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Abstract. Rangelands cover a large portion of the earth’s
land surface and are undergoing dramatic landscape changes.
At the same time, these ecosystems face increasing expecta-
tions to meet growing water supply needs. To address major
gaps in our understanding of rangeland hydrologic function,
we investigated historical watershed-scale runoff and sedi-
ment yield in a dynamic landscape in central Texas, USA. We
quantified the relationship between precipitation and runoff
and analyzed reservoir sediment cores dated using cesium-
137 and lead-210 radioisotopes. Local rainfall and stream-
flow showed no directional trend over a period of 85 years,
resulting in a rainfall–runoff ratio that has been resilient to
watershed changes. Reservoir sedimentation rates generally
were higher before 1963, but have been much lower and very
stable since that time. Our findings suggest that (1) rangeland
water yields may be stable over long periods despite dramatic
landscape changes while (2) these same landscape changes
influence sediment yields that impact downstream reservoir
storage. Relying on rangelands to meet water needs demands
an understanding of how these dynamic landscapes function
and a quantification of the physical processes at work.

1 Introduction

Diverse rangeland ecosystems falling along a grassland–
forest continuum cover roughly half of the earth’s land sur-

face (Breshears, 2006). Generally precipitation-limited, they
are typically used for livestock grazing and harvesting of
woody products rather than crop production. But rangelands
worldwide face numerous challenges, including (1) conver-
sion to urban development or cultivation; (2) shifting plant
cover, such as encroachment by woody plants and invasion
by non-native species; and (3) demands for increased produc-
tion without sacrificing sustainability (Tilman et al., 2002;
Van Auken, 2000; Wilcox et al., 2012b).

As growing populations look to these dynamic landscapes
to provide critical ecosystem services – including water sup-
ply and water storage – their ability to keep pace with these
demands is uncertain (Havstad et al., 2007; Jackson et al.,
2001). Some of this uncertainty is due to the tremendous vari-
ability of runoff and erosion through time and space, which
can vary by orders of magnitude even between portions of a
single small field (Gaspar et al., 2013; Ritchie et al., 2005).
Landscape changes affect these processes further still, and
water and sediment yields depend on interactions between
climate, vegetation, and local geology. These complex inter-
actions make predictions difficult, and the influence of hu-
man activity adds yet another compounding layer of diffi-
culty (Peel, 2009; Boardman, 2006; Vorosmarty and Saha-
gian, 2000). As a result, major gaps remain in our under-
standing of rangeland ecosystems. Further interdisciplinary
study is imperative to develop a coherent picture of the link-
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ages between hydrological, ecological, and geological pro-
cesses (Newman, 2006; Wilcox and Thurow, 2006).

Some rangeland investigations have focused on the poten-
tial of these landscapes to provide augmented water yields or
storage in small reservoirs. Economic and modeling studies
have identified vegetation management as a possible means
of increasing runoff and streamflow (Griffin and McCarl,
1989; Afinowicz et al., 2005), and government agencies have
incorporated these goals into their programs (Texas State Soil
and Water Conservation Board, 2005; USDA-NRCS, 2006).
Other concerns center on sediment yield, which threatens
downstream surface water storage (Bennett et al., 2002; Dun-
bar et al., 2010). To determine how to respond to these issues
and whether related investments are worthwhile, we must
gain a better understanding of how rangeland systems func-
tion with respect to water resources.

To date, most research has been based on extrapolation of
findings from relatively small-scale studies to larger scales
or on modeled results. However, because runoff and sediment
production are scale-dependent processes, such extrapolation
is often unreliable (de Vente and Poesen, 2005; Wilcox et
al., 2003). Since they more accurately reveal the true water
and sediment yields of watersheds, studies of these processes
conducted at the catchment scale are much more relevant to
water planning efforts. But whereas catchment-scale data on
precipitation and streamflow are somewhat widely available,
corresponding sediment data are lacking. Since they serve as
archives of historical watershed conditions, the use of reser-
voir sediments provides one means of filling this data gap and
of investigating the impact of human activity (Edwards and
Whittington, 2001; Winter et al., 2001). Linking the findings
of such investigations with observed changes at the water-
shed scale will greatly facilitate the development of effective
strategies for managing rangeland water resources.

In this study, we investigated the hydrological and sedi-
ment transport dynamics of rangeland watersheds. Our main
objectives were to (1) quantify long-term trends in precipi-
tation and streamflow using historical data, (2) estimate his-
torical sedimentation rates through radioisotope analysis of
reservoir sediment cores, and (3) explore the potential effects
of drought conditions on sediment production with historical
data. Addressing these objectives not only improves our un-
derstanding of rangeland processes but also provides much
needed information on the potential of these landscapes to
provide for growing global water needs.

2 Methods

2.1 Study area

As part of a broader study of landscape change and ecosys-
tem function, we examined rangeland processes in the Lam-
pasas Cut Plain of central Texas, USA. This savanna land-
scape is characterized by low buttes and mesas separated by

broad, flat valleys. Local prevailing geology is Cretaceous
limestone; soils are loamy and clayey, with occasional sandy
loams, and are susceptible to sheet and gully erosion (Alli-
son, 1991; Clower, 1980). The area is drained by the Lam-
pasas River. Streamflow in the upper reaches of the river is
runoff dominated, with localized contributions from spring
flow (Prcin et al., 2013), and has been recorded at two pri-
mary stations (Fig. 1). Annual precipitation averages approx-
imately 800 mm, decreasing to the north and west (Fig. 2).
Winter mean temperature is around 7 ◦C and in summer
27 ◦C.

For the sediment study, we examined eight flood-control
reservoirs and their watersheds within the Lampasas River
basin. Reservoirs L1, L2, L3, L4, L9, and LX are located in
Lampasas County and were constructed between 1958 and
1961. Before impoundment, the parallel watersheds of L1,
L2, and L3, contributed to the downstream watershed of LX.
Reservoirs M1 and M4, in Mills County, were completed in
1974. Basic attributes of the reservoirs and their watersheds
are compiled in Table 1.

Current local land use is predominantly rangeland, and
livestock numbers have fluctuated over the last several
decades (Fig. 3a) while remaining among the highest in the
region (Wilcox et al., 2012a). Cropland was widespread early
in the 20th century (Fig. 3b) but had declined by nearly 80 %
by 2012 (Berg et al., 2016). Amid this shifting land use, the
area has been characterized by large fluctuations in the ex-
tent of woody plant cover, due to brush management and re-
growth (Fig. 3c), and a dramatic increase in the density of
farm ponds (Fig. 3d) over the last several decades (Berg et
al., 2015a).

2.2 Rainfall and runoff trends

To investigate local hydrological trends, we analyzed histori-
cal precipitation and streamflow data for the Lampasas River
basin. We created a composite record of annual precipitation
using a Thiessen polygon approach, centering polygons on
available National Weather Service (NWS) stations (Fig. 2).
Daily streamflow data were derived from the two USGS (US
Geological Survey) stream gage stations downstream from
the study watersheds. The lower Youngsport station, with a
drainage area of 3212 km2, operated between 1924 and 1980;
the Kempner station, with a drainage area of 2119 km2 has
remained active from 1963 to the present.

We performed an automated base-flow separation of
streamflow data from each station (Arnold and Allen, 1999).
This digital filter approach is objective and reproducible and
partitions annual base flow and storm flow with high effi-
ciency (Arnold et al., 1995) – enabling these components to
be interpreted in light of changing landscape conditions.

Using the precipitation (1924–2010) and two stream-
flow data sets (1924–1980; 1963–2010), we applied a non-
parametric Mann–Kendall trend test (Lettenmaier et al.,
1994) to detect directional changes in precipitation, total
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Figure 1. Study area in Texas, USA. Each study watershed encloses a flood-control reservoir from which sediment cores were collected. All
watersheds contribute flow to the Lampasas River.

Table 1. Sediment study reservoirs and watershed characteristics.

Reservoir Primary Surface area Watershed area Year Year Min. elev. Max. elev.
inflow (km2) (km2) impounded cored (m) (m)

L1 Donalson Creek 0.20 50.9 1959 2010 367 500
L2 Pitt Creek 0.18 23.2 1959 2010 362 458
L3 Espy Branch 0.11 27.5 1958 2010 355 459
L4 Pillar Bluff Creek 0.07 41.2 1960 2012 345 467
L9 Cemetery Creek 0.02 1.2 1960 2012 322 363
LX Bean Creek 0.20 23.1 1961 2012 338 420
M1 Middle Bennett Creek 0.14 34.6 1974 2012 422 536
M4 Mustang Creek 0.15 28.0 1974 2012 432 534

streamflow, base flow, and storm flow. We performed two-
tailed statistical tests for significance, with α= 0.10.

2.3 Reservoir sedimentation rates

To shed light on sediment transport processes, we extracted
cores from each of the eight reservoirs and analyzed sedi-
ments using cesium-137 (137Cs) and lead-210 (210Pb) trac-
ers. 137Cs is present in the environment as a result of atomic
weapons testing and accidental emissions. 210Pb occurs nat-
urally. Both can be used to estimate sedimentation rates
and interpret transport history in a variety of environments
(Walling et al., 2003; Ritchie and McHenry, 1990; Appleby
and Oldfield, 1978). Coring sites were selected by locating

the thickest sediment deposits through exploratory hydroa-
coustic surveys (US Army Corps of Engineers, 1989, 2013;
Dunbar et al., 2002). In each reservoir, we extracted sedi-
ment cores at identified sites near the dam structure, from
locations corresponding to the pre-impoundment floodplain
(Fig. 4). Taking cores from these areas reduces the likelihood
of capturing mixed profiles, which skew analysis (Sanchez-
Cabeza and Ruiz-Fernández, 2012). It also ensures the col-
lection of fine sediments, to which the radioisotopes pref-
erentially adsorb (Bennett et al., 2002). We extracted cores
using a portable vibracoring system suspended from a float-
ing platform. This method captures unconsolidated, satu-
rated sediments with minimal disturbance and compaction
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Table 2. Linear sedimentation rates derived from radioisotope activities.

137Cs 210Pb

Core
Pre-1963 Post-1963 Core mean R2

cm yr−1 cm yr−1 km−2 cm yr−1 cm yr−1 km−2 cm yr−1 cm yr−1 km−2 ln dpm g−1

vs. depth

L1 6.4 0.13 2.9 0.06 3.1 0.06 0.90
L2 3.4 0.15 0.8 0.03 0.9 0.04 0.97
L3 1.4 0.05 2.1 0.08 1.3 0.04 0.96
L4 a a 0.5b 0.01b 1.2 0.03 0.93
L9 2.5 2.02 0.4 0.32 0.4 0.19 0.94
LX a a 0.1 < 0.01 c c c

M1 a a 1.5 0.04 c c c

M4 a a 0.4b 0.01b 0.8 0.01 1.00

a Core did not display a 137Cs peak, and rates were calculated using the time elapsed since impoundment.
b Core did not capture the pre-impoundment surface and likely underestimates true values.
c Core showed significant vertical mixing, preventing calculation of sedimentation rate.

660–711 mm 

711–762 mm 

762–813 mm 

813–864 mm 

NWS stations 

Figure 2. Average annual precipitation gradient and location of Na-
tional Weather Service (NWS) stations used to construct historical
precipitation record.

(Lanesky et al., 1979). The cores were collected with an alu-
minum pipe lowered to the point of refusal, penetrating the
pre-impoundment surface. Retrieved cores were sealed and
transported upright to cold storage (∼ 5 ◦C).

We sectioned each core vertically in 3 cm intervals, drying
each section for analysis according to IAEA (2003) proto-
cols. A subsample of each core section was ground to ho-
mogenize its contents, sealed in a 50 mm× 9 mm Petri dish,
and allowed to ingrow for at least 21 days so that 210Pb
supported levels reached equilibrium. Counts for 210Pb and
137Cs were performed according to Hanna et al. (2014) us-
ing a Canberra low-energy germanium gamma spectrometer.
Radioisotope activity was indicated by photopeaks at 46 keV

(total 210Pb) and 661.6 keV (137Cs). Excess 210Pb was calcu-
lated by subtracting the supported activity of the 226Ra par-
ent – obtained by averaging the 295, 351.9, and 609.3 keV
peaks of the 214Pb and 214Bi daughter products – from total
measured 210Pb activity at the 46 keV peak. Activity mea-
surements were validated with IAEA-300 standard reference
material.

To determine historical linear sedimentation rates, we used
as a chronological marker the depth of peak 137Cs activ-
ity (corresponding to the 1963 peak in global atmospheric
fallout) (Ritchie et al., 1973). We calculated average linear
sedimentation rates for the post-1963 period by dividing this
depth by the time elapsed between 1963 and the coring date
for each reservoir; we calculated the pre-1963 rates by divid-
ing the depth of sediment below the activity peak by the time
elapsed between reservoir impoundment and 1963.

To complement 137Cs analysis, we used excess 210Pb ac-
tivities to calculate the linear sedimentation rate for each core
(Krishnaswamy et al., 1971; Bierman et al., 1998). We also
searched for changing deposition rates within each core, as
plots of the natural log of excess 210Pb versus depth indicate
stable sedimentation rates over time when R2 approaches
1.0.

Finally, we obtained historical annual Palmer Modified
Drought Index (PMDI) data for the region to identify poten-
tial climatic drivers of sedimentation during different peri-
ods. We plotted PMDI and annual peak flows (from USGS
data) between 1924 and 2010, identifying episodes con-
ducive to increased sediment production (in particular, a wet
year or years following a period of intense drought).
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Figure 3. Historical landscape changes in the study area. (a) Live-
stock numbers in the Lampasas Cut Plain. Recreated from Wilcox
et al. (2012a). (b) Extent of active cropland in 1937–1940 and 2012
(Berg et al., 2016). (c) Historical extent of woody plant cover in the
study watersheds (Berg et al., 2015b). (d) Pond density over time in
the study watersheds (Berg et al., 2015a).

Figure 4. Reservoir sediment coring apparatus (top) and represen-
tative sediment profile (bottom).

3 Results

3.1 Rainfall and runoff trends

Despite a great deal of interannual variability, there was
no directional change in local precipitation in 1924–1980
(p= 0.90) or 1963–2010 (p= 0.22), which has remained
near a long-term average of 800 mm (Fig. 5a). The same
is true of total streamflow (1924–1980: p= 0.98; 1963–
2010: p= 0.34), which has averaged between 60 and 70 mm
(Fig. 5b). As a result, the rainfall–runoff ratio, the pro-
portion of rainfall leaving a watershed as streamflow, also
remained unchanged, at approximately 8 % (1924–1980:
p= 0.90, 1963–2010: p= 0.45). Moreover, neither base
flow nor storm flow exhibited a directional change over ei-
ther period of record. However, base flow as a proportion of
total streamflow did increase 1924–1980 (p= 0.02) despite
minimal change in overall flow – almost doubling its contri-
bution (Fig. 5c).

3.2 Reservoir sedimentation rates

Sediment core profiles varied widely in depth between reser-
voirs – from less than 3 cm in LX to 162 cm in L1 (Fig. 6).
Activity peaks of 137Cs supported the analysis of pre-1963
sedimentation rates for reservoirs L1, L2, L3, and L9. Over-
all, linear sedimentation rates were higher before 1963 (Ta-
ble 2; Fig. 7). Except in the case of L3, sediment deposition
has slowed since 1963 – by 54 % in L1, 76 % in L2, and
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Figure 5. Precipitation and streamflow trends of the Lam-
pasas River basin. (a) Precipitation showed no directional trend.
(b) Streamflow showed no directional trend at either the Youngsport
(Y) or Kempner (K) station, despite being highly variable. (c) Base
flow as a proportion of total streamflow displayed an upward trend
over the first portion of the study period.

84 % in L9. In reservoir L3, it increased by 49 % after 1963.
Reservoir L1 exhibited the highest sedimentation rate both
before and after 1963. However, when normalized by catch-
ment area, sedimentation rates varied much more widely. The
rates in L9 were by far the highest – surpassing the next high-
est reservoir by nearly 1400 % for the pre-1963 period and by
423 % for the post-1963 period.

Cores from L4, LX, M1, and M4 did not display a 137Cs
peak. For these cores, sedimentation was assumed to be post-
1963 and was estimated by dividing sediment depth by time

since impoundment. For cores L4 and M4, which did not cap-
ture the entire sediment profile, actual rates are likely higher
than those calculated.

Cores from reservoirs LX and M1 showed vertical mixing
that prohibited 210Pb analysis. However, remaining cores dis-
played high correlation between 210Pb activities and depth,
indicating that linear sedimentation rates have remained quite
stable over time (Table 2). 210Pb-based estimates generally
resembled those based on 137Cs activities. In addition, rates
calculated from 210Pb activities were similar to the post-1963
rates based on 137Cs activities (p= 0.84), suggesting good
agreement between the two methods for the period since
1963.

Chronological data revealed periods of drought of vary-
ing intensity and occasional years of very high streamflow
(Fig. 8). The historic 1950s drought was longer and more se-
vere than any other over the last century; it was followed by
periods of very high flow in 1957 and 1960. Comparable high
flows in 1965 occurred in the middle of a multi-year drought,
and the severe drought beginning in 2006 featured occasional
elevated peak flows. In 1992, very high flows occurred dur-
ing a prolonged wet period.

4 Discussion

4.1 Rainfall and runoff trends

Given the varying trends in precipitation and streamflow ob-
served in many regions (Lins and Slack, 1999; Andreadis and
Lettenmaier, 2006), the dynamic hydrological stability in our
study area is surprising. At the same time, such consistency
sheds light on the effects of watershed changes on local wa-
ter budgets. Studies at small spatial scales frequently indi-
cate that landscape changes have important water resource
impacts, with the specific response depending on the rela-
tive importance of evapotranspiration, recharge, and runoff
(Foley et al., 2005; Kim and Jackson, 2012). Such changes
affect local water budgets and influence water yields (Pe-
tersen and Stringham, 2008; Huxman et al., 2005; Farley et
al., 2005). However, complicated feedbacks make effects at
larger scales highly uncertain and often overwhelmed by cli-
matic and physical characteristics (Peel, 2009; Wilcox et al.,
2006; Kuhn et al., 2007). Our rainfall–runoff ratio of 8 %
is essentially identical to early estimates of 7 % for the area
(Tanner, 1937). The lack of a directional trend in streamflows
suggests that this region, like many semiarid landscapes
dominated by surface runoff, is largely hydrologically insen-
sitive to shifting watershed characteristics (Wilcox, 2002).
Perceived impacts due to changing rooting depths, longer
growing seasons for evergreen woody plant species, and as-
sumptions of very high shrub transpiration capacities are not
borne out. Changes in land use and land cover – and even
the impoundment of small reservoirs – have had negligible
impacts on streamflow. These results confirm and add new
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Figure 6. Sediment core profiles of bulk density and radioisotope activities from the eight reservoirs. Solid horizontal lines indicate the
pre-impoundment surface (no line indicates the core did not capture the pre-impoundment surface). Dashed lines in 137Cs graphs represent
the depth of peak activity. The 210Pb profile for L3 is from a second core collected at the same location.

insight to other research showing that woody plants in this
region are shallow rooted and do not rely on deeper, peren-
nial water sources (Heilman, 2009; Schwartz et al., 2013;
Schwinning, 2008).

It is still not understood why base flow showed a propor-
tional increase 1924–1980. In some landscapes, improving
range conditions have led to increased infiltration (Wilcox
and Huang, 2010). However, local livestock numbers have
remained high, and karst features are limited – unlike other
regions where base flow increases have been attributed to
rangeland recovery. It is possible that infiltration from lo-
cal impoundments has added to base flows. Despite mini-

mal effects on total streamflow, even small dams can cre-
ate localized groundwater recharge (Graf, 1999; Smith et al.,
2002), and Lampasas River tributaries are characterized by a
high degree of connectivity between surface water and local
aquifers (Mills and Rawson, 1965).

Perennial flow in this part of the Lampasas River is main-
tained by isolated springs fed by an aquifer extending beyond
the basin (Mills and Rawson, 1965). As a result, the effective
catchment of the river is larger than it appears, and spring
flow contributions complicate the interpretation of stream-
flows. At the same time, it is clear that the fundamental re-
lationship between rainfall and streamflow has not changed
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Figure 6. Continued.

over more than 85 years – suggesting that the Lampasas
River is hydrologically resilient in the face of changing land
use and land cover.

4.2 Reservoir sedimentation rates

Because sediment deposition affects reservoir storage and
flood detention, understanding sedimentation rates over time
is critical to managing rangeland water resources. Though
questions do remain regarding the opposing trend in reser-
voir L3, changes in rates make it clear that sedimentation
was more rapid before 1963. The period since that time has
been characterized by stable and lower yields. What explains

the higher rates seen during the earlier period? Additional
historical landscape data may offer a key interpretive lens.

Livestock can be powerful instruments of landscape
change, both directly (trampling soils) and indirectly (dis-
turbing protective vegetation). When grazing is prolonged or
intense, sediment yield can be great (Trimble and Mendel,
1995). The high animal densities in this area around the time
of reservoir impoundment doubtlessly contributed to erosion
(Fig. 3a).

Crop production also can result in accelerated erosion by
damaging soil structure and depleting organic matter (Quine
et al., 1999). Cropland is a major source of sediment in many
landscapes (Foster and Lees, 1999; Blake et al., 2012). In
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Figure 7. Linear sedimentation rates derived from 137Cs activities.
Summary comparison of pre-1963 and post-1963 rates.

our study area, cropland acreage has declined dramatically
since the 1930s (Fig. 3b). Further, nationwide improvements
in soil conservation have reduced sediment yield from many
agricultural lands (Knox, 2001).

While woody plant encroachment influences soil loss, re-
moving undesirable shrubs and trees also elevates short-term
sediment yields (Porto et al., 2009). Since the time of initial
settlement, woody plant management has resulted in major
land cover changes (Fig. 3c). Most early removal was done
manually, and the first mechanical control methods were
very destructive, leading to high erosion rates (Hamilton and
Hanselka, 2004). In recent decades, however, brush removal
has declined with shifting landowner priorities (Sorice et al.,
2014).

Changes in precipitation frequency, duration, or intensity
also affect sediment transport (Xie et al., 2002; Allen et
al., 2011). Similarly, drought is an important driver of sed-
iment dynamics in many rangelands. Extended dry periods
can cause long-term shifts in plant cover, leading to sediment
pulses when rains return (Allen and Breshears, 1998; Near-
ing et al., 2007). The Lampasas River experienced very high
flows in 1957, 1960, 1965, and 1992, and some of these were
associated in time with severe droughts (Fig. 8). Just before
the impoundment of most of the reservoirs we examined, the
region was in the grip of drought conditions unmatched since
European settlement (Bradley and Malstaff, 2004). Our sed-
iment records cover only the end of this drought but show
pre-1963 deposition 220–630 % faster than subsequent rates.
However, any direct effects of the 1957 drought-breaking
floods would not be found in the sediments of the reservoirs,
which were impounded beginning in 1958. Interestingly, we
also did not find spikes in sedimentation associated with high
flows or droughts later in the study period. The apparent low
importance of drought and floods in sediment delivery in
these watersheds is surprising.

Together, these factors have acted over multiple temporal
and spatial scales to influence sediment yields in the study
area. Yet because there is no clear link between contemporary
land use, land cover, and sedimentation rates, it is possible
that another process has reduced sediment yields.

4.3 Sediment storage

To truly understand the local sediment processes at work, it
is important to understand what our findings actually show.
Sedimentation rates are poor indicators of in-field soil ero-
sion and redistribution (Nearing et al., 2000; Ritchie et al.,
2009); what they do reflect is more closely related to net wa-
tershed sediment yield. Sediment yield is buffered by inter-
nal storage. Especially at larger scales, watersheds can have a
great deal of internal storage, so that very little eroded soil ac-
tually leaves the watershed, even in the presence of extreme
erosion (Bennett et al., 2005; Porto et al., 2011).

In this study area, the increasing density of farm ponds
(Fig. 3d) represents a key potential sink for watershed sedi-
ments. These ponds – usually < 0.3 ha when full – retain ma-
terial that otherwise would be transported downstream, re-
ducing sediment yields. Because of their smaller contribut-
ing watersheds, ponds have high trap efficiencies, magnify-
ing their effects (Brainard and Fairchild, 2012). Indeed, im-
poundments may be the single greatest anthropogenic modi-
fier of sediment transport; globally, most sedimentation now
takes place in aquatic settings and will be retained therein for
long periods (Renwick et al., 2005; Verstraeten et al., 2006).

In addition to this storage of eroded sediments in local
ponds, a vast amount of sediment from past erosion likely
remains on the landscape (Beach, 1994; Meade, 1982). The
initial decades after European settlement in this area saw in-
tensive cultivation and very high livestock densities (Jordan-
Bychkov et al., 1984; Wilcox et al., 2012a). This destructive
combination remained in place for nearly a century in the
Lampasas Cut Plain. By the 1930s, many rangelands were
already seriously degraded (Mitchell, 2000; Bentley, 1898;
Box, 1967). While the methods we used do not allow us to
determine whether reservoir sediments result from contem-
porary erosion or are a legacy of earlier land use, stabilizing
sediment yields and observations of local gully erosion sug-
gest that deposits from prior erosion continue to be a source
of sediment (Bartley et al., 2007; Mukundan et al., 2011;
Phillips, 2003).

The lack of sediments in LX appears to lend support to the
importance of internal deposits. This reservoir’s watershed is
comparable in size to those of L2, L3, and M4, yet sedimen-
tation rates were only 3–14 % of those in the other reservoirs.
When L1, L2, and L3 were impounded, the effective catch-
ment area of LX decreased by 86 %. Without the historical
streamflows and sediment loads from those tributaries, de-
posits are no longer mobilized and transported downstream.

Given this complexity, we suggest that radioisotope trac-
ers have great potential to elucidate the dynamics of range-

www.hydrol-earth-syst-sci.net/20/2295/2016/ Hydrol. Earth Syst. Sci., 20, 2295–2307, 2016



2304 M. D. Berg et al.: Contrasting watershed-scale trends in rangeland water resources planning

-1500 

-1000 

-500 

0 

500 

1000 

1500 

-60 

-40 

-20 

0 

20 

40 

60 

1925 1940 1955 1970 1985 2000 2015 

P
ea

k 
Q

  (
m

3 s
-1

) 

D
ro

ug
ht

 S
ev

er
ity

 (A
nn

. P
M

D
I) 

Drought Severity Peak Flow 

1950s drought 

1957 flood 
1960 flood 

1965 flood 

1992 flood 

1960s drought 

2000s drought 

Figure 8. Chronology of regional drought (annual Palmer Modified Drought Index) and peak flows on the Lampasas River.

land systems, particularly as their use evolves from primarily
research applications to use as a management and decision-
support tool (Mukundan et al., 2012). Further strides can be
made in understanding rangeland processes by (1) incorpo-
rating historical climate, land use, and land cover information
to interpret sediment data (Venteris et al., 2004; Boardman,
2006) and (2) including sediment surveys of the farm ponds
that are much smaller yet far more abundant than the reser-
voirs we examined (Downing et al., 2006).

5 Conclusion

We examined long-term trends in rainfall, runoff, and sed-
iment yield in rangeland watersheds with a dynamic land
use history. Over more than 85 years, neither precipitation
nor streamflow showed any directional trend, suggesting a
lack of hydrological sensitivity to landscape change. This
raises doubts over efforts to increase runoff by directing land
cover changes. Reservoir sedimentation rates generally were
higher before 1963, and then stabilized at a lower level over
the 50 years since 1963. We believe that this decline in sedi-
ment yield is related to long-term landscape changes and an
increase in internal storage. As a result, future changes in
land use or sediment storage may impact downstream reser-
voir capacity. These findings challenge simplistic assump-
tions about streamflow and sediment yield in dynamic range-
lands. Determining the role of these landscapes in meet-
ing growing water resource demands requires a creative ap-
proach. Integrating multiple techniques with historical infor-
mation enables a more complete understanding of rangeland
processes and holds the key to informed water planning.

6 Data availability

Streamflow data are available at the USGS National Wa-
ter Information System. Stream gages: 08103800 (Kempner)
and 08104000 (Youngsport). Drought data are available at
the NOAA National Climate Data Center. Texas Climate Di-
vision: CD 3 (North Central) and CD 6 (Edwards Plateau).
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