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Abstract. The use of bias-aware Kalman filters for estimat-
ing and correcting observation bias in groundwater head ob-
servations is evaluated using both synthetic and real obser-
vations. In the synthetic test, groundwater head observations
with a constant bias and unbiased stream discharge observa-
tions are assimilated in a catchment-scale integrated hydro-
logical model with the aim of updating stream discharge and
groundwater head, as well as several model parameters re-
lating to both streamflow and groundwater modelling. The
coloured noise Kalman filter (ColKF) and the separate-bias
Kalman filter (SepKF) are tested and evaluated for correct-
ing the observation biases. The study found that both meth-
ods were able to estimate most of the biases and that using
any of the two bias estimation methods resulted in signifi-
cant improvements over using a bias-unaware Kalman filter.
While the convergence of the ColKF was significantly faster
than the convergence of the SepKF, a much larger ensemble
size was required as the estimation of biases would otherwise
fail. Real observations of groundwater head and stream dis-
charge were also assimilated, resulting in improved stream-
flow modelling in terms of an increased Nash–Sutcliffe co-
efficient while no clear improvement in groundwater head
modelling was observed. Both the ColKF and the SepKF
tended to underestimate the biases, which resulted in drift-
ing model behaviour and sub-optimal parameter estimation,
but both methods provided better state updating and parame-
ter estimation than using a bias-unaware filter.

1 Introduction

Sequential assimilation of observations in models is a widely
used method in several fields, including meteorology and
hydrology. The method has repeatedly been shown to im-
prove forecasting performance, reduce uncertainty and opti-
mize parameter values, and is still a topic subject to ongoing
research.

Data assimilation in hydrological models has been stud-
ied in a number of settings, from single process models,
modelling only a limited part of the hydrological cycle (e.g.
Franssen et al., 2011; Albergel et al., 2008; Moradkhani
and Sorooshian, 2005), to integrated models incorporating
all the relevant processes including precipitation, evapotran-
spiration, recharge and streamflow (e.g. Camporese et al.,
2009; Shi et al., 2014; Rasmussen et al., 2015). The latter
presents a number of challenges that have yet to be compre-
hensively addressed; particularly relating to the differences
in process timescales, e.g. between groundwater flow and
surface runoff, and the coupling between these processes.
An integrated approach to hydrological modelling is, how-
ever, important in many applications due to the exchange
of water between the hydrological components; thus, it re-
mains important to explore these aspects. In Camporese et al.
(2009), the ensemble Kalman filter (EnKF) was applied to
an integrated model of a synthetic tilted v-catchment and
both stream discharge and groundwater hydraulic head ob-
servations were assimilated to update both groundwater and
stream states. Shi et al. (2014) applied the EnKF to an inte-
grated land surface hydrological model of a small catchment
and, using seven different observation types, successfully es-
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timated six parameters and sequentially updated the model
states. Rasmussen et al. (2015) used the ensemble transform
Kalman filter (ETKF) to assimilate groundwater head and
stream discharge in a catchment-scale integrated hydrolog-
ical model for both state updating and parameter estimation.
Other studies that focus on joint state updating and parame-
ter estimation in integrated hydrological modelling include
Bailey and Baù (2012), in which a smoother was used to
calibrate hydraulic conductivity using streamflow and head
observations, and Kurtz et al. (2013), which used head ob-
servations to calibrate heterogenous riverbed conductivities.

Biases in both models and observations pose challenges
to data assimilation in hydrology, and have previously partly
been studied (e.g. Dee and da Silva, 1998; Dee, 2005; Re-
ichle et al., 2004; Lannoy et al., 2007; Bosilovich et al.,
2007). Bias is found in all components of the hydrologi-
cal cycle, and take a variety of forms. Notable examples
are model bias stemming from model structure or parame-
ter errors, and observation errors, which is due to the differ-
ence in scale between point observations and gridded model
variables. The latter is a significant source of bias in many
groundwater models, as the horizontal discretization of the
models is often large. If one is to update the groundwater
head in a hydrological model using sequential data assimila-
tion, this observation bias must be taken into account.

While the EnKF, and any derivation thereof, implicitly
accounts for both model and observation uncertainty in the
form of zero-mean white noise, model and observation bi-
ases remain an issue that requires modifications to the filter.
A few methods have been developed that attempt to estimate
biases online, and they have been applied successfully in
many settings. With few exceptions, the bias aware filters can
be grouped in two: separate filter methods and augmented
state methods. The separate-bias Kalman filter (SepKF) (e.g.
Dee and da Silva, 1998; Pauwels et al., 2013; Drecourt et al.,
2006) uses a second Kalman filter for updating the biases.
This second filter is independent from the filter that updates
the states, and the method can therefore not account for cor-
relation between states and biases. Alternatively, augment-
ing the state space with bias estimates (e.g. Derber and Wu,
1998; Dee, 2005; Drecourt et al., 2006; Fertig et al., 2009)
allows the filter to account for the correlation between states
and biases, and is therefore useful when the bias is dependent
on the observed values. While most implementations of bias
estimation assume that the model is unbiased and that the
observations are biased, or vice versa, Pauwels et al. (2013)
presented a method for estimating both model bias and ob-
servation bias simultaneously using a double SepKF.

This study uses both a synthetic test set-up and real obser-
vations to test the application of bias correction to a data as-
similation framework that assimilates groundwater head and
stream discharge observations in an integrated hydrological
model for joint state updating and parameter estimation. We
discuss the challenges associated with observational bias in
hydrological data assimilation for both state updating and pa-

rameter estimation. Two existing methods of estimating ob-
servation bias, the SepKF and the augmented state vector
approach, are tested and the results compared. The novelty
of the study lies in the focus on data assimilation bias esti-
mation in a complex, integrated hydrological model as well
as the impact of bias on parameter estimation in both syn-
thetic test and using real-world observations. While each of
these aspects have previously been studied individually the
combination of the aspects creates new challenges, which re-
quire particular attention. This paper shares several similari-
ties with the preceding Rasmussen et al. (2015), notably the
model catchment and set-up, but differs in the focus on bias
and the application of data assimilation to real-world obser-
vations. Rasmussen et al. (2015) presents a synthetic study
of data assimilation in integrated hydrological modelling in
which the filter performance as a function of ensemble size is
investigated and the current paper expands on this and adds
the complexity of bias estimation and real-world data.

2 Methods

2.1 Model

This study uses a transient, spatially distributed hydrolog-
ical model based on the MIKE SHE code (Graham and
Butts, 2005). This code considers all major components of
the land phase of the hydrological cycle and the code al-
lows the hydrological components to be dynamically cou-
pled, meaning that feedback (i.e. exchange of water) between
the processes is possible at each time step. The feedback
is of particular importance for the groundwater–stream in-
teraction in areas where these processes are closely linked,
and it makes the model code particularly suited for investi-
gation of data assimilation in integrated hydrological mod-
elling. The coupling between the unsaturated and groundwa-
ter zones in MIKE SHE is complicated, as the processes in
the two zones are interdependent. When water is exchanged
from the unsaturated zone to the groundwater, the ground-
water table rises, thereby changing the flow of the unsatu-
rated zone. This complex interdependence is in MIKE SHE
simplified, as the two processes only exchange water at ev-
ery time step of the groundwater model. As the time step of
the groundwater model is often much longer than the time
step of the unsaturated zone model, the groundwater table
is kept constant during several unsaturated zone time steps.
This may lead to water balance errors, and in an attempt to re-
duce these errors, MIKE SHE has a coupling control that ad-
justs the groundwater table and recalculates the unsaturated
zone states if the water balance error is above a user-specified
threshold.

An integrated model, which includes groundwater flow,
vadose zone flow, evapotranspiration, surface flow and
streamflow is used in this study. Vertical groundwater flow
components are neglected in the study and groundwater flow
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is simulated based on the 2-D Boussinesq equation. Each
numerical element of the groundwater flow model is cou-
pled to a one-dimensional (1-D) model for vertical flow in
the vadose zone. For numerical and computational conve-
nience capillary forces are neglected and only gravity-driven
flow is considered, which is an option in the MIKE SHE
code (Graham and Butts, 2005). Streamflow is simulated us-
ing the kinematic routing option. The stream network model
is set up using an alternating calculation scheme in which
discharge and water level is calculated respectively in al-
ternating points, and is independent from the groundwater
model in discretization, but exchanges of water between the
two processes is made available in model grids of the two
processes that physically overlap. The exchange takes place
at every groundwater model time step. Evapotranspiration
is modelled using the Kristensen and Jensen (1975) model.
The groundwater model initial conditions are based on an
extended warm-up of the model, win which a quasi-steady-
state develops, while the streamflow initial conditions were
calculated automatically assuming a steady-state condition.

A horizontal grid size of 1 km× 1 km is used, with a ver-
tical discretization of the unsaturated zone gradually increas-
ing from 0.05 m at the top to 1 m below a depth of 10 m.
Further details of the MIKE SHE model application to the
Karup catchment can be found in Rasmussen et al. (2015).

2.2 Study area

2.2.1 The Karup catchment

This study is based on the Karup catchment (Fig. 1), which
is located in the northern part of the Danish Jutland penin-
sula. The catchment has an area of 440 km2 and agriculture
is the dominant land use, while the geology is dominated by
highly permeable quaternary sand. It is a very flat catchment,
with a gentle south–north slope ranging from 93 m a.s.l. in
the southern part to 22 m a.s.l. in the northern part. The Karup
river is the primary drainage feature and it springs in the
southern part and exits in the northern edge of the catchment.
Along its path, the Karup river is joined by seven smaller trib-
utaries. The flat topography and sandy sediments implies that
the Karup river is primarily groundwater fed, which empha-
sizes the importance of an integrated approach to the hydro-
logical modelling of the catchment, as the exchange between
the groundwater and the river is a predominant process of the
hydrological response of the catchment.

2.2.2 Model parameterization

The geological model used in this study is a 3-D model,
which contains one dominant geological unit (meltwater
sand) and five lenses (clay, quartz sand, mica clay/silt and
limestone), each with assigned parameters of hydraulic con-
ductivity, specific yield and specific storage. The geological
model is in a preprocessing step converted into a 2-D model

Figure 1. The Karup catchment with locations of discharge and hy-
draulic head observations.

by interpolating the parameter values and gridding them to
the computational grid, resulting in a spatially variable field
of hydraulic conductivity. The parameter values of the stream
model are assumed uniform throughout the model domain.
The drain level and drain time constant parameters control
the amount of groundwater drained to the nearest stream
once the groundwater table exceeds the drain level, and are
as such linking the groundwater module and the streamflow
module of the model. This models the artificial drain systems
installed under most farmlands as well as the natural drainage
processes that often occur in the topsoil, and the parameters
are therefore particularly important for the drain flow of the
river. The leakage coefficient is another coupling parameter,
which represents the hydraulic properties of the thin layer
of the sediments at the bottom of the stream. This parame-
ter is of particular importance with regard to river base flow.
For more details of the model parameterization, reference is
made to Rasmussen et al. (2015).

2.3 Data assimilation

2.3.1 Ensemble transform Kalman filter

The algorithm used for assimilating data in this study is the
ETKF (Bishop and Hodyss, 2009), which is a square root
formulation of the EnKF. It is more computationally efficient
than the EnKF and is furthermore deterministic, meaning that
the observations are in the filter not perturbed, which reduces
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the issues introduced by sampling. While the ETKF was first
presented by Bishop and Hodyss (2009), the implementation
used in this study is that of Harlim and Hunt (2005). Vectors
of the forecasted state variables of the ensemble members are
structured in an m× k matrix, Xf, where m is the number of
states and k is the number of ensemble members:

Xf
=

[
Xf

1, . . .,X
f
k

]
. (1)

A s× k matrix Yf of model observations (s is the number of
observations) is formed by applying a linear operator H that
maps the state space into observation space to each column of
Xf. This matrix is averaged over the columns to form a s× 1
vector of mean model observations, yf, which is then colum-
nwise subtracted from Yf to form the s× k matrix of model
observation anomalies, Yb. Next, Xf is averaged columnwise
to form the m× 1 vector of mean model states xf and this
vector is subtracted from each column of Xf to create an
m× k matrix of model state anomalies Xb.

An k× s matrix, C, is computed as follows:

C=
(

Yb
)
·R−1

·Pobs, (2)

where R is a s× s matrix of observation error covariance,
and Pobs is a s× s diagonal matrix with the localization
weights of each observation on the diagonal. The k× k er-
ror covariance matrix is computed by

P̃a =
[
(k− 1) · I+CYb

]−1
, (3)

where I is a k× k identity matrix. The k× k matrix of anal-
ysis error covariance is computed as

Wa
=
[
(k− 1)̃Pa

]1/2
. (4)

The k× 1 vector wa is calculated as

wa = P̃aC ·
(
y− yb

)
, (5)

where y is a s× 1 vector of observations, and yb is a s× 1
vector of the mean model observations. wa is then added
each column of Wa , forming the k× k matrix of updated er-
ror covariance W . The m× k matrix is calculated:

Xc = XbW. (6)

Finally, the updated model ensemble, Xu, is calculated by
adding xb to each column of Xc.

2.3.2 Localization

Rasmussen et al. (2015) showed that the common distance-
based localization methods do not suffice for localization in
integrated hydrological models; instead an adaptive localiza-
tion method first developed by Miyoshi (2010) will be used.

Rather than removing correlation based on the physical dis-
tance from an observation, this localization method is a com-
bination of cross-validating the sample correlation (as esti-
mated from the ensemble) and raising the correlation coef-
ficient to a power in an attempt to distinguish true correla-
tion and spurious correlation. As each state vector member is
analysed in the ETKF, the ensemble of model observations
(i.e. the ensemble of model states in the observation loca-
tions) is generated, and the sample correlation coefficient be-
tween each of the model observations and the state member
is determined. The localization weights of the observations
to the state member being analysed are then calculated from
the correlation coefficients as follows.

For each state variable, the ensemble is split into two sub-
ensembles of equal size. The sample correlation between the
state variable and each observation state variable is calcu-
lated for both sub-ensembles. These correlation coefficients
are then combined using the following expression:

pobs,a =

(
1−
|c1− c2|

2

)a
, (7)

where pobs,a is the localization weight, c1 and c2 are the cor-
relation coefficients from the first and second sub-ensembles,
and a is a constant used for tuning the localization.

Another localization weight, pobs,b, is determined using
the sample correlation coefficient for the entire ensemble, c,
and another tuning constant, b, as follows:

pobs,b = |c|
b. (8)

The final (applied) localization weight, pobs (Eq. 2), is cal-
culated as the product of pobs,a and pobs,b. Rasmussen et al.
(2015) found that parameter values of a= 2 and b= 2, pro-
duced the lowest root-mean-square error in the groundwater
head in a similar model, and these parameter values will also
be used in this study.

2.3.3 Parameter estimation with the ETKF

Parameters are in this study estimated sequentially using the
augmented state vector approach (Liu and Gupta, 2007; Ras-
mussen et al., 2015). The state vectors (Eq. 1) are extended
to also contain the parameters that are to be estimated:

Xf
=

 Xf
1 Xf

n

· · ·

2f
1 2f

n

 , (9)

where 2f
i is the set of parameters used to propagate the

ith ensemble member. The mapping matrix H is extended
according to Eq. (10).

x =H ·
[
Xf

1
2f
n

]
(10)
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2.3.4 Inflation

In order to compensate for the systematic underestimation of
error variance that is endemic to ensemble-based Kalman fil-
tering, covariance inflation (Anderson and Anderson, 1999;
Whitaker and Hamill, 2012; Shi et al., 2014) was applied to
both the groundwater head states and the stream discharge
states. The inflation is applied by adding a percentage to the
ensemble of forecast anomalies:

Xf
= (1+α)Xf, (11)

where α is the inflation factor. The inflation factor used in
this study is 0.2, which is based on tests of different inflation
factors, and has been shown to help maintain a good spread
of the ensemble of states.

The ensemble of parameter values is also inflated using
Eq. (11) but instead of using a constant inflation factor, the
inflation factor for the ensemble of parameter values is calcu-
lated at each update and for each parameter to match a target
spread (as described by the standard deviation):

α =
σtarget

σforecast
(12)

where σ is the standard deviation. σtarget denotes the de-
sired spread of the ensemble of parameter values and σforecast
denotes the spread of the ensemble before updating. This
method is only applied if the forecast standard deviation of
the ensemble of parameters is smaller than the target stan-
dard deviation, which in this study is set to 10 % of the initial
standard deviation of the ensemble. This value has shown to
produce the best results, by maintaining a sufficient spread
that does not create instabilities in any of the ensemble mem-
bers.

Using covariance inflation is, like using localization, in-
consistent with the deriviation of the filter and only necessary
due to inadequate or incorrect noise description and ensem-
ble generation. However, due to the complex nature of the
model, Generating an ensemble that perfectly represents the
uncertainty of the model is difficult and particularly in the
test using real data outside the scope of this paper.

2.3.5 Damping

A simple damping mechanism is implemented in the mod-
elling framework to reduce the magnitude of the state- and
parameter updates and thereby reduce the shock introduced
to the system in the form of instantaneous changes of model
states and parameter values at the time of updating. Further-
more, damping has the same effect as inflation, as it helps
maintain an ensemble spread and thus combats the tendency
for the ensemble to collapse. Damping of parameter updates
is common, and has been studied in Franssen and Kinzelbach
(2008) and used in Rasmussen et al. (2015).

Damping is pragmatically applied post-updating as fol-
lows. For each ensemble member, the post-damping and final
state vector is calculated as

x
u,D
i = xf

i +D ·
(
xu
i − x

f
i

)
, (13)

where D is a user specified m× 1 vector of damping coeffi-
cients. Note that the values in D may vary depending on the
variable type (i.e. hydraulic head, stream discharge or water
level) or parameter type. A damping coefficient of 0.1 was
used for all parameters in all scenarios studied, while differ-
ent damping coefficients for the states have been analysed in
the tests described below.

2.3.6 Bias estimation

This study compares two different methods for estimating
observation bias: the coloured noise Kalman filter (ColKF)
and the SepKF.

The ColKF methodology for estimating bias follows that
of Fertig et al. (2009), in which the biases are estimated on-
line by augmenting the state vector, in a similar way as for
estimating parameters. That is, the augmented state vector,
which contains both states and parameter values is further
augmented by an ensemble of observation biases as follows:

Xf
=

 Xf
1 Xf

n

2f
1 · · · 2f

n

βf
1 βf

n

 (14)

where βf
i is the set of observation biases of the ith ensemble

member. The linear operator H is modified such that when
it is applied to the columns of Xf, the bias is added to the
appropriate model observations:

ˆ
xf
i = x

f
i +β

f
i, (15)

where x̂ is the ith unbiased model observation. Note that a
constant bias forecast model is used, meaning that

β
f,t+1
i = β

u,t
i , (16)

where the super script “u” indicates an updated value, and t
refers to the time step.

This study assumes no bias in discharge observations,
meaning that the only biased observations are the groundwa-
ter head observations. In real-world observations, discharge
observations would usually also be biased, but this bias is
generally small compared to the random error of the obser-
vations and compared to biases in groundwater head obser-
vations.

The method requires an initial bias estimate based on a
priori information. Furthermore, as with estimation of pa-
rameters, a spread in bias estimates needs to be generated.
In this study, the initial estimate of bias in all observation
points is generated by sampling from a normal distribution
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with a standard deviation of 0.6 m and a mean of 0. The stan-
dard deviation vas chosen based on precursive testing in the
synthetic test environment, that showed that this value gen-
erally led to the best estimates of bias.

The implementation of the SepKF in this study is similar
to the one derived and presented in Drecourt et al. (2006) but
modified to estimate observation bias rather than model bias
and to be implemented for use in a square root formulation
of the filter. The bias filter is a discrete filter that is coupled to
the ensemble-based filter used for updating the states and the
parameters as follows. The forecasted model observation er-
ror covariance, P is estimated from the ensemble of anoma-
lies:

P =
1

n− 1
Yb ·

(
Yb
)T
. (17)

The bias error covariance is estimated as being propor-
tional to the ensemble model observation forecast error co-
variance, P, through a parameter γ (0≤ γ ≤ 1):

Pb = γP, (18)

where γ is a tuning parameter that controls the fraction of
information from the observations that is used to bias and for
states respectively. Tests using different values of γ revealed
that this parameter had little impact on the final estimated
bias, but a value of 0.1 was chosen for this study, as it per-
formed slightly better than other values tested. The bias error
covariance is furthermore conditioned to the assumption of
no bias in discharge observations.

The Kalman gain for the bias filter is then calculated as

Kb = Pb
(

HPbHT
+HPHT

+R
)−1

. (19)

The bias Kalman gain is localized as follows:

Kb,local =Kb(H ·L), (20)

where L is a s× s matrix containing the localization weights
for each state as determined by the adaptive localization al-
gorithm. The updated biases are calculated as

βu
= βf
+Kb

(
y−Hxb

)
. (21)

Finally, the updated states are calculated using the follow-
ing modification of Eq. (5):

wa = P̃ aC ·
[(
y−βu)

− yb
]
. (22)

The augmented state method has the advantage that it can
take any interaction between the bias and the states into ac-
count, as the full forecast covariance matrix is used. On the
other hand, the SepKF filter ignores any cross-correlation be-
tween bias and states.

While ignoring the correlation between state error and
bias error may be problematic where such correlation ex-
ists, the price of using the augmented state method is

the increase in the state space that needs to be spanned
by the ensemble. To describe the uncertainty of the aug-
mented state, an (m+p+ s)× (m+p+ s) (states, param-
eters and observations) covariance matrix is necessary, while
an (m+p)× (m+p) plus a (s× s) matrix is necessary for
the SepKF. This is likely to increase the required ensemble
size when using the augmented state method and thus in-
crease computational demands.

2.3.7 Asynchronous assimilation

Due to the differences in frequency between the two ob-
servation types, this study uses asynchronous assimilation
(Sakov et al., 2010). This way, the more frequent stream dis-
charge observations can be assimilated along with the less
frequent groundwater head observations, without the states
having to be updated each time a discharge observation is
available. The state vector is extended with model results for
asynchronous observation times and the observation vector
is extended with the asynchronous observations. After that,
the asynchronous observations and model results are simply
treated as normal model states. The information contained
in the extensions are then used to improve the update at the
time of updating. This is done by saving the individual ob-
servations and the model results for the time steps in which
observations are available, and calculating the ensemble error
as if the model results for the different time steps are model
states. So, given a set of j observations at times t1, . . . , tj
collected, the model observations is formulated as follows:

HXf
=

[(
HXf

)T
1
, . . .,

(
HXf

)T
j

]
. (23)

Similarly, the observation vector is extended to correspond
to the ensemble observations. While the asynchronous obser-
vations and model observations are saved and used in the fil-
ter at the time of updating, they are afterwards discarded and
no retrospective updating of states is performed.

2.4 Filter set-up

2.4.1 State variables

In this study, the state vector contains groundwater head,
stream discharge and stream water level, all of which are up-
dated at each updating time step. The states are updated every
4 weeks, when groundwater head observations are available.
The daily discharge observations available in between up-
dates are included as asynchronous observations while the
discharge observations available at the time of updating are
assimilated normally.

2.4.2 Estimated parameters

The horizontal hydraulic conductivities of meltwater
sand (HK_mws) and quaternary sand (HK_qs) are estimated,
with the vertical conductivities tied to them at a ratio of
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10 : 1. Note that the estimated hydraulic conductivities are
those of the geological units, that are gridded to the com-
putational grid before further propagation of the ensemble
(see Sect. 2.2.2). Furthermore, the two parameters that con-
trol drainage, the drain level and the drain time constant,
are estimated, and so is the leakage coefficient, which con-
trols the groundwater–streamflow interaction. These param-
eters were selected based on their scaled sensitivities as de-
termined by using the AUTOCAL software (Madsen, 2003),
with HK_mws being by far the most sensitive towards both
streamflow and groundwater head. For a full list of sensitivity
coefficients, the reader is referred to Rasmussen et al. (2015).
HK_mws, HK_qs, the drain time constant and the leakage
coefficient were transformed logarithmically, as their uncer-
tainty is expected to span several decades.

3 Inverse modelling

In order to evaluate the performance of the data assimila-
tion algorithm for parameter estimation using real observa-
tions, the model is also calibrated using AutoCal in order to
be able to compare the parameter estimation through data
assimilation with parameter estimation through more com-
mon method, such as inverse modelling. A multi-objective
calibration approach is used, in which both groundwater
head observations and stream discharge observations are ag-
gregated and optimized. The set-up of parameters is simi-
lar to the one used in the data assimilation approach (see
Sect. 2.4.2), with the same variable and dependent param-
eters and initial values, in order to make the results of the
inverse modelling and the data assimilation directly compa-
rable.

Root-mean-square error is used as objective function of
both groundwater head observations and stream discharge
observations, and the two are aggregated using transforma-
tion to a common distance scale (Madsen, 2003). Both ob-
jective functions are weighted equally in the aggregation, to
ensure an equal importance on optimizing both the stream-
flow and the groundwater head of the model.

3.1 Data availability

Between 1970 and 1990, the Karup catchment was the sub-
ject of an extensive monitoring campaign in which stream
discharge and groundwater head were rigorously measured.
As a result, groundwater head observations are available in
35 locations (Fig. 1) with a frequency of 14 days−1, and daily
stream discharge observations are available in four locations
in the stream network.

3.1.1 Synthetic test observations

A twin test approach is used in the first part of this study,
meaning that a “true” model is defined, and that the obser-
vations to be assimilated are generated from the results of

this true model. The same model, but with perturbed param-
eter values, denoted the base model, forms the basis of the
ensemble that is used for data assimilation. Note that both
the true model and the base model are deterministic models,
that is, single, propagated models without any noise added.
The set-up is identical to that of Rasmussen et al. (2015), and
the reader is referred thereto for a detailed description and a
list of parameter values. Groundwater observations are made
available at 24 locations that form a subset of the 35 loca-
tions in which real observations are available (Fig. 1). The
reason for omitting some of the observation locations is that
they are located too close to the stream network, and act as
an exchange between the groundwater model and the stream
model. It was found that the groundwater head of these grid
cells are very sensitive to the streamflow simulation, and
small changes in the head lead to significant changes in the
streamflow. As such, they are not suitable for assimilation
and were used only as validation observations. Furthermore,
one observation did not reflect the dynamics of the model
due to its proximity to the model boundary and was therefore
omitted. In the twin test experiment the groundwater obser-
vations are generated with a frequency of 28 days−1 and are
added a time-varying, normally distributed white noise with a
standard deviation of 0.05 m and each are added a randomly
generated (normally distributed) constant bias with a stan-
dard deviation of 0.5 m.

Four stream discharge observations that coincide with the
locations of real observations are included. The discharge ob-
servations are made available on a daily basis, and are added
to a normally distributed white noise that is proportional to
the observed value using a standard deviation of 5 % of the
observed discharge, which is a common error observed in
real-world observations of discharge (Herschy, 1999).

The states and parameters are updated every time ground-
water head observations are available, i.e. every 28 days, and
the daily discharge observations available in between updates
are assimilated asynchronously. Tests have shown that the
length of the assimilation window is of little importance and
therefore no other assimilation window was tested.

3.1.2 Real observations

Like in the synthetic test, the same 24 groundwater head ob-
servation locations are chosen for assimilation, while the re-
maining locations are used for validation. The real ground-
water head observations are available with a frequency of
14 days−1, but to avoid updating the states and parame-
ters too often every other observation is assimilated asyn-
chronously, allowing an assimilation window of 28 days like
in the synthetic test. All four discharge observation locations
are used for assimilation and are assimilated asynchronously.
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Table 1. Overview of set-ups studied in the synthetic tests.

Set-up ColFil ColFil ColFil ColFil SepFil SepFil NoBias
Ens50 Ens100 Ens200 Hdamp NoQ Est

Ensemble size 50 100 200 50 50 50 50
H damping factor 1 1 1 0.1 1 1 1
Q damping factor 1 1 1 1 1 1 1
Parameter damping factor 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Head observation SD (m) 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Discharge observation SD (–) 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Observation types assimilated∗ Q, H Q, H Q, H Q, H Q, H H Q, H
States updated∗ Q, h, H Q, h, H Q, h, H Q, h, H Q, h, H Q, h, H Q, h, H
Bias correction method ColKF ColKF ColKF ColKF SepKF SepKF –

∗ Q: stream discharge, h: stream water level, H : groundwater head.

3.2 Model noise

Model noise is added to the ensemble through the forcings,
i.e. precipitation and reference evapotranspiration, and the
parameters. Noise on forcings is added as a Gaussian noise
with a standard deviation of 20 % of the observed value,
while no spatial correlation of the noise is considered.

Noise is added in the form of a Gaussian zero mean distri-
bution to a large number of model parameters relating to all
model processes and not just to the estimated parameters. In
total noise is added to 66 parameters, only five of which are
estimated. Adding noise to parameters that are not estimated
helps maintain the spread of the ensemble even as the spread
of the estimated parameters is reduced. Note that the zero
mean of parameter noise means that if the filter successfully
estimates all of the five included parameters, the ensemble of
models is unbiased except for any bias there may have been
introduced through the sampling of parameter noise and forc-
ing noise.

3.3 Test scenarios

For studying the performance of the data assimilation using
synthetic observations, the study includes the seven scenar-
ios listed in Table 1. All scenarios include bias estimation,
joint state updating and parameter estimation and simultane-
ous assimilation of groundwater head and stream discharge
observations.

When assimilating real observations, three scenarios are
studied: ColFil and SepFil and NoBiasEst (Table 2). The
ColFil uses the ColKF, a damping factor of 0.1 and an ensem-
ble size of 200, making it a combination of the Ens200 and
Hdampen scenarios studied in the synthetic test. The SepFil
uses the SepKF and an ensemble size of 100. The increase
in ensemble size used when using real observations is due to
the more complex nature of the model and observation er-
ror caused by differing dynamics of the observations and the
model. For comparison, the NoBiasEst scenario uses no bias
estimation.

Table 2. Scenarios studied in the real data tests.

Set-up ColFil SepFil NoBias
Est

Ensemble size 200 100 100
H damping factor 0.1 1 1
Q damping factor 1 1 1
Parameter damping factor 0.1 0.1 0.1
Head observation SD (m) 0.05 0.05 0.05
Discharge observation SD (–) 0.05 0.05 0.05
Observation types assimilated Q, H Q, H Q, H
States updated Q, h, H Q, h, H Q, h, H
Bias correction method ColKF SepKF –

3.4 Performance indicators

The model simulation period is from 1 January 1968 to
31 December 1973, and is divided into the following peri-
ods:

– 1969: warm-up, in which the ensemble is propagated
without being updated in order to allow a spread in
the ensemble of states to develop. At the end of the
year 1969, the spread of the ensemble of groundwater
head is between 2.1 and 0.7 m (depending on the loca-
tion in the catchment), which is considered sufficient for
assimilation to commence.

– 1970: preliminary assimilation of observations, which
allows the filter to constrain the states and parameters.
The results of this period are not included in the perfor-
mance evaluation.

– 1971–1972: assimilation of observations for evaluation.
The results of this period are included in the perfor-
mance evaluation as an indicator for how well the filter
performs. In the remainder of the report described as the
“assimilation period”.

– 1973–1974: validation period, in which the ensemble is
propagated but not updated. It is used to assess the im-
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provement in long-term forecasting due to the filter up-
date.

3.4.1 Synthetic test performance indicators

The performance of the filter when using synthetic observa-
tions is measured using three indicators:

– the mean estimated bias error (mean bias error), calcu-
lated as the average difference (in all observation points)
between the actual bias used to generate the biased ob-
servation and the mean of the ensemble of estimated bi-
ases at the end of the assimilation period;

– the average root-mean-square error of the groundwa-
ter head (head RMSE) in all calculation points of the
groundwater model domain for the assimilation period;

– The Nash–Sutcliffe coefficient of the stream discharge
at the outlet of the catchment (“NS”) for the assimilation
period.

3.4.2 Real data performance indicators

The performance of the filter when using real observations is
measured using two indicators:

– the mean RMSE of all 35 groundwater head observation
points for

a. the assimilation period

b. the validation period.

– The Nash–Sutcliffe coefficient for stream discharge in
the outlet of the catchment for

a. the assimilation period

b. the validation period.

Furthermore, a deterministic model with the optimal pa-
rameter set (as determined by the data assimilation algo-
rithm) is used to evaluate the estimated parameters. This
model is designated “optimal model” and is evaluated using
the above indicators. For comparison, the results of the opti-
mized model using AUTOCAL is included (hereafter desig-
nated “AutoCal model”).

4 Results and discussion

4.1 Synthetic tests

4.1.1 Bias correction using the coloured noise filter

The filter set-up that is considered the baseline set-up is
ColFilEns50 in which the ensemble size is 50 and the pa-
rameter updates are dampened by a factor of 0.1, while no
damping of the state updating is performed. The baseline set-
up is adopted from Rasmussen et al. (2015) as this set-up

Figure 2. Mean bias error, NS and H RMSE for the years 1971–
1972 in the synthetic test.

performed satisfactorily for the same catchment and similar
number of observations. However, Rasmussen et al. (2015)
did not consider bias correction.

The ColFilEns50 performed poorly in all three perfor-
mance indicators as seen in Fig. 2. The average error in esti-
mated bias is 0.47 m; worse than the average absolute bias of
the observations (0.38 m), and the filter often estimates a bias
that is in the wrong direction. This suggests that better, or at
least similar poor results, could be obtained by not correct-
ing the bias. Furthermore, the updating of groundwater head
is often erroneous, as evident from the spikes in groundwater
head RMSE (Fig. 3) that occur at the time of updating. This
wrong updating may be explained by two issues: the wrongly
estimated bias, which compels the filter to update the states
wrongly as it does not know the unbiased observations, or the
appearance of spurious correlation. Rasmussen et al. (2015)
observed the same spikes in head RMSE when using unbi-
ased observations and concluded that they are caused by spu-
rious correlation.

The poor performance of the ColFilEns50 is unexpected,
as an almost identical set-up was successfully used in Ras-
mussen et al. (2015), albeit using unbiased observations.
However, adding bias correction to the filter increases the
state space that must be spanned by the ensemble, thus po-
tentially requiring a larger ensemble size.

Doubling or quadrupling the ensemble size to 100 and 200
(ColFilEns100 and ColFilEns200 scenarios, respectively)
resulted in major improvements in almost all indicators
(Fig. 2). In terms of estimating bias, the error is reduced by
approximately 50 % to 0.24 and 0.22 m respectively, and the
head RMSE is reduced by 26 and 31 %. However, as visible
in Fig. 3, incorrect state updates still occur even with an en-
semble size of 200. As shown by Rasmussen et al. (2015),
these spurious correlations are likely to result in increased
drainage to the stream model, resulting large errors in stream-
flow. The errors from spurious correlations in the streamflow
model dominate the performance indicator and are, due to
the nature of spurious correlation, random. As a result, the
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Figure 3. The temporal variation of Head RMSE in the synthetic
test.

Nash–Sutcliffe coefficient is reduced when using an ensem-
ble size of 100, but increased with an ensemble size of 200.

The increased performance, and the reduction in the spikes
in head RMSE, supports the hypothesis that the poor perfor-
mance of the ColFilEns50 set-up is caused primarily by spu-
rious correlation.

Dampening the update of groundwater head (ColFilH-
damp scenario) had a profound effect on all the performance
indicators (Fig. 2). The mean bias error is reduced by 63 %
compared to the baseline set-up, and the NS is nearly dou-
bled. Finally, the head RMSE is reduced by 28 % to 0.32 m,
which is higher than what is obtained by increasing the en-
semble size or retuning the localization algorithm, but still a
significant improvement.

Dampening reduces the instant change in groundwater
head, and as such reduces the problems that arise due to the
non-linear relationship between states as well as reducing
spurious correlation. Furthermore, it reduces the numerical
effects that come from changing model states and parame-
ters, in which the model attempts to regain equilibrium. How-
ever, dampening the state updates causes a slower reduction
in head RMSE (Fig. 3), the value approximately converges
to the RMSE of Ens100 and Ens200 within 1 year of assimi-
lation.

4.1.2 Bias correction using the SepKF

Using the SepKF (scenario SepFil) resulted in significant im-
provements over the ColFilEns50 set-up in all performance
indicators compared to the ColKF set-up with the same num-
ber of ensemble members (ColFilEns50) (Fig. 2). The mean
bias error is reduced to 0.20 m, which is comparable to
ColFilEns200 and ColFilHdamp set-ups and little drifting
behaviour is observed in the model (Fig. 4). NS is increased
to 0.75, and head RMSE is reduced to 0.34.

4.1.3 Excluding discharge observations

When excluding the discharge observations (scenario SepFil-
NoQ), the filter performs worse in all three indicators. Com-
pared to the SepFil scenario, both the mean bias error and

Figure 4. Groundwater head as a function of time in four selected
observation locations for the year 1972 (synthetic test).

the head RMSE is increased by 58 %, and the NS is reduced
to −0.74. The reduction in NS is explained by a bias in the
estimated drain constant (Fig. 5) and by a poorer descrip-
tion of the groundwater head level as indicated by the head
RMSE.

Rasmussen et al. (2015) showed that discharge observa-
tions are particularly valuable for estimating parameters and
updating stream discharge, but less valuable for groundwa-
ter head updating. They found that excluding discharge ob-
servation resulted in an improvement in groundwater head
description when the spatial coverage of groundwater head
observations is good, as there is a trade-off between optimiz-
ing the streamflow and the groundwater head. However, the
current results suggest that discharge observations also helps
improve the estimation of groundwater head observation bias
and consequently of the groundwater heads.

4.1.4 Bias-unaware filter

Excluding bias estimation from the filter (NoBiasEst sce-
nario) results, as expected, in significant reductions in filter
performance (Fig. 2). This scenario may be considered as
having an estimated bias of zero, and as such has a mean bias
error of 0.44 m (i.e. the average absolute bias used to generate
the observations), which lead to an increase in head RMSE
of 6 % over the already poorly performing ColFilEns50 sce-
nario and 50 % over the SepFil scenario. Furthermore, the
NS was reduced to zero due to erroneous updates of the
groundwater head and poorly estimated parameters; in par-
ticular the drain level and the drain constant (see Fig. 5). The
omission of bias estimation also resulted in significant (and
expected) gradual deviation from the updated level (i.e. drift-
ing) as seen in Fig. 4. When considering the predictive power
of the model, the bias-unaware filter is also more likely to
estimate biased groundwater heads (Fig. 6). This figure indi-
cates that particularly in the observation point “Well 8”, the
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Figure 5. Spread of estimated parameters at the final update (syn-
thetic test). Thin blue lines show the total spread of the ensemble
and thick blue lines show the 25th and 75th percentile. Dots show
the mean of the ensemble. The horizontal lines show the true pa-
rameter value (black line) and the base parameter value (magenta
line).

bias unaware will consistently forecast a too low groundwa-
ter head, and, as seen in Fig. 4, this is to a great extent caused
by the biased filter updates.

It is clear that omitting bias estimation when biases are
present has a negative impact on both state updating and pa-
rameter estimation. It is observed that updating the ground-
water head to a biased observation level causes the head to re-
turn to an unbiased level when model propagation is resumed
(i.e. it is drifting as seen in Fig. 4). The model behaviour be-
comes unnatural in the sense that it is not controlled primar-
ily by the input forcings, but rather by the model trying to
retain equilibrium. This can result in deteriorated estimation
of parameters and updates of model states not only in the
observation points but also in the entire model domain.

Figure 6. Model observations versus synthetic observations in se-
lected observation locations. The dashed line indicates the 1 : 1 line
when corrected for the applied bias. Note that the plotted model
observations are the forecasted model observations, i.e. before the
states are updated in the filter.

4.1.5 Comparison of the ColKF, the SepKF and the
bias-unaware filter

The time-varying estimated biases using the ColKF and the
SepKF for each observation location are shown in Fig. 7. The
figure compares the ColFilEns200 and the SepFil scenarios,
as they are the most easily comparable in terms of set-up and
performance. Both scenarios have comparable mean bias er-
ror (0.22 and 0.20 m for ColFilEns200 and SepFil, respec-
tively), but as Fig. 7 shows, there are significant differences
in the estimation of bias in most observation locations. The
ColKF converges significantly faster than the SepKF to the
true value in most locations where the bias estimation is suc-
cessful, due to the inclusion of bias-state correlation in the
ColKF. The SepKF also underestimates the bias in some lo-
cations, most likely due to the simplifications and assump-
tions, notably the assumption that the bias error covariance
is proportional to the state error covariance.

Figure 4 shows that the drifting behaviour is generally
most pronounced in the NoBiasEst scenario and least pro-
nounced in the ColFIlEns200 scenario, with the drifting be-
haviour of the SepFil scenario falling in between the two for-
mer scenarios. Both the ColKF and the SepKF reduce the
bias error in most locations except in wells 39, 54 and 63.
The erroneous bias estimation may be because of the esti-
mated parameter values. Visual inspections of the ground-
water head as a function of time (Fig. 4) reveal that there
is no significant systematic deviation from the updated level
(i.e. drifting) in the ColFilEns200 and SepFil and therefore
no update of the observation bias in the filter. The lack of
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Figure 7. Estimated bias in the ColFilEns200 and SepFil scenarios as a function of time in the synthetic tests, compared to the true bias value
used to generate the biased observations.

model drifting despite erroneous bias estimation is caused
by the wrongly estimated parameters, and as such this is an
equifinality issue: The filter has been able to produce non-
drifting behaviour of the model despite biased states, by us-
ing a biased parameter set. On the other hand, the NoBiasEst
displays significant drifting in wells 8, 39 and 63, even when
the updated states are unbiased (well 39) but as the filter is
unaware of bias, this is not corrected.

The improvements gained from using the SepKF filter
rather than the ColKF stem from the reduction in uncertainty

needed to be described by the ensemble, and thus a smaller
ensemble size is required. Ignoring the correlation between
the bias and the state reduces the complexity of the system,
and if that correlation is negligible, as in this case, there is
little advantage in using the ColKF over the SepKF.

The two bias correction methods were also compared
in Drecourt et al. (2006) using a simple 1-D groundwater
model. While they did not consider the issue of ensemble
size, they too found that both the ColKF and the SepKF can
successfully estimate biases and improve model forecasting
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Figure 8. Nash–Sutcliffe coefficient for stream discharge (left
panel) and mean RMSE of groundwater head observations (right
panel) in the assimilation and validation periods, respectively (real
data).

abilities. They also noted that the convergence of the SepKF
is slower than the convergence of the ColKF, but the perfor-
mances of the two methods were otherwise comparable.

4.2 Real data tests

The Nash–Sutcliffe coefficient for stream discharge and the
mean RMSE of groundwater head can be seen in Fig. 8.
When comparing to the base values data assimilation with
the separate-bias filter (scenario SepFil), the coloured noise
filter (scenario ColFil) and the bias-unaware filter (scenario
NoBiasEst) all result in increased Nash–Sutcliffe coefficients
and reduced mean head RMSE in the assimilation period.

In the NoBiasEst scenario, the model states are forced to
match the observations as any bias is ignored, which results
in a lower mean head RMSE in both the assimilation and the
validation period (Fig. 8). However, the assumption of un-
biased head observations results in the NoBiasEst scenario
having the lowest Nash–Sutcliffe coefficients of the three
scenarios due to a trade-off between stream discharge ob-
servations and groundwater head observations, and it results
in the drifting model behaviour apparent in Fig. 9, in which
the model deviates strongly from the observed level in be-
tween updates. In SepFil, bias estimation is included using
the SepKF, which results in a higher Nash–Sutcliffe coeffi-
cient and a comparable head RMSE to that of the NoBias-
Est scenario. The effect of the bias estimation can be seen in
Fig. 9 as the filter does not update the groundwater head to
the level of the observation but acknowledges a bias, which
results in less drifting between updates compared to the No-
BiasEst scenario. However, the deviation is still significant,
which indicates that the bias is underestimated for this ob-
servation point. This is in line with the synthetic tests, where
it was observed that the SepFil tends to underestimate large
biases.

The ColFil scenario results in higher mean head RMSE
and slightly lower Nash–Sutcliffe coefficient than the SepFil,
but the ColFil optimal model (i.e. the deterministic model us-

Figure 9. Groundwater head as a function of time in head observa-
tion location well 64 (real data).

ing the parameter set estimated by the filter) performs better
than the SepFil optimal model with respect to most indica-
tors.

The ColFil scenario estimates significantly larger biases
in most observation points (Fig. 10), with an average abso-
lute estimated bias of 0.63 m, compared to 0.19 m in the Sep-
Fil scenario. With few exceptions, SepFil estimates a smaller
bias than the ColFil, though in most cases in the same direc-
tion. Different bias directions are estimated by the two filters
in two of the 24 observation locations, as illustrated in Fig. 9,
which may be caused by significant differences in the esti-
mated parameter values (see Fig. 11), as is also seen in the
synthetic test.

A bias of approximately zero is estimated in seven obser-
vation locations, while biases of up to 1.8 m are estimated in
others. In most locations, however, the bias appears under-
estimated, as exemplified by Fig. 9. This underestimation is
observed as drifting and is likely caused by two factors. For
the SepKF, the update of bias is constrained by the γ param-
eter, meaning that a too low value of γ may limit the update
too much and thereby make the filter unable to estimate the
correct bias, while a too high γ value is likely to yield un-
stable bias estimates. A test was made using a γ value of 0.3
(the value used in SepFil is 0.1), which resulted not only in
increases in the estimated biases, but also in unstable bias es-
timates that changed significantly with each time step as the
filter did not properly distinguish biases, random error and
model dynamics. Furthermore, as more and more observa-
tions are assimilated and the spread of the ensemble of states
is reduced, the update of the biases is smaller as the bias error
covariance is assumed proportional to the state error covari-
ance. If the ensemble spread of states is reduced too much, or
even collapses, before correct biases are estimated, the bias
estimation effectively stops. A similar consideration is appli-
cable to the ColKF, as the ColKF operates with an ensem-
ble of biases, and the spread of the ensemble of biases (and
thereby the bias error covariance) is independent of the en-
semble of states. If the spread of the ensemble of biases is
too small, bias estimation effectively stops.

www.hydrol-earth-syst-sci.net/20/2103/2016/ Hydrol. Earth Syst. Sci., 20, 2103–2118, 2016



2116 J. Rasmussen et al.: Data assimilation in integrated hydrological modelling

Figure 10. Estimated bias in the ColFilEns200 and SepFil scenarios as a function of time (real data). The black line indicates zero bias.

Comparing the optimal models of the ColFil, the SepFil
and the NoBiasEst with the base model and the AutoCal
model reveals a clear difference between the assimilation
period and the validation period. While the optimal mod-
els produce lower NS for the assimilation time than both the
base model and the AutoCal model, there is a clear improve-
ment in the NS in the validation period over both the Auto-
CalModel and the base model. This suggests that AutoCal
has produced a biased parameter set, which is not the case
using any of the three Kalman filters. However, the value of
bias correction for parameter estimation is unclear, as there

is no significant difference in the validation NS of the bias-
aware Kalman filters and the bias-unaware Kalman filter.

This tendency is not present in head RMSE, where the op-
timal models perform more poorly in terms of head RMSE
than the base model and the AutoCal model. While it is to
be expected that the AutoCal model would produce lower
head RMSE than both the ColKF and the SepKF since the
AutoCal model has been optimized specifically based on the
head RMSE, it was expected that the optimal models of
the ColKF and SepKF would produce improvements over
the base model. However, it should be noted that the eval-

Hydrol. Earth Syst. Sci., 20, 2103–2118, 2016 www.hydrol-earth-syst-sci.net/20/2103/2016/



J. Rasmussen et al.: Data assimilation in integrated hydrological modelling 2117

Figure 11. Spread of estimated parameters at the final update (real
data). Thin blue lines show the total spread of the ensemble and
thick blue lines show the 25th and 75th percentile. Dots show the
mean of the ensemble. The horizontal lines show the AutoCal pa-
rameter value (black line) and the base parameter value (magenta
line).

uation of model performance is based on the possibly bi-
ased observed values, and that the estimated biases have not
been taken into account in the head RMSE calculations. The
lack of clear improvement in the optimal models may be ex-
plained by the fact that there is little room for improvement
with the current model structure as underlined by the rela-
tively small improvements between the AutoCal model and
the base model. It may also in part be explained by the under-
estimation of the biases in both the ColFil and SepFil scenar-

ios. Improving the model structure and the filter set-ups may
improve the potential of estimating parameters, but with the
current results the value of data assimilation for parameter
estimation is not clear.

5 Conclusions

Observation bias is a notable challenge in integrated hydro-
logical modelling and needs to be addressed when apply-
ing data assimilation to the models. Updating the states of
a model to match strongly biased observations will decrease
filter performance and may even cause numerical instability.
The two methods for correcting observation bias presented
in this study can help reduce the bias issue in data assimila-
tion and improve filter performance. Both methods improved
the groundwater head and stream discharge of the model,
and with varying degrees of success estimated the obser-
vation bias when using synthetic observations. When using
real observations, both bias estimation methods resulted in
improved streamflow modelling, but little improvement was
seen in groundwater heads.

The main difference in the bias correction methods anal-
ysed is the interaction between the bias and the states. While
the ColKF takes advantage of the full covariance matrix, the
SepKF only takes into account the interaction that is present
from the state to the bias and not the other way around. While
this is a limitation of the SepKF, it results in a lower require-
ment for ensemble members, meaning that for smaller en-
sembles, the SepKF outperforms the ColKF. To obtain simi-
lar results to those of the SepKF when using the ColKF, the
ensemble size needed to be doubled or even quadrupled, or
the updates of the states needed to be dampened in an attempt
to reduce the spurious correlations.

Most of the model parameters were successfully estimated
in the synthetic tests, but biased observations introduce issues
with equifinality. A biased parameter set may produce unbi-
ased model behaviour (i.e. without drifting) in one or more
observations even if the estimated bias is incorrect. As a re-
sult, the filter does not update the bias of the observation, and
the erroneous parameter set is not corrected. This resulted in
significantly different parameter sets estimated by the differ-
ent filters for both the synthetic tests and the tests using real
data.

The study has shown that hydrological observational bias
can be corrected in a data assimilation scheme and that it
can improve state updating and parameter estimation. With
both model bias and observational bias being significant
sources of error in hydrological modelling that may function
as a road block for the application of data assimilation to
hydrological models, these results may act as a stepping
stone for the advancement of hydrological data assimilation
in large-scale, integrated hydrological models.

Edited by: I. Neuweiler
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