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Abstract. A comprehensive assessment of the partitioning of
precipitation (P ) into evapotranspiration (E) and runoff (Q)
is of major importance for a wide range of socio-economic
sectors. For climatological averages, the Budyko framework
provides a simple first-order relationship to estimate water
availability represented by the ratio E /P as a function of
the aridity index (Ep/P , with Ep denoting potential evapora-
tion). However, the Budyko framework is limited to steady-
state conditions, being a result of assuming negligible stor-
age change in the land–water balance. Processes leading to
changes in the terrestrial water storage at any spatial and/or
temporal scale are hence not represented. Here we propose an
analytically derived modification of the Budyko framework
including a new parameter explicitly representing additional
water available to evapotranspiration besides instantaneous
precipitation. The modified framework is comprehensively
analyzed, showing that the additional parameter leads to a
rotation of the original water supply limit. We further eval-
uate the new formulation in an example application at mean
seasonal timescales, showing that the extended framework
is able to represent conditions in which monthly to annual
evapotranspiration exceeds monthly to annual precipitation.

1 Introduction

The Budyko framework serves as a tool to estimate mean an-
nual water availability as a function of aridity. It is widely
used and well-established within the hydrological commu-
nity, due both to its simplicity and long history, combin-
ing experience from over a century of hydrological research.
Budyko (1958, 1974) derived a formulation of the func-

tion based on findings of Schreiber (1904) and Ol’Dekop
(1911), and several other formulations have also been pos-
tulated which are numerically very similar (Schreiber, 1904;
Ol’Dekop, 1911; Turc, 1954; Mezentsev, 1955; Pike, 1964;
Fu, 1981; Choudhury, 1999; Zhang et al., 2001, 2004; Por-
porato et al., 2004; Yang et al., 2008; Donohue et al., 2012;
Wang and Tang, 2014; S. Zhou et al., 2015). Many of these
formulations are empirically derived and only few are ana-
lytically determined from simple phenomenological assump-
tions (Fu, 1981; Milly, 1994; Porporato et al., 2004; Zhang
et al., 2004; Yang et al., 2007; S. Zhou et al., 2015). Numer-
ous studies further assess controls determining the observed
systematic scatter within the Budyko space. This scatter is,
however, inherent, being also justified by the existence of
free parameters within analytically derived formulations of
the Budyko curve (Fu, 1981; Choudhury, 1999; Zhang et al.,
2004; Yang et al., 2007). A variety of catchment and climate
characteristics such as vegetation (Zhang et al., 2001; Dono-
hue et al., 2007; Williams et al., 2012; Li et al., 2013; G. Zhou
et al., 2015), seasonality characteristics (Milly, 1994; Potter
et al., 2005; Gentine et al., 2012; Chen et al., 2013; Berghuijs
et al., 2014), soil properties (Porporato et al., 2004; Shao
et al., 2012; Donohue et al., 2012) and topographic controls
(Shao et al., 2012; Xu et al., 2013) have been proposed to ex-
ert a certain influence on the scatter within the Budyko space.
Also more complex approaches to combine various controls
(Milly, 1994; Gentine et al., 2012; Donohue et al., 2012; Xu
et al., 2013) have been considered. Nonetheless, until present
no conclusive statement on controls determining the scatter
within the Budyko space has been made. In a recent assess-
ment, Greve et al. (2015) further suggested a probabilistic
Budyko framework by assuming that the combined influence

Published by Copernicus Publications on behalf of the European Geosciences Union.



2196 P. Greve et al.: Two-parameter Budyko curve

of all possible controls is actually nondeterministic and fol-
lows a probability distribution instead.

In this study we make use of the formulation introduced by
Fu (1981) and Zhang et al. (2004). They derived a functional
form between E/P and 8=Ep/P at mean annual catch-
ment scales analytically from simple physical assumptions,

E

P
= 1+8−

(
1+ (8)ω

) 1
ω , (1)

where ω is a free model parameter. The original formulation
introduced by Budyko (1958, 1974) is best represented by
setting ω= 2.6 (Zhang et al., 2004). The obtained function is
subject to two physical constraints constituting both the wa-
ter demand and supply limits. The water demand limit repre-
sents E being limited by Ep, whereas the water supply limit
determines E to be limited by P (see Fig. 1). To maintain the
supply limit, steady-state conditions are required. Therefore,
the storage term (dS / dt) in the land–water balance equation
at catchment scales,

dS
dt
= P −E−Q (2)

is assumed to be zero, which is generally a valid assump-
tion at mean annual scales. It is further important to note
that groundwater flow is not included in Eq. (2) and is ne-
glected throughout the following analysis. However, the as-
sumption of negligible storage changes constitutes a major
limitation to the original Budyko framework. As a conse-
quence, the framework is not valid under conditions of ad-
ditional storage water besides instantaneous P being avail-
able to E and E>P . We note here that by instantaneous P
(from here on just referred to as P ) we mean all P within the
considered time interval. Conditions under which the frame-
work is not valid can occur, e.g., at subannual or interannual
timescales due to changes in terrestrial water storage terms
such as soil moisture, groundwater or snow storage. Addi-
tional water might be also introduced by landscape changes
(Jaramillo and Destouni, 2015), human interventions (Milly
et al., 2008) or phase changes of water within the system
or supplied through precipitation (Jaramillo and Destouni,
2015; Berghuijs et al., 2014). Also long-term changes in soil
moisture may happen, e.g., under transient climate change
(Wang, 2005; Orlowsky and Seneviratne, 2013). Only few
assessments have addressed this limitation and provided fur-
ther insights on how the Budyko hypothesis could be ex-
tended to conditions under which E exceeds P (Zhang et al.,
2008; Chen et al., 2013). Nonetheless, so far a theoretical in-
corporation of conditions in which E>P into the Budyko
framework is lacking. Here we aim to address this issue by
analytically deriving a new, modified Budyko formulation
from basic phenomenological assumptions by using the ap-
proach of Fu (1981) and Zhang et al. (2004).
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Figure 1. The original Budyko (1958) curve (red), limited by both
the demand limit (E=Ep) and the supply limit (E=P ).

2 Deriving a modified formulation

2.1 Preliminary assumptions

In the following we will make use of the concept of potential
evapotranspiration, which provides an estimate of the amount
of water that would be evaporated under conditions of a well-
watered surface. Fu (1981) and Zhang et al. (2004) suggested
that, for a given potential evaporation, the rate of change in
evapotranspiration as a function of the rate of change in pre-
cipitation (∂E/∂P ) increases with residual potential evap-
oration (Ep−E) and decreases with precipitation. Similar
assumptions were made regarding the rate of change in evap-
otranspiration as a function of the rate of change in potential
evaporation (∂E/∂Ep) by considering residual precipitation
(P −E). Hence, both ratios can be written as

∂E

∂P
= f (x) (3a)

∂E

∂Ep
= g(y) (3b)

with

x =
Ep−E

P
(4a)

y =
P −E

Ep
. (4b)

ConsideringEp to be a natural constraint of E, it follows that

∂E

∂P

∣∣∣∣
x=0
= 0. (5)

The original approach of Fu (1981) further assumes that P is
a natural constraint ofE, constituting the following boundary
condition:

∂E

∂Ep

∣∣∣∣
y=0
= 0. (6)

The coupled boundary conditions Eqs. (5) and (6) mathemat-
ically represent the supply and demand limit of the Budyko
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framework (see Fig. 1). Considering the definitions of x and
y given by Eqs. (4a) and (4b), x= 0 yields E=Ep and y= 0
yields E=P . Equation (5) thus states that conditional upon
x= 0, i.e., E=Ep, no further change in E occurs no mat-
ter how P changes, since E is already limited by Ep (con-
stituting the demand limit). Equation (6) states that condi-
tional upon y= 0, i.e., E=P , no further change in E occurs
no matter how Ep changes, since E is already limited by P
(constituting the supply limit). If x 6= 0 or y 6= 0, the gradi-
ents ∂E/∂P or ∂E/∂Ep are not (necessarily) zero.

The boundary condition Eq. (6) further requires steady-
state conditions and is consequently considered to be valid
at mean annual catchment scales (such that P −E≥ 0) only.
However, as mentioned in the Introduction, a wealth of pos-
sible mechanisms and processes can induce conditions in
which E exceeds P . In such cases, Ep remains the only con-
straint of E. Consequently, since we explicitly aim to ac-
count for conditions of E≥P , the value y= (P −E)/Ep
(see Eqs. 4a and 4b) is not necessarily positive but is larger
than −1 since we assume that E≤Ep. The minimum value
of y, denoted as ymin, thus lies within the interval be-
tween −1 and 0 and depends on the additional amount of
water being available for E besides water supplied by P . For
convenience we define y0=−ymin (and thus y0 ∈ [0, 1]). As
a consequence the boundary condition Eq. (6) is then rede-
fined as

∂E

∂Ep

∣∣∣∣
−y0

= 0. (7)

2.2 Solution

Solving the system of the differential Eqs. (3a) and (3b) us-
ing boundary condition Eq. (5) and the new condition Eq. (7)
yields the following solution (details are provided in Ap-
pendix A):

E = Ep+P −
(
(1− y0)

κ−1Eκp +P
κ
) 1
κ
, (8)

with κ being a free model parameter. It follows that

E

P
= F (8,κ,y0)= 1+8−

(
1+ (1− y0)

κ−1(8)κ
) 1
κ
. (9)

Similar to the traditional Budyko approach a free model pa-
rameter (named κ to avoid confusion with the traditional ω)
is obtained. The second parameter, y0, as introduced in the
previous section, is directly related to the new boundary con-
dition. Hence, in contrast to κ , which is a mathematical con-
stant, y0 has a physical interpretation as it accounts for ad-
ditional water (i.e., storage water). However, similar to the
ω parameter in Fu’s equation, κ can be interpreted as an in-
tegrator of the variety of factors other than the aridity index
that influence the partitioning of P into Q and E.

11

 κ = 2.6

Original Budyko curve (ω=2.6)

 y0 = 0.4

 y0 = 0.6 y0 = 0.8

Dem
an

d 
lim

it:
 y

0 =
 1

 E
/P

 Φ

 y0 = 0.2

 y0 = 0

Figure 2. Set of curves of the new framework for κ = 2.6 and dif-
ferent y0. Note that the obtained curve for the parameter set (κ ,
y0)= (2.6, 0) corresponds to the original Budyko curve (ω= 2.6).
The supply limit (dashed black line) is systematically exceeded if
y0> 0, and the demand limit (solid black line) is reached if y0= 1.

3 Characteristics of the modified framework

The newly derived formulation given (Eq. 9) is similar to the
classical solution (Eq. 1) but includes y0 as a new parameter.
For different values of y0 and κ = 2.6 (corresponding to the
best fit to the original Budyko function with ω= 2.6 in Fu’s
equation), Fig. 2 shows a set of curves providing insights on
the basic characteristics of the modified equation.

If y0= 0 (being the original boundary condition), the ob-
tained curve corresponds to the steady-state framework of Fu
(1981) and Zhang et al. (2004). This shows that both model
formulations are consistently transferable. If y0> 0, the sup-
ply limit is systematically exceeded. The exceedance of the
supply limit increases with increasing y0. If y0= 1, the curve
follows the demand limit. All curves are further continuous
and strictly increasing.

Taking a closer look at the underlying boundary conditions
and definitions (see Sect. 2.1) reveals that y0 explicitly ac-
counts for the maximum amount of additional water (besides
water supplied through P ) at a certain location and within a
certain time period that is available to E. Since ymin is de-
fined to be the minimum of y= (P −E)/Ep, the quantity
y0=−ymin physically represents the maximum fraction of
E relative to Ep which does not originate from P . A larger
fraction consequently results in higher y0 values and thus in
a stronger exceedance of the original supply limit. Further
details on y0 are provided in Sect. 4.

The partial derivative ∂f (8, κ , y0)/∂8 under varying κ
and for three preselected values of y0 is illustrated in Fig. 3.
The sensitivity ∂f (8, κ , y0)/∂8 for different values of y0
and κ shows the effect of the parameter choice on changes
in E/P relative to changes in 8. In general, the sensitivity
is largest for small 8 (humid conditions), due to the fact that
changes in E/P basically follow the demand limit (result-
ing in a sensitivity close to 1) regardless of parameter set (κ ,
y0). For different parameter settings, the sensitivity generally
decreases with increasing 8. For small values of y0 (close
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Figure 3. The sensitivity ∂F/∂8 under varying y0, for κ = 2.6 (left panel, similar to the original Budyko framework if y0= 0), κ = 1.6
(center panel) and κ = 4 (right panel). Blueish colors denote high and reddish colors low sensitivity.
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Figure 4. The sensitivity ∂F/∂8 under varying κ , for y0= 0 (left panel), y0= 0.2 (center) and y0= 0.8 (right panel). Blueish colors denote
high and reddish colors low sensitivity.

to 0), sensitivity becomes smallest with increasing 8, since
small values of y0 indicate conditions similar to the classical
solution (Eq. 1). Further, the smallest sensitivity is reached
for large values of κ . Large values of y0 (close to 1) indi-
cate conditions mainly constrained by the demand limit, thus
implying a sensitivity close to 1.

A similar analysis is performed for varying values of κ
under three preselected levels of y0 (see Fig. 4). For y0= 0
(steady-state conditions), the sensitivity ∂f/∂8 is rather
large under humid conditions (8< 1), since changes in E/P
are mainly constrained by demand limit. This especially
applies for large values of κ . Under more arid conditions
(8> 1), the Budyko curve slowly converges towards the
(horizontal) supply limit, resulting in a near-zero sensitivity.
For y0= 0.2, denoting conditions relatively similar to steady-
state conditions, the decrease in sensitivity with increasing8
is weaker, whereas for y0= 0.8, denoting conditions whereE
is mainly constrained by the demand limit, sensitivity is large
for large κ values and decreases rather slowly with increas-
ing 8.

4 Interpreting the new parameter y0

The new parameter y0 is, in contrast to κ , physically well
defined. The combination of Eqs. (4b) and (7) shows that
y0 is explicitly related to the amount of additional water (be-
sides water supplied through P ) which is available to E. If
we rewrite Eq. (4b) with respect to y0,

y0 =− ymin =−

(
P −E

Ep

)
min
≤−

Pmin−Emax

Ep
,

if Pmin−Emax < 0, (10)

where Pmin and Emax are chosen in order to minimize ymin
for a given Ep, we obtain a linear equation in terms of aridity
index(
E

P

)
max
= y0

(
Ep

Pmin

)
+ 1, (11)

which constitutes the mathematical interpretation of y0
within the modified framework; i.e., y0 determines the max-
imum slope of the upper limit with which the obtained curve
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Figure 5. Difference between the actual (solid colored lines) and
maximum slope (solid black line) of the supply limit for differ-
ent values of κ (red: κ = 1.5; green: κ = 2.6; and blue: κ = 6) and
y0= 0.3. The maximum slope (m= y0= 0.3) is reached if κ→∞.

from Eq. (9) asymptotically converges if κ→∞ (see Fig. 5).
Physically, y0 determines the maximum E/P that is reached
in relation to 8 within a certain time period and spatial do-
main. It thus represents an estimate of the maximum amount
of additional water that contributes to E and originates from
other sources than P . Technically speaking, y0 determines
the slope of the upper limit such that all possible pairs (8,
E/P ) are just below the line y08+ 1. It is further important
to note that, for mean annual conditions (P −E≥ 0), y0= 0
is considered, which results in a zero slope and thus deter-
mines the original supply limit of Eq. (1). Please also note
that this approach is not valid if Pmin= 0.

However, the actual slope m of the upper limit is smaller
than y0 but directly related to both y0 and κ as follows (see
Appendix B for more information):

m= 1− (1− y0)
1− 1

κ . (12)

The relative difference between the maximum slope y0 and
the actual slopem of the upper limit (being the ratio of y0 /m)
is thus determined following the relationship

y0

m
= (1− y0)

1/k. (13)

The ratio y0 /m as a function of both y0 and κ is illustrated
in Fig. 6. For small κ and large y0 (close to 1), the differ-
ence between the actual slope m and the maximum slope y0
is large, whereas for large κ the actual slope m converges to-
wards y0. However, in any case, y0 determines the maximum
overshoot allowed with respect to the original supply limit at
y0= 0.

5 Example application: seasonal carryover effects in
terrestrial water storage

At monthly timescales, changes in terrestrial water storage
(due to changes in water storage components such as soil
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Figure 6. The ratio y0/m as a function of both y0 and κ estimated
from Eq. (13).

moisture, snow or groundwater) potentially play an impor-
tant role in E and Q and are by no means negligible. Such
changes can provide a significant source of additional wa-
ter that is (besides P ) available to E. Here we analyze
the climatological mean seasonal cycle of E/P by using
gridded, monthly data estimates of P , E and Ep. This al-
lows us to evaluate the capability of the obtained framework
(given by Eq. 9) to represent additional water sources at such
timescales.

We employ the following well-established, gridded
data products: (i) the Global Precipitation Climatology
Project (GPCP) P dataset (Adler et al., 2003), (ii) an Ep es-
timate (Sheffield et al., 2006, 2012) based on the Penman–
Monteith Ep algorithm (Monteith, 1965; Sheffield et al.,
2012) with the stomatal conductance set to 0 and aerody-
namic resistance defined after Maidment (1992) and (iii) the
LandFlux-Eval E dataset (Mueller et al., 2013). All data are
bilinearly interpolated to a unified 1◦ grid, and the mean sea-
sonal cycle for the 1990–2000 period is calculated at grid
point scale. Please note that the combination of datasets used
here is arbitrary and only used to illustrate the capability of
the newly developed framework to represent the climatolog-
ical mean annual cycle of E/P .

We estimate the parameter set (κ , y0) from Eq. (9) by min-
imizing the residual sum of squares (see Fig. 7). This means
that at every grid point 12-monthly climatologies of E/P
(representing the mean seasonal cycle of E/P ) are used to
determine one specific parameter set (for all months).

To evaluate the modified framework, the derived parame-
ter sets at each grid point are used in Eq. (9) to compute mean
seasonal cycles of E/P . The correlation between the com-
puted and the observed seasonal cycle is shown in Fig. 8a.
The correlations are relatively large in most regions. Largest
correlations (> 0.9) are found in most mid- to high-latitude
and tropical areas, clearly showing the capability of the mod-
ified formulation to represent the seasonal cycle in E/P .
Correlations are generally somewhat lower in drier regions,
especially in parts of Africa and central Asia, probably oc-
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(a) (b)

Figure 7. Estimated values of κ (a) and y0 (b) estimated in a least squares fitting using standard monthly datasets of P , E and Ep within the
1990–2000 period.

Figure 8. Correlation between the mean seasonal cycle of E/P
computed from Eq. (9) and observed E/P for (a) a grid-point-
specific parameter set (κ , y0) and (b) (κ , 0) (Fu’s equation).

curring due to more complex seasonal patterns in E/P and
phenology, which are not considered here. Using instead Fu’s
original equation (or setting y0= 0) to estimate the mean sea-
sonal cycle of E/P shows overall lower correlations, espe-
cially in semi-arid regions (Fig. 8b).

Taking a closer look at the mean seasonal cycle for ex-
ample grid points in (i) central Europe (humid climate) and
(ii) Africa (semi-arid climate) clearly shows the improve-
ment gained through the use of the modified formulation

Figure 9. Data cloud of monthly climatologies within the Budyko
space for a grid points in (a) central Europe (51.5◦ N, 12◦ E) and
(b) central Africa (5.5◦ N, 20◦ E). The black solid line denotes the
demand limit; the dashed line denotes the original supply limit. The
blue line depicts the obtained curve using the modified formulation
of Fu’s equation, whereas the red line shows the original Fu curve.
Numbers within the dots denote the particular month of the year.
(c, d) Observed (grey) and computed mean seasonal cycles at both
grid points. The blue line depicts the obtained seasonal cycle us-
ing the modified formulation of Fu’s equation, whereas the red line
shows the seasonal cycle obtained using Fu’s equation. Please note
that axes are different in each plot.

(Fig. 9). In central Europe, additional water is available in the
early summer months due to, e.g., depletion of soil moisture
or snow melt, resulting in values of E/P exceeding the orig-
inal supply limit. The modified formulation has the ability to
represent this exceedance, whereas the original formulation

Hydrol. Earth Syst. Sci., 20, 2195–2205, 2016 www.hydrol-earth-syst-sci.net/20/2195/2016/
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is naturally bounded to 1. This is even more evident for the
example grid point in Africa, showing a large overshoot of
the original supply limit under dry-season conditions.

6 Conclusions

In conclusion we present an extension to the Budyko frame-
work that explicitly accounts for conditions under which E
is also driven by other water sources than P (i.e., changes in
water storage). The original Budyko framework is limited to
mean annual catchment scales at which P and Ep constitute
natural constraints of E. Here we assume that the boundary
condition constituted by Ep remains overall valid, whereas
the boundary condition constituted by P is also subject to ad-
ditional water stemming from other sources. Such additional
water could, e.g., originate from changes in the terrestrial wa-
ter storage, landscape changes and human interventions.

In order to account for such additional water, we modi-
fied the set of equations underlying the derivation of Fu’s
equation (Fu, 1981; Zhang et al., 2004) and obtained a sim-
ilar formulation including an additional parameter. The ad-
ditional parameter is physically well defined and technically
rotates the original supply limit upwards. Similar to the orig-
inal Budyko framework, the derived two-parameter Budyko
model represents the influence of first-order controls (namely
P and Ep) on water availability. The integrated influence of
second-order controls (like vegetation, topography, etc.) is,
comparable to Fu’s equation, represented by the first param-
eter. Analysis of such controls in Fu’s formula has been un-
dertaken in numerous studies, but no conclusive assessment
has been conducted until present. Assessing the combined
influence of climatic and catchment controls is hence clearly
beyond the scope of this study. However, the additional sec-
ond parameter of the modified formulation y0 does have a
clear physical interpretation as it represents a measure of the
maximum amount of additional water (besides P ) available
to E at a certain location and within a particular time period.

Besides this study, a limited number of previous stud-
ies have assessed the Budyko hypothesis under conditions
of E exceeding P , especially at seasonal timescales. In a
top-down approach, Zhang et al. (2008) showed that the
Budyko model has to be extended in order to model the wa-
ter balance on shorter than mean annual timescales. Their
extended Budyko model (which was also based on Fu, 1981)
showed good performance in modeling monthly Q but in-
cludes four additional parameters that require extensive cal-
ibration. Chen et al. (2013) further introduced an approach
(referring to Wang, 2012) that is based on replacing P by ef-
fective precipitation, which is the difference between P and
soil water storage change. This allows the framework to be
extended to seasonal timescales but requires explicit knowl-
edge of changes in the soil water storage. In our approach,
however, we provide an analytical derivation of an extension
to Fu’s equation that is able to account for conditions under
which E exceeds P by including only one additional param-
eter. However, the framework is also subject to some limita-
tions. The estimation of the parameter y0 is, similar to the es-
timation of the ω in Fu’s equation (Fu, 1981), nontrivial, and
the parameter apparently varies in space and potentially also
in time, therefore questioning steady-state assumptions. The
framework is further not capable of directly estimating Q.
Since in contrast to the original Budyko framework changes
in terrestrial water storage are not negligible, the runoff ratio
Q/P can not be assessed through 1−E/P . Hence, explicit
knowledge of changes in the terrestrial water storage is re-
quired, therefore aggravating assessments of Q.

The new framework was validated for the special case of
average seasonal changes in water storage by using monthly
climatologies of global, gridded standard estimates of P ,
E and Ep. The computed grid-point-specific seasonal cycle
of E/P using the modified framework did adequately rep-
resent mean seasonal storage changes for many parts of the
world. However, the application of the modified framework
is by no means limited to this case and could be extended to
a variety of climatic conditions under which additional water
besides P is available to E.
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Appendix A: Complete solution

Equations (3a), (3b), (5) and (7) form a system of differential
equations. A necessary condition to solve this system is

∂f (x)

∂Ep
+
∂f (x)

∂E
g(y)=

∂g(y)

∂P
+
∂g(y)

∂E
f (x). (A1)

Combining Eq. (A1) with Eqs. (4a) and (4b) yields

∂f (x)

∂Ep
=
∂f (x)

∂Ep

∂x

∂x
=

1
P

(
1−

∂E

∂Ep

)
∂f (x)

∂x

=
1
P
(1− g(y))

∂f (x)

∂x
, (A2a)

∂f (x)

∂E
=
∂f (x)

∂E

∂x

∂x
=

1
P

(
∂Ep

∂E
− 1

)
∂f (x)

∂x

=
1
P

(
1
g(y)
− 1

)
∂f (x)

∂x
, (A2b)

∂g(y)

∂P
=
∂g(y)

∂P

∂y

∂y
=

1
Ep

(
1−

∂E

∂P

)
∂g(y)

∂y

=
1
Ep
(1− f (x))

∂g(y)

∂y
, (A2c)

∂g(y)

∂E
=
∂g(y)

∂E

∂y

∂y
=

1
Ep

(
∂P

∂E
− 1

)
∂g(y)

∂y

=
1
Ep

(
1

f (x)
− 1

)
∂g(y)

∂y
. (A2d)

Substituting the factors in Eq. (A1) with those given in
Eq. (A1) gives

∂f (x)

∂x

(
(1− g(y))+

(
1
g(y)
− 1

)
g(y)

)
=
P

Ep

∂g(y)

∂y

(
(1− f (x))+

(
1

f (x)
− 1

)
f (x)

)
(1− g(y))

∂f (x)

∂x
=
P

Ep
(1− f (x))

∂g(y)

∂y
. (A3)

Expanding P/Ep with consideration given to Eqs. (4a)
and (4b) yields

P

Ep
=

Ep+P−E

Ep

Ep+P−E

P

=

1+ P−E
Ep

1+ Ep−E

P

=
1+ y
1+ x

. (A4)

From Eqs. (A3) and (A4) follows

(1− g(y))
∂f (x)

∂x
=

1+ y
1+ x

(1− f (x))
∂g(y)

∂y

1+ x
1− f (x)

∂f (x)

∂x
=

1+ y
1− g(y)

∂g(y)

∂y
, (A5)

where each side is a function of x or y only. Assuming the
result of each side is α, it follows that

1+ x
1− f (x)

∂f (x)

∂x
= α, (A6a)

1+ y
1− g(y)

∂g(y)

∂y
= α. (A6b)

Integrating Eq. (A6a) with consideration given to the bound-
ary condition given by Eq. (5) leads to the following expres-
sion for f (x):
x∫

0

1
1− f (t)

∂f (t)

∂t
dt = α

x∫
0

1
1− t

dt

[− ln(1− f (t))]x0 = α[ln(1+ t)]
x
0

ln(1− f (x))=−α ln(1+ x)1− f (x)= (1+ x)−α

f (x)= 1− (1+ x)−α. (A7)

Integrating Eq. (A6b) is different from the traditional solu-
tion given in Zhang et al. (2004), as we are using the new
boundary condition given by Eq. (7).
y∫
−y0

1
1− g(t)

∂g(t)

∂t
dtα

y∫
−y0

1
1− t

dt

[− ln(1− g(t))]y−y0
= α[ln(1+ t)]y−y0

ln(1− g(y))− ln(1− g (−y0))= α (ln(1− y0)− ln(1+ y))

ln(1− g(y))= α ln
(

1− y0

1+ y

)
1− g(y)=

(
1− y0

1+ y

)α
g(y)= 1−

(
1− y0

1+ y

)α
. (A8)

Considering the expansion from Eq. (A4) finally gives

∂E/∂P = 1− (1+ x)−α = 1−
(

P

Ep+P −E

)α
, (A9)

∂E/∂E0 = 1− (1− y0)
α(1+ y)−α

= 1− (1− y0)
α

(
E0

E0+P −E

)α
. (A10)

In the next step, Eq. (A9) is integrated over P . As Eq. (A9)
is identical to those in Zhang et al. (2004), we follow their
substitution approach. It follows that

E = E0+P −
(
k+P α+1

) 1
α+1
, (A11)
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where k is a function of E0 only. Differentiating Eq. (A11)
with respect toE0 gives an estimate of ∂E/∂E0, which when
used with Eq. (A10) determines k:

∂E

∂E0
= 1−

1
α+ 1

(
k+P α+1

)− α
α+1 ∂k

∂E0

= 1− (1− y0)
α

(
E0

E0+P −E

)α
. (A12)

This leads, with consideration given to Eq. (A11), to the fol-
lowing expression:

∂k

∂E0
= (α+ 1)(1− y0)

α

(
E0

E0+P −E

)α(
k+P α+1

) α
α+1

= (α+ 1)(1− y0)
α

 E0

E0+P −

(
E0+P −

(
k+P α+1

) 1
α+1

)

α

(
k+P α+1

) α
α+1
= (α+ 1)(1− y0)

αEα0

k = (α+ 1)(1− y0)
α

∫
Eα0 dE0

k = (1− y0)
αEα+1

0 +C, (A13)

with C being an integration constant. By substituting
Eq. (A13) back into Eq. (A11), one obtains the following
expression:

E = E0+P −
(
(1− y0)

αEα+1
0 +C+P α+1

) 1
α+1
. (A14)

As lim
P→0

E= 0, it follows that C= 0. Substituting κ =α+ 1

finally gives

E = Ep+P −
(
(1− y0)

κ−1Eκp +P
κ
) 1
κ (A15)

and further provides by writing 8=Ep/P

E

P
= 1+8−

(
1+ (1− y0)

κ−1(8)κ
) 1
κ (A16)

F

(
E

Ep
,κ,y0

)
=
E

Ep
= 1+

P

Ep

−

(
(1− y0)

κ−1
+

(
P

Ep

)κ) 1
κ

. (A17)

Appendix B: Solution of the actual slope

The actual slopem of the upper limit with which the obtained
Budyko curve converges is smaller than y0. We introduced
Eq. (12) to calculate m, and in the following we provide the
complete solution in order to obtain Eq. (12).

The value of m is the slope of the linear function m8+ 1
that forms the asymptote to F(8, κ , y0) given by Eq. (9).
Hence,

lim
8→∞

[
F (8,κ,y0)− (m8+ 1)

]
= 0. (B1)

Using Eq. (9) and dividing by 8 yields

lim
8→∞

(1+ (1− y0)
κ−1(8)κ

) 1
κ

8
+ 1−m

= 0. (B2)

By raising the term in brackets to the power of κ , one obtains

lim
8→∞

[
(1−m)κ −8−κ

(
1+8κ(1− y0)

κ−1
)]
= 0, (B3)

and it follows that

lim
8→∞

[
(1−m)κ − (1− y0)

κ−1
−8−κ

]
= 0. (B4)

Since 8−κ→ 0 for 8→∞, we obtain

(1−m)κ = (1− y0)
κ−1. (B5)

Solving for m yields

m= (1− y0)
1− 1

κ . (B6)
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