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Abstract. In many real-world flood forecasting systems, the
runoff thresholds for activating warnings or mitigation mea-
sures correspond to the flow peaks with a given return pe-
riod (often 2 years, which may be associated with the bank-
full discharge). At locations where the historical streamflow
records are absent or very limited, the threshold can be es-
timated with regionally derived empirical relationships be-
tween catchment descriptors and the desired flood quantile.
Whatever the function form, such models are generally pa-
rameterised by minimising the mean square error, which as-
signs equal importance to overprediction or underprediction
errors.

Considering that the consequences of an overestimated
warning threshold (leading to the risk of missing alarms)
generally have a much lower level of acceptance than those of
an underestimated threshold (leading to the issuance of false
alarms), the present work proposes to parameterise the re-
gression model through an asymmetric error function, which
penalises the overpredictions more.

The estimates by models (feedforward neural networks)
with increasing degree of asymmetry are compared with
those of a traditional, symmetrically trained network, in a rig-
orous cross-validation experiment referred to a database of
catchments covering the country of Italy. The analysis shows
that the use of the asymmetric error function can substan-
tially reduce the number and extent of overestimation errors,
if compared to the use of the traditional square errors. Of
course such reduction is at the expense of increasing under-
estimation errors, but the overall accurateness is still accept-
able and the results illustrate the potential value of choos-
ing an asymmetric error function when the consequences of
missed alarms are more severe than those of false alarms.

1 Introduction

In the operation of flood forecasting systems, it is necessary
to determine the values of threshold runoff that trigger the
issuance of flood watches and warnings. Such critical values
might be used for threshold-based flood alert based on real-
time data measurements along the rivers (WMO, 2011) or for
identifying in advance, through a rainfall-runoff modelling
chain, the rainfall quantities that will lead to surpass such
streamflow levels, as in the Flash Flood Guidance Systems
framework (Carpenter et al., 1999; Ntelekos et al., 2006;
Reed et al., 2007; Norbiato et al., 2009).

A runoff threshold should correspond to a flooding flow,
which is at a value that may produce flood damage and is
very difficult to determine on a regional or national scale: it
may be defined as a flow that just exceeds bankfull condi-
tions, but in practice, both in gauged and in ungauged river
sections, such conditions are arduous to quantify due to the
lack of local information (Reed et al., 2007; Hapuarachchi et
al., 2011).

In the absence of more sophisticated physically based
approaches, based on detailed information of each specific
cross section that is rarely available due to limited field sur-
veys, the literature suggests to estimate the bankfull flow as
the flood having a 1.5- to 2-year return period (Carpenter et
al., 1999; Reed et al., 2007; Harman et al., 2008; Wilkerson,
2008; Hapuarachchi et al., 2011; Cunha et al., 2011; Ward et
al., 2013) and a flow that is slightly higher than bankfull may
be identified with the 2-year return period flood (Carpenter
et al., 1999; Reed et al., 2007).

Many operational systems all around the world adopt a sta-
tistically based definition of the flooding flow and the flows
associated with given return periods are used as threshold
stages for activating flood warning procedures.
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The 2-year recurrence is used by many river forecast ser-
vices in the United States, as suggested by Carpenter et
al. (1999), also due to the fact that “the good national cov-
erage of the 2-yr return period flows that the U.S. Geo-
logical Survey (USGS) maintains nationwide supports its
use” (Ntelekos et al., 2006), as well as in British Columbia
(Canada).

However, the floods with different annual exceedance
probabilities, associated with different levels of risk, are also
frequently adopted in operational real-time flood warning
systems: for example in the Czech Republic, flood watch
usually corresponds to a 1- to 5-year flow return period
(Daňhelka and Vlasák, 2013). In Italy, where a national di-
rective issued in 2004 introduces a system articulated on at
least two levels of flow thresholds, many regions have identi-
fied the alert levels as flood quantiles with return periods of 2,
5 or 10 years (e.g. the Abruzzo, Lombardia, Puglia Regions).
In southern France, the AIGA (Adaptation d’Information
Géographique pour l’Alerte) flood warning system compares
real-time peak discharge estimated along the river network
(on the basis of rainfall field estimates and forecasts) to flood
frequency estimates of given return periods (with three cate-
gories: yellow for values ranging from 2- to 10-year floods,
orange for between the 10 and the 50-year floods and red
for peaks exceeding the 50-year flood) in order to provide
warnings to the national and regional flood forecasting of-
fices (Javelle et al., 2014).

For river sections where the streamflow gauges are newly
installed or where historical rating curves are not available,
the observations of the annual maxima are absent or very lim-
ited and it is not possible to obtain a reliable estimate of flood
quantiles on the basis of statistical analyses of series of ob-
served flood peak discharges.

For these ungauged or poorly gaged basins, the peak flow
of a given frequency to be associated with the watch/warning
threshold can be estimated transferring information from
data-rich sites to data-poor ones, as it is done in the corpus of
methodologies applied in RFFA (Regional Flood Frequency
Analysis) at ungauged sites, which have always received con-
siderable attention in the hydrologic literature (Bloeschl et
al., 2013). Among the possible approaches (statistical and
process based) to predict floods in ungauged basins, many
researchers have traditionally applied regression-like region-
alisation methods for (i) the estimation of the index flood
(Darlymple, 1960), usually defined as either the mean or the
median (that is the 2-year return period quantile) of the an-
nual maximum flood series, or for (ii) the direct estimate of
other quantiles of annual maxima in ungauged basins (Ste-
dinger and Lu, 1995; Salinas et al., 2013). Such methods
are based on the assumption that there is a relationship be-
tween catchment properties and the flood frequency statis-
tics and are implemented through a regression-type model
that relates the flood quantile or the index flood to a number
of relevant morpho-climatic indexes. Linear or power (often
linearised through a log-transformation) forms, with either a

multiplicative or additive error term, are the most commonly
used functions (see e.g. Stedinger and Tasker, 1985; GRE-
HYS, 1996; Pandey and Nguyen, 1999; Brath et al., 2001;
Kjeldsen et al., 2001, 2014; Bocchiola et al., 2003; Merz and
Bloeschl, 2005; Griffis and Stedinger, 2007; Archfield et al.,
2013; Smith et al., 2015).

In order to allow for more flexibility to the model struc-
ture (whose true form is of course not known), the interna-
tional literature has recently proposed methods based on the
use of artificial neural networks (ANNs), providing a non-
linear relationship between the input and output variables
without having to define its functional form a priori. Success-
ful applications of ANNs for the estimation of index floods
or flood quantiles at ungauged sites are reported in Muttiah et
al. (1997), Hall et al. (2002), Dawson et al. (2006), Shu and
Burn (2004), Shu and Ouarda (2008), Singh et al. (2010),
Simor et al. (2012) and Aziz et al. (2013).

Both the traditional power form or linear regression meth-
ods and the neural networks models are generally parame-
terised by minimising the mean or root mean of the squared
errors, i.e. a symmetric function assigning the same impor-
tance to overestimation and underestimation errors.

Nevertheless, the consequences of under or overestimat-
ing the runoff threshold when used for early warning are ex-
tremely different.

Adopting a watch threshold that is higher than the
runoff/stage that actually produces flooding damages would
in fact lead to missing such events, failing to issue an alarm.
Underestimating the runoff threshold may instead determine
the issue of false alarms.

False alarms may certainly lead to money losses and also
“undermine the credibility of the warning organisation but
are generally much less costly than an unwarned event”
(UCAR, 2010): in fact the costs of failing to issue an alarm
grow rapidly in a real emergency, since a totally missed event
has strongly adverse effects on preparedness. The costs of
false warnings not only are commonly much smaller than the
avoidable losses of a flood, but also cannot match up to in-
direct and/or intangible flood damages such as loss of lives
or serious injuries (Pappenberger et al., 2008; Verkade and
Werner, 2011).

Furthermore, regarding the effects of false alarms, “in op-
position to ‘cry wolf’ effect, for some they may provide an
opportunity to check procedures and raise awareness, much
like a fire practice drill.” (Sene, 2013)

Overall, false alarms have usually a higher level of accep-
tance than misses and this entails that the estimate of flood
warning thresholds should be cautionary, so as to conserva-
tively reduce the number of missed alarms.

For the development of watches and warnings it is there-
fore important to obtain estimates as accurate as possible,
minimising both positive and negative errors, but consider-
ing that an error will always be present; it is better underpre-
dicting rather than overpredicting the threshold estimate, for
safety reasons.

Hydrol. Earth Syst. Sci., 20, 2383–2394, 2016 www.hydrol-earth-syst-sci.net/20/2383/2016/



E. Toth: Estimation of flood warning runoff thresholds in ungauged basins 2385

To obtain a conservative estimate of the thresholds, penal-
izing more the predictions that exceed the “observed” val-
ues (in the present case represented by the quantile estimate
based on the statistical analysis of measured flow peaks) than
those that underestimate them, in the present work it is pro-
posed, for the first time to the Author’s knowledge, a param-
eterisation algorithm that weights asymmetrically the posi-
tive or negative errors, in order to decrease the consistency
of overestimation and therefore the risk of missing a flood
occurrence.

It is important to underline that the proposed asymmetric
error function is here applied for optimising a neural network
model for predicting the 2-year return period flood (due to its
association with the bankfull conditions) but it might be used
to improve any other kind of methodology for the estimate of
flood warning thresholds associated with any return period.

Section 2 presents the asymmetric error functions; Sect. 3
describes the information available in a database covering the
entire country of Italy and the identification of the subsets to
be used for a rigorous cross-validation approach. Section 4
presents the implementation of the models for estimating the
2-year return period flood in ungauged catchments, consist-
ing of artificial neural networks calibrated using respectively
the symmetric square error and the asymmetric error func-
tions. The results are presented and then discussed in Sect. 5
and Sect. 6 concludes.

2 The asymmetric error function

The scientific literature on forecasting applications, in any
scientific area, adopts almost exclusively an objective func-
tion based on the sum or mean of the squared discrepan-
cies, i.e. a symmetric quadratic function, due to the well-
established good statistical properties of the minimum mean
square error estimator.

On the other hand, in economics as well as in engineer-
ing and many other fields, there are cases where the forecast-
ing problem is inherently non-symmetric and, in the financial
forecasting literature, the use of mean squared error, even if
still widely applied, is nowadays not always accepted.

Error (or loss) functions devised to keep account of an
asymmetric behaviour have been proposed, such as the lin-
ear exponential, the double linear and the double quadratic
(Christoffersen and Diebold, 1996; Diebold and Lopez,
1996; Granger, 1999; Granger and Pesaran, 2000; Elliot et
al., 2005; Patton and Timmerman, 2006). In particular, Elliot
et al. (2005) recently presented a family of parsimoniously
parameterised error functions that nests mean squared error
loss as a special case (Patton and Timmerman, 2006).

Such function, adapted from Elliot et al. (2005) and defin-
ing the error ε as the prediction minus the observed value
(i.e. a negative error corresponds to underestimation, a posi-
tive one to overestimation), reads as follows:
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Figure 1. Asymmetric quad–quad loss function (with α varying
from 0.1 to 0.9) compared with the squared error (SE).

L(p,α)= 2 · [α+ (1− 2α) · 1{ε > 0}] · |ε|p, (1)

where 1(·) is a unit indicator, equal to 1 when ε > 0 and zero
otherwise; p is a positive integer that amplifies the larger er-
rors (corresponding to a quadratic error when equal to 2) and
α ∈ (0, 1) is a parameter representing the degree of asymme-
try.

For α < 0.5 the function penalises more the overestimation
errors (ε > 0), while for α > 0.5 more weight is given to neg-
ative forecast errors (under-predictions); for α= 0.5 the loss
weights symmetrically positive and negative errors.

When p= 2 and α 6= 0.5, the error becomes the asymmet-
ric double quadratic (quad–quad) loss function (see Christof-
fersen and Diebold, 1996), which is used in the present work
for a fair comparison with the traditional mean square error
estimator. When p= 2 and α= 0.5, Eq. (1) corresponds in
fact to the traditional, symmetric, square error:

L(2,0.5)= ε2. (2)

Figure 1 shows the asymmetric quad–quad loss function
(with α varying from 0.1 to 0.9) compared with the squared
error (SE).

In the water engineering field, the asymmetric Elliot er-
ror function with quadratic amplification (p= 2) has been
recently applied to parameterise a model for estimating the
expected maximum scour at bridge piers, in order to obtain
safer design predictions through the reduction of underesti-
mation errors by Toth (2015).

It should be noted that the proposed methodology is a de-
terministic one, where an optimal point forecast is obtained
by minimising the conditional expectation of the future loss;
such a framework does not have the advantages of a proba-
bilistic one in terms of quantification of the uncertainties of
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the prediction, but it aims to identify the optimal value for
the threshold in terms of operational utility.

In Sect. 4, the asymmetric quadratic error function is
proposed for optimising the parameters of an input–output
model, based on artificial neural networks, between the in-
put variables summarising a set of catchment descriptors (ob-
tainable also for ungauged river sections) and the 2-year re-
turn period flood, thus warranting that overestimation errors,
which would increase the risk of missing flood warnings, are
weighted more than underestimation ones.

3 Available information: the national data set of Italian
catchments

The case study refers to a database of almost 300 catchments
scattered all over the Italian Peninsula, compiled within the
national research project “CUBIST – Characterisation of
Ungauged Basins by Integrated uSe of hydrological Tech-
niques” (Claps and the CUBIST Team, 2008).

3.1 Input and output variables

The 12 geomorphological and climatic descriptors are listed
in Table 1. The data set unfortunately lacks information on
other hydrological properties (e.g. on soils, land-cover, veg-
etation) and the climatic characterisation is very limited (for
example information on extreme rainfall would be extremely
important), but the CUBIST set is currently the only database
available in the Italian hydrologists community at a national
scale.

The data set is described in Di Prinzio et al. (2011),
where, following a catchment classification procedure based
on multivariate techniques, the descriptors were used to in-
fer regional predictions of mean annual runoff, mean maxi-
mum annual flood and flood quantiles through a linear multi-
regression model.

As described in such work, in order to reduce the high-
dimensionality of the geomorphological and climatic de-
scriptors set, a Principal Components (PC) analysis was ap-
plied, obtaining a set of derived uncorrelated variables. The
PC variables are as many as the original variables, but they
are ordered in such a way that the first component has
the greatest variability, the second accounts for the second
largest amount of variance in the data and is uncorrelated
with the first, and so forth. In the present data set, the first
three principal components explain more than three-quarters
of the total variance (see Di Prinzio et al., 2011) and these
first three PCs are chosen here as input variables to the mod-
els described in the following, assuming that they may ade-
quately represent, in a parsimonious manner, the main fea-
tures of the study catchments.

The database, in addition to the morpho-pluviometric in-
formation, includes the annual maxima flow records for pe-
riods ranging from 5 to 63 years, whose median values, cor-

Table 1. Geomorphological and climatic descriptors of the CUBIST
database of Italian catchments.

1 Long – UTM longitude of catchment centroid
2 Lat – UTM latitude of catchment centroid
3 A – catchment drainage area
4 P – catchment perimeter
5 zmax – maximum elevation of the catchment area
6 zmin – elevation of the catchment outlet
7 zmean – mean elevation of the catchment area
8 L – length of the maximum drainage path
9 SL – average slope along the maximum drainage path
10 SA – catchment average slope
11 8 – catchment orientation
12 MAP – mean annual precipitation

responding to the 2-year return period, represent the output
variable to be simulated by the models. Only 9 of the 300 lo-
cations had less than 8 years of data and therefore, all records
were deemed to be sufficient for the purposes of this study.

The data set covers a great diverseness of hydrological,
physiographic and climatic properties and in order to par-
tially reduce such heterogeneity, it was decided to limit the
analysis to catchments that have a 2-year flood in the range
of 10–1000 m3 s−1, i.e. 267 over the original 296 basins.

3.2 Identification of balanced cross-validation subsets
with SOM clustering of input data

As will be detailed in Sect. 4, the database is to be divided
in three disjoint subsets (called training, cross-validation and
test sets) in order to allow for a rigorous independent vali-
dation and also to increase the generalisation abilities of the
model when encountering records different from those used
in the calibration (or training) phase, following an early stop-
ping parameterisation procedure.

The way in which the data are divided may have a strong
influence on the performance of the model and it is impor-
tant that each one of the three sets contains all representa-
tive patterns that are included in the data set. As proposed in
the recent literature (Kocjancic and Zupan, 2001; Bowden et
al., 2002; Shahin et al., 2004) a self-organising map (SOM)
may be applied to this aim. The SOM is a data-driven classi-
fication method based on unsupervised artificial neural net-
works that may be applied for several clustering purposes
(for hydrological applications see, for example, Minns and
Hall, 2005; Kalteh et al., 2008).

In the recent years, SOMs were also successfully applied
for catchments classification either based on geo-morpho-
climatic descriptors (Hall and Minns, 1999; Hall et al., 2002;
Srinivas et al., 2008; Di Prinzio et al., 2011) or based on hy-
drological signatures (Chang et al., 2008; Ley et al., 2011;
Toth, 2013); however, it is important to underline that the
clustering is not carried out here in order to identify a pool-
ing group of similar catchments for developing a region-
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Figure 2. Mean value (red dash) and the bars comprised between the 90th and 10th percentiles of the resulting training, cross-validation and
testing sets for each of the three input variable (PC1, PC2 and PC3).

specific model, but for the optimal division of the available
data for the parameterisation and independent testing of a
single model to be applied over the entire study area.

The SOM is in fact used to cluster similar data records
together: an equal number of data records is then sampled
from each cluster, ensuring that records from each class (that
is catchments with different features) are represented in the
training, validation and test sets, which, as a result, have sim-
ilar statistical properties (Bowden et al., 2002; Shahin et al.,
2004).

A SOM (Kohonen, 1997) organises input data through
non-linear techniques depending on their similarity. It is
formed by two layers: the input layer contains one node (neu-
ron) for each variable in the data set. The output-layer nodes
are connected to every input through adjustable weights,
whose values are identified with an iterative training proce-
dure. The relation is of the competitive type, matching each
input vector with only one neuron in the output layer, through
the comparison of the presented input pattern with each of
the SOM neuron weight vectors, on the basis of a distance
measure (here the Euclidean one). In the trained (calibrated)
SOM, all input vectors that activate the same output node be-
long to the same class.

In the present application, the dimension of the input layer
is equal to 3 (that is, the first three principal components of
the catchments descriptors); as far as the output layer is con-
cerned, there is not a predefined number of classes; a parsi-
monious output was chosen that is formed by three nodes in a
row, each one corresponding to a call, to ensure the resulting
sets were not too dissimilar.

The three resulting clusters are respectively formed
by 121, 70 and 76 catchments; each cluster is then divided
into three parts, and one-third is assigned to the training, val-
idation and test sets respectively. Overall, the training, valida-
tion and test sets are therefore equally numerous (91, 88 and
88 records respectively) and formed by the same proportion
of catchments belonging to each of the clusters, having even-
tually a similar information content, as shown by the similar
statistics of the three variables in the three sets represented in
Fig. 2.

4 Development of symmetric and asymmetric artificial
neural networks models for estimating the 2-year
return period flows at ungauged sites

4.1 Feedforward artificial neural networks

Artificial neural networks are massively parallel and dis-
tributed information processing systems, composed of nodes,
arranged in layers, which are able to infer a non-linear
input–output relationship. ANN, in particular feedforward
networks, have been widely used in many hydrological appli-
cations (see for example the recent review papers by Maier
et al., 2010 and by Abrahart et al., 2012) and the readers may
refer to the abundant literature for details on their character-
istics and implementation.

Three different layer types can be distinguished: input
layer (connecting the input information), one or more hidden
layers (for intermediate computations) and an output layer
(producing the final output); adjacent layers are connected
through multiplicative weights and, in each node, the sum
of weighted inputs and a threshold (called bias) is passed
through a non-linear function known as an activation.

The models applied here are networks formed by one hid-
den layer, with tan-sigmoid activation functions, and a sin-
gle output node (corresponding to the estimated flood with
2-year return period), with a linear activation function.

The identification of the network’s weights and biases
(called training procedure) is carried out with a non-linear
optimisation, searching the minimum of an error (or learn-
ing) function measuring the discrepancy between predicted
and observed values, and feedforward networks are generally
trained with a learning algorithm known as backpropagation
(Rumelhart et al., 1994), based on the steepest descent or on
more efficient quasi-newton methods.

In order to avoid overfitting, which degrades the gener-
alisation ability of the model, the early stopping or optimal
stopping procedure was applied (see, for example, Coulibaly
et al., 2000). For applying early stopping, the available data
have been divided into three disjoint subsets with a similar
information content, as described in Sect. 3.2: a training set,
an early stopping validation set and a test set. While the net-
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work is parameterised minimising the error function on the
training set, the error function on the early stopping valida-
tion set is also monitored; if the error function on such second
set increases continuously for a specific number of iterations,
this is a sign of overfitting of the training set: the training is
then stopped and network parameters at the lowest validation
error are returned. The third set (test set) is not used in any
way during the parameterisation phase, but it is used for out-
of-sample, independent evaluation of the resulting models.

4.2 Implementation of the symmetric model

Neural networks, including those applied in the recent hydro-
logical literature for the estimation of index floods or flood
quantiles at ungauged sites, are traditionally trained minimis-
ing the square error function, which is symmetrical about the
y axes and negative or positive discrepancies of the same
magnitude result in the same function value.

In the present work, the results obtained by a network
trained with a conventional square error function are com-
pared with those obtained when parameterising the network
through the minimisation of an asymmetric loss function,
which takes into account both over and underestimation
discrepancies but penalises more the overprediction errors,
since the consequences of missing alarms are more severe
than those of false alarms.

For both type of models, the output values (2-year flood
values) are rescaled as a function of the overall minimum
and maximum values to the [−0.95, +0.95] range, to facil-
itate the optimisation algorithms and also avoid saturation
problems by accommodating possible extreme values occur-
ring outside the range of available data (Dawson and Wilby,
2001). Each implemented architecture is randomly initialised
10 times to help avoiding local optima: the parameter set that
results in the minimum error function on the early stopping
validation data (second set) is chosen as the trained network.

The first implemented model is obtained through the min-
imisation of the traditional, symmetric mean squared error,
applying the quasi-Newton Levenberg–Marquardt backprop-
agation algorithm (Hagan and Menhaj, 1994), widely applied
and regarded as one of the most efficient neural network
training algorithms.

The input variables are the first three principal components
of the catchment descriptors, so the input layer is formed by
three nodes; the output node corresponds to the estimated
flood with 2-year return period; as far as the dimension of
the hidden layer is concerned, there is, unfortunately, no
definitive established methodology for its determination be-
cause the optimal network architecture is highly problem-
dependent. Different architectures with a number of hidden
nodes varying from 2 to 6 were set up: the mean squared er-
ror of the estimates over the third, independent set resulted
the minimum one with the model having three hidden nodes.

The architecture with three input nodes, three hidden
nodes and 1 output node, represented in Fig. 3, is therefore

 

PC1

Q2,p
PC2

PC3

Figure 3. Architecture of the chosen network, with three input
nodes, three hidden nodes and 1 output node.

the network finally chosen; the network parameterised min-
imising the symmetric mean square error function will be de-
noted as ANN-Symm, and in Sect. 5 its results will be com-
pared with those of the asymmetric models having the same
architecture but parameterised with a different error function.

4.3 Implementation of asymmetric models with
varying degree of asymmetry

The quad–quad loss function described in Sect. 2 is here ap-
plied for calibrating the network parameters of the asymmet-
ric models. The learning function to be minimised is there-
fore the average value of the double quadratic errors (mean
quad–quad error, MQQE), obtainable averaging theM (num-
ber of records in the set) errors given by Eq. (1) when p= 2:

MQQE=
2
M

M∑
j=1
[α+ (1− 2α) · 1{ε > 0}] · |εj |2. (3)

The value of α, corresponding to the degree of asymmetry of
the loss function, cannot be fixed a priori, since such choice
should be based on a location-specific cost-benefit analy-
sis, keeping into account the avoidable losses (i.e. the direct
and indirect losses, provided they may be quantifiable, which
may be prevented by mitigation actions following an alarm
issue) and the cost of the mitigation measures themselves.
Such analysis is acknowledged to be extremely difficult, es-
pecially since it also involves intangible costs, such as life
losses, but also warning credibility issues; furthermore, the
costs may change over time and are also dependent on the
warning lead time (see e.g. Martina et al., 2006; Verkade and
Werner, 2011, Montesarchio et al., 2011).

For this reason, in the present application, different asym-
metric networks, with α varying from 0.4 to 0.1, are imple-
mented in order to compare the results obtainable with a dif-
ferent asymmetry degree, which is a different extent of im-
portance given to over/underestimation errors. Such asym-
metrically trained networks are in the following denoted as
Asymm-0.4, Asymm-0.3, Asymm-0.2 and Asymm-0.1.

The training of the four asymmetric networks, based on
the minimisation of the MQQE, is carried out through the
generalisation of the backpropagation algorithm proposed by
Crone (2002) and applied by Silva et al. (2010), which may
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be used for parameterising artificial neural networks with any
differentiable (analytically or numerically) error function.

5 Results and discussion

5.1 Goodness-of-fit measures and plots

As described in Sect. 4.2, the neural networks are trained
over the standardised (rescaled) output values of the train-
ing and cross-validation sets and they are successively used
for predicting the output over the independent test set: such
ANN output values are then scaled back, obtaining the pre-
dictions Q2,p.

The performances of the models are therefore evaluated
through a set of indexes that describe the prediction error (ε),
which is the difference between predictions (Q2,p) issued by
the models (as a function of morpho-climatic attributes only)
and the observed 2-year flood values (the median of histori-
cal annual maxima; Q2,o) on the third set (test set), formed
byN = 91 catchments distributed all over the country, whose
data have not been used in any capacity in the models’ devel-
opment.

The following error statistics have been computed:
MAE (mean absolute error)

MAE=

N∑
i=1
|ε(i)|

N
, (4)

RMSE (root mean square error)

RMSE=

√√√√√ N∑
i=1
(ε(i))2

N
. (5)

MAE and RMSE both represent a symmetric accuracy, cor-
responding to the distance of the predictions from the obser-
vations independently of the error sign (and the RMSE, being
quadratic, emphasises more the larger errors).

In order to keep into account the differences in sign of
the errors, representing the extent of overpredictions as com-
pared to underpredictions, the overall percentage of positive
errors (Over %) is computed:
Over % (percentage of overestimates)

Over%=

{
i = 1, . . .,N |Q2,p(i) > Q2,o(i)

}
N

. (6)

Such a metric shows the general tendency of the model to
overestimate (or to underestimate, since 100−Over % rep-
resents, conversely, the proportion of underpredictions), but
these indexes do not distinguish among errors of different
magnitude, since they also count predictions that may be only
barely above (or below) the targets, i.e. very good predic-
tions, with minimum errors.
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Figure 4. Parallel box plots of the errors (ε=Q2,p−Q2,o) of the
2-year floods estimates obtained by symmetric and asymmetric net-
works on the independent test set of catchments. The bottoms and
tops of the rectangular boxes are respectively the lower and the up-
per quartiles, the horizontal segment inside the box is the median
and the whiskers represent the 5th and 95th percentiles.

Therefore, the extent of overestimation is also evaluated
through the number of high errors, keeping into account only
the more relevant, and therefore potentially more dangerous,
overpredictions. An estimate that is more than 30 % higher
than the corresponding target value was considered here as
high overprediction:
OverH % (percentage of high overprediction errors)

OverH%=

{
i = 1, . . .,N |Q2,p(i) > 1.3 ·Q2,o(i)

}
N

. (7)

The more conservative the threshold estimate, the lower the
value of OverH %.

On the other hand, even if – as discussed – generally less
crucial in terms of consequences, the number of high un-
derestimation errors should also be monitored, since exces-
sively low values imply the tendency of the model to es-
tablish thresholds leading to the issuance of too many false
alarms.
UnderH % (percentage of high underprediction errors):

UnderH%=

{
i = 1, . . .,N |Q2,p(i) < 0.7 ·Q2,o(i)

}
N

. (8)

In addition to the goodness-of-fit measures (reported in Ta-
ble 2), the box plot of the errors (predicted minus observed
quantiles) is shown in Fig. 4.

The results may be evaluated also through the scatter plots
of predicted (y axis) vs. observed (x axis) quantiles, shown
in Fig. 5 that shows every prediction Q2,p in respect to the
corresponding observation Q2,o.

5.2 Discussion of the results

The box plot (Fig. 4) allows to visually assess both the accu-
racy and the tendency to over/underestimate of the models:
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Figure 5. Scatter plots of the predicted (y axis) vs. observed (x axis) 2-year floods estimates on the independent test set of catchments, for
the symmetric and asymmetric models.

the boxes should be compact and close to the dotted line rep-
resenting zero error but at the same time it is better if the data
lie below such a line, thus indicating that the method does not
tend to overpredict the thresholds and the warning system is
therefore less subject to miss a potentially dangerous flood.

It may be seen in Fig. 4 that for the network that
was trained minimising the traditional square error (ANN-
Symm), the box and whiskers are centred on the zero-error
line and the quantiles (top/bottom of the box, top/bottom
whiskers) are at a similar distance from such a line, show-
ing that the errors are equally distributed among overestima-
tion and underestimations. The box is compact, demonstrat-
ing the good accurateness of the method for a substantial part
of the test set, but, due to the symmetric disposition of the er-
rors, many overestimation errors, also remarkably high, are
issued, as shown by the position of the upper whisker.

Analysing Table 2, the relatively good accuracy of the
ANN-Symm model is demonstrated by the values of the
MAE and RMSE, which are the lowest among the imple-
mented models. The symmetric distribution of the overall er-
rors is shown by an Over % close to 50 % and the similar
values of the OverH % (34 %) and UnderH % (32 %) confirm
that also the high relative errors are equally split among over
and underestimates.

Such results were expected since the training is based on
a symmetric loss function, but the consequence is that the
ANN-Symm model issues a remarkable number of signifi-
cant overprediction errors, in fact for about one-third of the
test catchments, the estimates are more than 30 % higher than
the observations.

The analysis of Table 2 shows that the asymmetrically
trained networks tend, for decreasing α values, to reduce the
number of overestimations (positive errors). For the over-
all errors this is shown by the different proportion of over-
/underestimations, which moves from a value that corre-
sponds, approximately, to a balance, to a much more skewed
distribution of positive vs. negative errors, with Over % de-
creasing up to 31 %.

At the same time, and more importantly, the number of
positive (overestimation) errors larger than 30 % substan-

Table 2. Goodness-of-fit criteria of the 2-year floods estimates ob-
tained by the symmetric and asymmetric networks on the indepen-
dent test set of catchments.

Model/ MAE RMSE Over OverH UnderH
index (m3 s−1) (m3 s−1) % % %

Symm 98 133 46 % 34 % 32 %
Asymm-04 104 147 42 % 32 % 35 %
Asymm-03 105 152 41 % 30 % 37 %
Asymm-02 108 162 36 % 27 % 41 %
Asymm-01 115 178 31 % 18 % 47 %

tially decreases with α, with OverH % reaching a value that
is much lower than that of the ANN-Symm model when α
arrives at 0.1 (18 % vs. 34 %).

Conversely, as expected, the more asymmetric the net-
work, the higher the underprediction errors, as shown by the
values of UnderH %: the number of significant negative er-
rors gradually increases from one-third up to 47 % of the to-
tal.

Also the accuracy (given by the total amount of the dis-
crepancies independently of their sign) deteriorates when the
asymmetry is more pronounced, but the drop is moderate and
the RMSE and MAE values are not so far from those of the
ANN-Symm network.

Looking at the parallel box plots (Fig. 4), it may be seen
that the boxes become less compact and, as expected, their
position shifts downwards with increasing asymmetry. The
length of the upper whiskers substantially decrease with α
but the length of the lower whiskers does not increase at the
same rate, thus compensating for the fact that the boxes are
taller for the more asymmetric models. It follows that the
global distances from 95th and 5th percentiles (given by the
distance between the ends of the top and bottom whiskers)
are very close for the symmetric (ANN-Symm) and for the
two most asymmetric networks, thus showing that the vari-
ability of the errors for the vast majority (middle 90 %) of the
data is similar. On the other hand, overall, the errors are mov-
ing towards the underestimation side for increasing asymme-
try (as confirmed also by the corresponding median values)
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and for Asymm-01, the upper part of the box indicates that
only about one-quarter of the errors are overestimations.

It may be noted, in particular from the scatter plots (Fig. 5),
that, for both symmetric and asymmetric models, the errors
are not negligible: this is due to the shortcomings of the
available data set but mainly to the intrinsic limitations of
a regional approach applied to the extreme variability of the
study area. As already underlined in Sect. 3.1, the national
data set lacks important information that may help to char-
acterise the hydrological behaviour and the phenomena gov-
erning formation of extreme flows. On top of the unavoidable
risk of erroneous data, the absence in the database of addi-
tional influences certainly further hampers the possibility to
obtain a reliable relationship with the flood quantiles. Most
importantly, the data set covers the entire Italian Peninsula,
characterised by extremely different hydro-climatic settings
(from Alpine to Mediterranean ones) and this high hetero-
geneity is certainly an additional reason that limits the per-
formance.

Notwithstanding the limitations of the data set, which
equally affect all the proposed models, the results demon-
strate that the use of the double quadratic error function, even
if at the expense of more substantial underestimation errors,
can substantially decrease the number and extent of overesti-
mation errors, if compared to the use of the traditional square
errors.

In the application to a specific cross section, the degree
of asymmetry might be identified as proportional to the risk
averseness of the situation: when the impact of false alarms
is, at least comparatively, small, the decision-makers are re-
luctant to the consequences (economic and social) of a flood
and, rather than risking a missed alarm, can accept many
cases of false alarm with the associated costs.

6 Conclusions

A crucial issue in the operation of flood forecasting/warning
systems at ungauged locations is how to assess the possi-
ble impacts of the forecasted flows, i.e. the identification of
streamflow values that may actually cause flooding, to be as-
sociated with thresholds that trigger the issuance of flood
watches and warnings. The values that may produce dam-
aging conditions (or flooding flows), when in absence of de-
tailed local information on each cross section, are in many
parts of the world estimated as the peak floods having a cer-
tain return period, often 2 years, which is generally associ-
ated with the bankfull discharge.

For locations where the gauges are new or where histori-
cal rating curves are not available, the series of past annual
flow maxima are absent or very limited, and the peak flow
of given frequency to be associated with the watch/warning
threshold can be estimated with regionally derived empirical
relationships, such as those that may be applied for the esti-
mation of the index flood at ungauged sites. Such regression-

like methods consist in a relation between a set of catchment
descriptors that may also be obtained for ungauged sites and
the desired flood quantile; linear or power forms are the most
commonly used functions, but recent studies have success-
fully applied artificial neural network models, due to their
flexibility, to flood quantile and index flood estimation.

Whatever the function form, such models are generally pa-
rameterised by minimising the mean square error, which as-
signs equal weight to overprediction or underprediction er-
rors, whereas, instead, the consequences of such errors are
extremely different when the estimates are to be used as
warning threshold. In fact, false alarms (due to an under-
prediction of the warning threshold) generally have a much
higher level of acceptance than misses (which would derive
from an overestimated threshold).

For this reason, in the present work, the regression model
(a feedforward neural network) is parameterised minimising
an asymmetric error function (of the double quadratic type)
that penalises more the overestimation than the underestima-
tion discrepancies. The predictions of models with increasing
degree of asymmetry are compared with those of a traditional
(trained on the symmetric mean of square errors) neural net-
work, in a rigorous cross-validation experiment referred to as
a database of catchments covering the entire country of Italy.

The results confirm, as expected, that the more asymmetric
the network, the more numerous and higher the underpredic-
tion errors, and the less numerous and less severe the overes-
timation errors. As also expectable, the symmetric accuracy
decreases when the asymmetry is more pronounced, but the
drop is moderate and the RMSE and MAE values are not so
far from those of the traditionally trained network.

Undoubtedly, the nature of the regional approach, as well
as the shortcomings of the data set and the extreme hetero-
geneity of the study area, generate errors much greater than
those obtainable with detailed local studies. On the other
hand, where no alternatives exist, the proposed methodology
may provide a preliminary estimate of the threshold runoff
that do not overestimate the actual flooding flow.

Notwithstanding the acknowledged limitations of the data
set, which affect equally all the proposed models, the analysis
shows that the use of the asymmetric error function substan-
tially reduces the number and extent of overestimation errors,
if compared to the use of the traditional square errors. Of
course such reduction is at the expense of increasing under-
estimation errors, but the overall precision is still acceptable
and the study highlights the potential benefit of choosing an
asymmetric error function when the consequences of missed
alarms are more severe than those of false alarms.

Minimising the asymmetric error function has the purpose
of optimising the threshold from an operational point of view,
in a deterministic framework: future analyses may be devoted
to investigate the uncertainty of the issued predictions, since
a probabilistic approach (provided that the methodology is
able to include all sources of uncertainty and its quality may
be objectively assessed) may provide very valuable insights
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for a more complete evaluation of the model, supplementing
the information provided by point-value predictions.

It is important to highlight that the asymmetric error func-
tion is used, in this study, to parameterise a neural network,
but of course it might be used to optimise any other model or
equation, when aiming to obtain conservative estimates, for
safety reasons.

The appropriate degree of asymmetry might be identi-
fied depending on the risk averseness of the specific flood-
prone context. The quantification of risk aversion is ex-
tremely difficult and case specific and it should keep into
account that the perception of society may be very differ-
ent from a technical appraisal of the involved costs. In addi-
tion, it should also include indirect, intangible and long-term
impacts. More research on the societal perception in differ-
ent contexts would greatly improve the process of risk-based
decision-making (Merz et al., 2009), including the choices
concerning flood-warning thresholds. Hopefully, in the next
years, a more direct collaboration between the hydrologic
and socio-economic research communities, as advocated in
the new Panta Rhei science initiative (Montanari et al., 2013;
Javelle et al., 2014), in particular with regard to data-driven
modelling (Mount et al., 2016), will provide a progress in
this direction.
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