLT is about 1 month (Fig. 8f-h).
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Figure 6. The same as Fig. 5 but for the ESP simulations without the initialization of the routing model.

3.2 Predictability of soil moisture

While the change of streamflow is mainly based on fast hy-
drological processes including the rainfall-runoff and runoft-
routing processes, the change of soil moisture is much slower
due to less conductivity of soil water. Therefore, the im-
pact of ICs on the soil moisture forecasting is expected to
be more significant than the streamflow. Figure 9 shows the
same MLT plots as Fig. 8 but for soil moisture. Similar to
the streamflow (Fig. 8), the MLT for soil moisture is longer
during the cold and dry seasons and is shorter during the
warm and rainy seasons (Fig. 9). However, unlike the stream-
flow that represents a basin-scale runoff variability where the
lower reaches are connected with upper reaches, the grid-
scale soil moisture only represents the local variability, and
the soil moisture from upper to lower reaches of the Yel-
low River has no connections under the current hydrological
modeling framework. In other words, the MLT for the soil
moisture in the lower reaches is not necessarily longer than
that in the upper reaches. As a result, the MLTs for the fore-
casts starting in September—February are beyond 6 months in
the middle reaches of the Yellow River due to a dry climate
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(Fig. 2¢), while the MLTs are about 3—5 months in the up-
per reaches up to the Lanzhou gauge and the lower reaches
between the Longmen and Huayuankou gauges (Fig. 9a-b
and i-1). This pattern holds for the warm seasons: the ICs
prevail over the meteorological forcings in the soil moisture
predictability over the middle reaches for up to 4 months
for the forecasts starting in spring (Fig. 9c—e) and up to 2—
3 months for the summer, while the MLTs are less than 1-
2 months over the upper and lower reaches during the same
period (Fig. 9f-h).

Similar to the RMSE ratio analysis during the dry period
(Fig. 7), the differences in MLTs between the dry cases and
the average results (Fig. 9) are shown in Fig. 10. The soil
moisture time series can be converted into percentiles to form
a drought index that is important for the indication of agri-
cultural drought. In this study, the soil moisture fields from
the continuous VIC simulation driven by observed meteo-
rological forcings are converted to percentiles grid by grid
to identify the local agricultural drought periods. Again, the
ESP and revESP forecasts starting in the dry years (but the
ICs or meteorological forcings from the two experiments are
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Figure 7. The same as Fig. 5 but for those years with streamflow percentiles at the start month lower than the 20 %.

not necessarily dry according to their experimental design)
are used to compute the RMSE ratios as well as the MLTs.
Figure 10 shows that the MLTs increase by 1 month over
most areas. For the forecasts starting in the summer and
early autumn, the increases can reach 2 months over the
middle reaches and part of the upper reaches (Fig. 10f-i).
The stronger persistency of the dry soil indicates that the
investment on the seasonal drought forecasting should not
neglect the improvement in the ICs. A 1- or 2-month in-
crease in the forecast lead time will greatly benefit the agri-
cultural preparedness for the drought events. Given that the
seasonal forecast skill for the precipitation is quite limited
beyond 1 month (Wood et al., 2015), the refinement of ICs
through data assimilation techniques would be very impor-
tant for the drought forecasting, especially over the middle
reaches of the Yellow River where several main farmlands
exist. The MLTs over the middle reaches during the cold sea-
sons remain the same because the original MLTs reach the 6-
month limit (Fig. 9). In other words, they may also increase
if the ESP and revESP experiments are carried out to the sev-
enth month or forward. The increases in the MLTs for the wet
cases are more significant (not shown), suggesting that wet-
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ter ICs could dominate the soil moisture predictability longer
than drier ICs.

4 Concluding remarks

This is the first paper of a two-part series on introducing an
experimental seasonal hydrological forecasting system over
the Yellow River basin in northern China. While the compan-
ion paper will focus on the evaluation of the North American
Multimodel Ensemble (NMME)-based seasonal hydrologi-
cal forecasting (Yuan, 2016), this paper introduces the sys-
tem and uses it to investigate the role of initial hydrological
conditions (ICs) over the Yellow River basin.

The forecasting system is similar to the global forecast-
ing system established by Yuan et al. (2015a) but with a
higher resolution and a finer calibration procedure. Based
on 5 decades (1961-2010) of the naturalized streamflow
datasets at 12 mainstream gauges that were recently com-
piled by the Yellow River Conservancy Commission, as well
as a new forcings dataset compiled from 324 meteorological
stations, a land surface hydrological model and a global rout-
ing model regionalized over the Yellow River are calibrated
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Figure 8. Maximum lead time (months) where the initial conditions prevail over the meteorological forcings (RMSEggp/RMSE;cygsp < 1)

in the streamflow predictability.

(b) Feb

Figure 9. The same as Fig. 8 but for soil moisture.

grid by grid at a 0.25° resolution through an automatic cal-
ibration method. The spatially disaggregated calibration re-
sults in averaged Nash—Sutcliffe efficiency of 0.86 and 0.82
for the 12 gauges during the calibration and validation peri-
ods, respectively. In addition, a hydrological post-processor
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is used to transfer the naturalized, simulated or predicted
streamflow to those comparable to the observed streamflow,
which is essential for an operational seasonal hydrological
forecasting over the Yellow River where the irrigations and
inter-basin water diversions occur extensively.
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Figure 10. Differences in maximum lead times (months) between dry years (with soil moisture percentile lower than 20 %) and the mean

results for soil moisture.

By using the hydrological part of the forecasting system,
a set of Ensemble Streamflow Prediction (ESP) and reverse
ESP-type simulations that consist of 12 (months) x 29 (years
during  1982-2010) x 28  (ensembles) x 6  (forecast
leads) x 2 (ESP and revESP)=116928 months model
integrations over 1321 grid cells are conducted to investigate
the role of ICs in seasonal hydrological forecasting over
the Yellow River. For the streamflow prediction at 12
mainstream gauges, there is a gradual increase in the lead
time where the ICs prevail over the meteorological forcings
in the predictability. ICs outweigh the meteorological
forcings up to 2—5 months during the cold and dry seasons,
but the meteorological forcings prevail over the ICs in the
streamflow predictability after the first month during the
warm and wet seasons. And from the Tangnaihai gauge at
the headwater region down to the Shizuishan gauge at the
middle reaches, the ICs have very limited role (less than a
month) for the forecasts starting before the rainy season.

Given that the ICs of surface water might be an impor-
tant source of streamflow predictability, an additional ESP-
type simulation is conducted by setting the ICs of surface
water to the climatology. Compared with revESP simulation,
it is found that the initial surface water state is the most im-
portant source of streamflow predictability during the first
month, especially for the downstream areas. However, there
is no significant difference in the streamflow forecasting be-
yond 1 month regardless of whether the surface water state
is initialized or not, suggesting that other sources of terres-
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trial memory such as the snow and soil water storage become
more important for the long-term streamflow predictability.

The role of ICs could be more significant during the
dry/wet periods, where the dominance on the streamflow pre-
dictability at the lower gauges can be extended by a month
even in the rainy season. This indicates that the ESP is a
useful hydrological forecasting method after the onsets of
the hydrological droughts or wet spells. The maximum lead
times (MLTs) where the ICs prevail over the meteorologi-
cal forcings in the streamflow predictability at the outlet of
the entire Yellow River are about 1 month and 5 months
for the forecasts initialized during March—September and
October—November respectively, and they increase from 2 to
4 months for the forecasts initialized between them. There is
a 5-month difference in MLT between the lower reaches and
upper reaches of the Yellow River for the forecasts initialized
at the end of the rainy season, while there is only a 1-month
difference during the rainy season.

A similar analysis is applied for the soil moisture, where
the MLT for soil moisture is generally higher than the stream-
flow. The MLTs for soil moisture in the middle reaches of the
Yellow River are about 6 months during the dry seasons, and
they drop to 2-5 months for the upper and lower reaches.
However, the memory of soil moisture needs to be assessed
more objectively by using in situ and remote sensing obser-
vations because currently only the streamflow observations
are used to constrain the hydrological models, where the soil
moisture in the model can only be corrected implicitly based
on the water balance equations.
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Although this study has assessed the natural hydrological
predictability that is important for an operational hydrolog-
ical forecasting with water allocations and abstractions over
the Yellow River, there are a few concerns that should be ad-
dressed in the future: (1) a multimodel framework (Koster
et al., 2010) is necessary to quantify the uncertainty for the
assessment of hydrological predictability; (2) the revESP
method only assesses the theoretical predictability control
by using all historical ICs. Actually, operational forecasters
can refine the ICs to some extent before issuing the forecasts
because of the tendency in the ICs (i.e., prior information).
In this regard, the revESP may overestimate the uncertainty
in the ICs. On the other hand, the ESP method may also
overestimate the uncertainty in the meteorological forcings
because a conditional ESP method that is based on certain
teleconnections (van Dijk et al., 2013) can be used to se-
lect the meteorological forcings from all historical samples.
A more elastic method that was recently proposed by Wood
et al. (2016) could be used to understand the role of ICs
in the seasonal hydrological forecasting with various levels
of uncertainty; (3) the hydrological predictability cannot be
fully understood without combining the hydrological mod-
eling approach and observation dataset to address different
sources of predictability arising from surface water, soil wa-
ter and/or groundwater, and the satellite retrievals of stream
stage, soil moisture and terrestrial water storage would be im-
portant for the predictability studies over a large river basin;
and (4) for the river basins with intensive water resources
management, understanding of the naturalized hydrological
predictability is just a first step; more efforts should be de-
voted to improving the understanding of a “real” hydrologi-
cal predictability by incorporating human interventions. This
is also along the line with the Panta Rhei Project, which was
proposed by the International Association of Hydrological
Sciences in 2013, to understand, predict and manage the wa-
ter systems that are increasingly impacted by humans, and
to provide support for the adaptation to a changing environ-
ment.
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