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Abstract. This study presents a novel bias correction scheme

for regional climate model (RCM) precipitation ensembles.

A primary advantage of using model ensembles for climate

change impact studies is that the uncertainties associated

with the systematic error can be quantified through the en-

semble spread. Currently, however, most of the conventional

bias correction methods adjust all the ensemble members to

one reference observation. As a result, the ensemble spread

is degraded during bias correction. Since the observation is

only one case of many possible realizations due to the cli-

mate natural variability, a successful bias correction scheme

should preserve the ensemble spread within the bounds of

its natural variability (i.e. sampling uncertainty). To demon-

strate a new bias correction scheme conforming to RCM pre-

cipitation ensembles, an application to the Thorverton catch-

ment in the south-west of England is presented. For the en-

semble, 11 members from the Hadley Centre Regional Cli-

mate Model (HadRM3-PPE) data are used and monthly bias

correction has been done for the baseline time period from

1961 to 1990. In the typical conventional method, monthly

mean precipitation of each of the ensemble members is

nearly identical to the observation, i.e. the ensemble spread

is removed. In contrast, the proposed method corrects the

bias while maintaining the ensemble spread within the nat-

ural variability of the observations.

1 Introduction

The growing evidence of global climate change is clear in the

past century (Stocker, 2013). Therefore, future projections of

climate that incorporate the effects of an underlying chang-

ing climate are of great importance, particularly because of

reliance of mitigation and adaptation on realistic projections.

Interest in the impacts of climate change is increasing from

water resources managers in the context of the hydrological

cycle and water resources (Bates et al., 2008; Arnell et al.,

2001). Global climate models (GCMs) are usually used for

the projection of future climate and the accuracy of GCMs

has been enhanced in simulating large-scale global climate.

Nevertheless, GCMs have difficulties in providing reliable

climate data at local scales due to their coarse resolutions

(100–250 km) (Maraun et al., 2010). Therefore, for regional

impact studies, regional climate models (RCMs) have been

widely used which are compatible with the catchment scales

(25–50 km).

Although RCMs provide detailed information, for hydro-

logical application, there is still a mismatch of scales, espe-

cially for meso- and small-scale catchments. In addition, hy-

drological variables from RCMs still cannot be used directly

in hydrological models because of the systematic errors (i.e.

biases) (Chen et al., 2011b; Feddersen and Andersen, 2005).

The statistical properties of simulated precipitation are af-

fected by bias in the mean, variance (variability), and skew-

ness (dry days, drizzle, inability to reproduce extreme events)

(Baigorria et al., 2007; Leander and Buishand, 2007). There-

fore, for hydrological impact studies, post-processing of the

model outputs is normally needed to reduce biases (Chen

et al., 2013). Research has shown that systematic model er-

rors of RCMs are due to imperfect parameterization, spatial

discretization, and spatial averaging within grids (Ehret et

al., 2012; Teutschbein and Seibert, 2012). Typical errors are

over- or under-estimation of climate variables and seasonal

dependency (Kotlarski et al., 2005; Maraun et al., 2010), and
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there are relatively too many low-intensity wet days com-

pared with the observations (Ehret et al., 2012; Ines and

Hansen, 2006).

The errors along with the mismatching scales have re-

sulted in numerous studies on developing and evaluating

the bias correction methods (Chen et al., 2011a, b; Johnson

and Sharma, 2011; Piani et al., 2010; Teutschbein and Seib-

ert, 2012). Evaluation of different bias correction methods

has been done by Teutschbein and Seibert (2012): (1) linear

scaling (Lenderink et al., 2007), (2) local intensity scaling

(Schmidli et al., 2006), (3) power transformation (Leander

and Buishand, 2007; Leander et al., 2008), and (4) the dis-

tribution mapping method (Block et al., 2009; Déqué et al.,

2007; Johnson and Sharma, 2011; Piani et al., 2010; Sun et

al., 2011). The linear scaling method adjusts the mean value

of the model to that of the observation by applying a cor-

rection factor which is the ratio between the long-term ob-

servation and model data. However, the local intensity scal-

ing method considers wet-day frequency and wet-day inten-

sity as well as the bias in the mean. The power transfor-

mation method corrects the mean and variance of the data.

The distribution mapping method fits the distribution func-

tion of the climate model data to that of the observation.

The results have shown that all four bias correction meth-

ods could improve the raw RCM precipitation. Among them,

the distribution mapping method is the best; however, it has

the drawback of overfitting. Although the bias correction is

commonly applied in climate change studies, correcting the

model output towards the corresponding observation is still a

controversial issue, and applying bias correction could make

the uncertainty range of the simulations narrower, i.e. “hides

rather than reduces uncertainty” (Ehret et al., 2012).

In this study we address the issue which most conven-

tional bias correction methods implicitly neglect: the uncer-

tainty associated with the observation sampling uncertainty.

We note that adjusting the statistical properties of each of

the ensemble members to one observation does not preserve

the spread across the ensemble members, thus negating the

advantage of quantifying uncertainty through the use of en-

semble spread in climate change impact studies. In general,

uncertainties in climate change projections can be grouped

by three main sources: boundary condition, model structure,

and natural variability (Hawkins and Sutton, 2009). To ac-

count for these sources of uncertainties, ensemble modelling

is a generally accepted way of producing a number of sim-

ulations using multiple scenarios, different models (struc-

tures and parameters), and initial conditions (Collins et al.,

2006; Good and Lowe, 2006; Meehl et al., 2005; Murphy

et al., 2004; Palmer and Räisänen, 2002; Stainforth et al.,

2005; Tebaldi et al., 2006; Webb et al., 2006; Weisheimer

and Palmer, 2005) which are possible due to an increase in

data availability through high-performance computing sys-

tems. There are two approaches for ensemble schemes in the

context of model uncertainty. The first is the multi-model

ensemble (MME) method to address the structural uncer-

tainty associated with the understanding and parameteriza-

tion of the GCMs which is applied in the Intergovernmen-

tal Panel on Climate Change (IPCC) assessments (Meehl et

al., 2007; Solomon, 2007; Taylor et al., 2012). The second is

the perturbed-physics ensemble (PPE) method which is gen-

erated by perturbing physical parameters in a given climate

model and is complementary to the MME approach.

However, when bias correction is applied to the ensem-

ble of the GCM/RCM scenario simulation, the advantage of

the ensemble in representing the uncertainty is often negated.

The statistical properties of each of the individual ensemble

members are usually matched to the statistical property of the

observations, so that the advantage of the ensemble with re-

spect to a single model simulation is lost. Therefore, the nat-

ural variability of the observation should be estimated first,

and then the spread (i.e. variance) of the ensemble should

be adjusted to not only one observation, but also to a range

of possible observations, by incorporating sampling uncer-

tainty. In this study we propose a new bias correction scheme

which conforms to the ensemble spread. In other words, in

this scheme the ensemble spread is preserved to a certain de-

gree, after bias correction, which corresponds to the observa-

tion sampling uncertainty. There has been relevant work re-

cently around the influence of natural variability on bias char-

acterization in RCM simulations (Addor and Fischer, 2015).

They show that different methods of estimating natural vari-

ability give different measures, depending on the method,

season, and temporal scale of the observation record, which

in return influence the bias correction. Overall, they argue

that observational uncertainties and natural variability need

to be considered for bias correction of RCM simulations. The

primary research question presented in this study, hence, is

associated with how to correct the PPEs’ bias to preserve

the spread. Should the bias correction be applied individu-

ally for each ensemble member or applied to the ensemble?

The former method is to apply different transfer functions

for different ensemble members, while the latter method is

to apply only one transfer function to all ensemble members.

In stochastic hydrology, the synthetic rainfall and streamflow

should have statistical properties (e.g. mean, variance, skew-

ness) similar to the real system, so that they are not distin-

guishable between the observed data and the modelled data.

In this study we have followed the same philosophy. The bias

corrected rainfall ensembles should have statistical proper-

ties (in this study, the mean value and the spread of ensem-

bles) similar to the observational spread. In other words, the

ensemble spread should be maintained to a certain degree af-

ter bias correction, which is compatible with the natural vari-

ability of the observation. The same principle has been ap-

plied to the UKCP09 Weather Generator (Jones et al., 2009)

(WG) used in the UK. The synthetic weather variables from

the WG have statistical properties similar to the observations

(although not necessarily similar to the real world) since the

WG is calibrated on the observations.
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Figure 1. Location of the Thorverton catchment (the left panel) and

HadRM3 25 km grid boxes (the right panel). The highlighted grid

box in red is selected to cover the Thorverton catchment.

There are many aspects (e.g. mean, variance, skewness,

autocorrelation) of the rainfall series which cannot be all cor-

rected simultaneously. The way of correcting the RCM data

should therefore depend on what properties are relevant to

the data usage. In this study we have focused on the use of

the spread of bias corrected RCM precipitation to investigate

the impact of the conventional and proposed bias correction

schemes on the flow. The conventional method removes the

spread of the ensemble, while the proposed method can bet-

ter convey the spread properties of the ensemble.

The paper is structured as follows: Sect. 2 describes the

study catchment and data; in Sect. 3 the conventional bias

correction method is presented. Next we show how the ob-

servation sampling uncertainty (i.e. natural variability) is es-

timated and how the ensemble is evaluated. Finally the con-

cepts of conventional and proposed bias correction methods

are compared. In Sect. 4 we show the results followed by a

discussion and conclusions in Sects. 5 and 6.

2 Catchment and data

The Thorverton catchment is used as the case study site. It

has an area of 606 km2, and is a sub-catchment of the Exe

catchment. The Exe catchment is located in the south-west

of England, with an area of 1530 km2 and an average annual

rainfall of 1088 mm. Figure 1 shows the overview of the Exe

catchment area. Daily time series of the observed precipi-

tation data (1961–1990) over the Thorverton catchment are

obtained from the UK Met Office.

The climate data used in this study are the Hadley Centre

Regional Climate Model (HadRM3-PPE) data which were

generated by the Met Office Hadley Centre. This data set

is used to dynamically downscale regional projections of

the future climate from the HadCM3 GCM (Murphy et al.,

2009). It is comprised of 11 members (1 unperturbed and 10

perturbed members). For the perturbation, 31 parameters are

chosen from the unperturbed member representing radiation,

land surface, boundary layer, sea ice, cloud, atmospheric dy-

namics, and convection (Collins et al., 2011). The data set

provides the time series of climate data in the period 1950–

2100 for the A1B historical and future medium emission sce-

nario. The temporal and spatial resolutions of the HadRM3

climate data are daily and 25 km (0.22◦ on a rotated pole

grid) respectively. Here, the daily precipitation series from

all 11 members are used to evaluate the ensemble and to test

the proposed new bias correction scheme for the baseline pe-

riod of 1961 to 1990. The grid is chosen to cover the study

catchment.

3 Methodology

3.1 Conventional bias correction method

Bias correction was initially proposed for calibrating the sea-

sonal GCM variables (e.g. precipitation and temperature) and

later extended to the daily timescale. Individual months are

usually processed independently of each other, in order to

correct seasonal phase errors, after modifying the wet-day

frequency of the climate model precipitation on the wet-day

observed frequency by applying a cut-off threshold. Com-

pared with the observations, the climate model precipitations

usually have more wet days at low precipitation. In this study

the two-parameter Gamma distribution is used to fit the ob-

served precipitation:

f (x)=
1

βα0(α)
xα−1e−x/β; x ≥ 0; αβ > 0, (1)

where 0 is the gamma function and α and β are the shape

and scale parameters respectively.

For the bias correction of the daily RCM precipitation, the

quantile mapping method based on the Gamma distribution

which is also referred to as “probability mapping” and “dis-

tribution mapping” in the literature is applied. A schematic

representation of the concept of the conventional quantile

mapping method is shown in Fig. 2 and a general process is

described as follows. First, before doing the bias correction,

the wet-day frequencies of the observed precipitation and the

RCM precipitation are matched by removing the RCM low

precipitation. There are no cases where observations have

more wet days than the RCM output at low precipitation.

Second, Gamma distribution functions are fitted to individ-

ual months for both the observed and RCM daily precipi-

tations for the baseline period. The cumulative probability

of the RCM is calculated from the fitted Gamma distribu-

tion of the RCM-simulated precipitation. Third, the precip-

itation value corresponding to the cumulative probability is

matched with an equivalent cumulative probability in the fit-

ted Gamma distribution of the observation. This value is the

bias corrected RCM precipitation as described by Eq. (2):

Xcor = F
−1
[F (Xmodel ; αmodel βmodel) ; αobs βobs], (2)

where Xcor is the bias corrected RCM precipitation, F is the

Gamma cumulative distribution function (CDF), F−1 is the

inverse function of F , α is the shape parameter, and β is the
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Figure 2. A schematic representation of the concept of the conven-

tional quantile mapping method for bias correction.

scale parameter. The subscripts model and obs indicate the

parameters from the RCM and observed precipitation.

In this study, daily bias correction is applied for each

month separately. December, which is a wet period in the

study catchment, is used to illustrate the new bias correction

method in more detail.

3.2 Natural variability of observation

The problem with the conventional bias correction methods

is that all the ensemble members are adjusted to one obser-

vation as a reference value. As a result, the spread of the en-

semble which represents the uncertainty is removed after bias

correction. However, due to the observational sampling un-

certainty in terms of climate variability, the observation is

only one case of many possible realizations. Climate natural

variability is a natural fluctuation that occurs without external

forcing to the climate system. To estimate the natural vari-

ability of the observed precipitation, the parameters of the

Gamma distribution for December daily precipitation from

1961 to 1990 are assumed to be the true parameters. We use

100 000 sets of 30-year daily precipitation random samples

from the true parameters. For each sample (i.e. 30-year daily

rainfall simulation), we estimate a set of new Gamma param-

eters (i.e. shape and scale parameter). The re-estimated pa-

rameters are different to those used in the simulations due to

the observation sampling uncertainty. In this study, the distri-

bution of 100 000 sets of parameters is assumed to represent

the natural variability of 30-year daily precipitation. In order

to find the optimized number of resampling, the sensitivity

analysis between the numbers of resampling and the mean

value of the observed precipitation has been done. The result

has shown that beyond 20 000 resamples, the mean value be-

comes stable. Since the running time does not take long in

this study, we have resampled 100 000 times, which are suf-

ficient.

3.3 Evaluation of ensemble members

The ensemble members must first be evaluated to assess

whether bias correction is necessary. The idea of evaluating

the ensemble members is illustrated in Fig. 3. The observed

daily precipitation is assumed to follow the Gamma distri-

bution defined by the shape and scale parameters. The dis-

tribution of the parameters can be derived from the resam-

pling procedure as mentioned in Sect. 3.2 (Fig. 3a). Then we

compare the distributions of the observation and ensemble

members’ parameters (Fig. 3b–c). If the parameter distribu-

tion of an ensemble member looks like Fig. 3b, the mem-

ber has bias in mean and variance (in the form of a shifted

and narrow parameter distribution). If the parameter distri-

butions were biased on the mean and had a wide variance, it

resembles something closer to Fig. 3c. Both of these “cases”

indicate the need for bias correction. On the other hand, if

the parameter distribution of an ensemble member resem-

bles Fig. 3d (i.e. similar mean and variance of the ensem-

ble member and empirical estimate), then bias correction is

not necessary. The basic idea of the proposed bias correction

is to match the shapes of parameter distribution between the

observation and ensemble members so that they are similar

after bias correction rather than matching point estimates of

the parameters.

3.4 Comparison between the conventional and

proposed bias correction schemes

A schematic representation of the conventional bias correc-

tion and the proposed bias correction methods is presented

in Fig. 4. As mentioned in Sect. 3.1, the objective of the

quantile mapping method is to match the statistical proper-

ties between the observed and climate model precipitation.

Fig. 4a shows the probability density functions (PDFs) of the

observation and each ensemble member. In the conventional

method, transfer functions are built by matching the shape

and scale parameters of each ensemble member to those of

the observation (Fig. 4b). Therefore, the PDFs (or CDFs) of

the observation and each ensemble member become identical

after bias correction (Fig. 4c). However, the problem of this

approach is that if every ensemble member is matched to the

observation through bias correction, there is no point in us-

ing the ensemble scenarios since the spread of the ensemble

is removed. Hence, we propose a new scheme for bias cor-

rection. The idea is to maintain the variation of the ensemble

after bias correction so that they match the variation of the

population as if each member is randomly (i.e. equally likely)

taken from the population. The population here is assumed to

be the natural variability of the observation. Figure 4d illus-

trates the concept of the new bias correction method. Each

member is corrected by different transfer functions, but the

parameters’ space for the transfer functions is limited to the

natural variability of the observation. As a result, the biases
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Figure 3. A schematic representation of the evaluation of ensemble members.

of 11 members are reasonably well corrected without elimi-

nating the spread of the ensemble (Fig. 4e).

A step by step summary of the proposed procedure is pre-

sented as follows and in Fig. 5.

(Step 1) Natural variability of the observation is estimated

by first randomly resampling precipitation from a Gamma

distribution with parameters obtained by fitting the observed

precipitation. Next, the parameters of each resampled precip-

itation time series are estimated, and the bivariate distribution

of these parameters over all the samples is established. The

shaded area in Fig. 5 represents the natural variability of the

observation. If the parameters of the ensemble members are

in the shaded area, there is no need to do bias correction.

(Step 2) Normalize the parameters of the ensemble mem-

bers using Eq. (3).

xN =
x−µx

σx
, yN =

y−µy

σy
, (3)

where x and y are the shape and scale parameters of the dis-

tribution of each ensemble member, µx,µy are the mean val-

ues, σx,σy are the standard deviations of the parameters of all

ensemble members, and xN and yN are the normalized shape

and scale parameters.

(Step 3) De-normalize the parameters of the ensemble

members by matching the mean and standard deviation to

those of the observation as shown in Eq. (4).

x′ = xN · σxo+µxo , y′ = yN · σyo+µyo, (4)

whereµxo,µyo are the mean values and σxo,σyo are the stan-

dard deviations of the parameters of the observation; x′, y′

are the de-normalized shape and scale parameters.

(Step 4) In Step 3, the coordinate of the centre of the de-

normalized ensemble parameter sets is (0, 0). This coordi-

nate is shifted to that of the observation (i.e. the black dot in

Fig. 5, Step 4), which results in the ensemble members’ pa-

rameter sets falling into the boundary of the natural variation

of the observations. From this, transfer functions for the bias

correction can be built.

3.5 Hydrological application

To investigate the impact of different bias correction schemes

on flow, we have used a conceptual rainfall–runoff model

called IHACRES (Jakeman and Hornberger, 1993). This

model has been widely applied to a variety of catchments

for hydrological analysis and climate impact studies (Jake-

man et al., 1993; Kim and Lee, 2014; Letcher et al., 2001;

Littlewood, 2002). The model is composed of a non-linear

module and a linear module as shown in Fig. 6. The details

of this model are described in Appendix A.

The hydrological application has been done as follows.

First, the model parameters have been optimized with the

use of the observed daily precipitation, temperature, and flow

data. Second, the observed precipitation and the two differ-

ent bias corrected precipitation time series from the conven-

tional and proposed bias correction methods are constructed

to compare the spread of simulated flow ensembles through
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2024 K. B. Kim et al.: Precipitation ensembles conforming to natural variations

Figure 4. A schematic representation of the conventional bias correction method and the proposed bias correction method.

the IHACRES model. Third, the optimized parameters and

the ensemble of precipitation forcings are then used to simu-

late daily flow ensembles. Finally, from these daily simulated

flow data, 30-year mean monthly flow has been estimated and

compared for the two different bias correction schemes.

4 Results

The first part of this section compares the parameter dis-

tribution of the observed precipitation and bias uncorrected

precipitation. The next part shows the result of the conven-

tional bias correction followed by the proposed bias correc-

tion method. In each part, PDFs of precipitation, shape, and

scale parameter space and PDFs of shape and scale parame-

ters have been evaluated and compared. Finally, the monthly

mean precipitation for the time period from 1961 to 1990

is compared among the observation, uncorrected ensemble

members, and corrected ensemble members by applying both

the conventional and new methods.

4.1 Parameter distribution of the observed and RCM

precipitation

Before correcting the bias of each member, we compare the

statistical properties with the observed precipitation. Fig-

ure 7a shows the PDFs of the observed and simulated pre-

cipitation. The parameter space (i.e. shape vs. scale parame-

ter) of these distributions is plotted in Fig. 7b as illustrated

in Sect. 3.2. The red dots represent the natural variability

of the observation which is estimated from the observed pa-

rameters. Most of the members’ parameters are outside the

boundary of the natural variability. Figure 7c and d compare

the distribution of each parameter. The distribution of the pa-

rameter for the combined ensemble shows large biases of the

mean and variance. Since both the mean and variance of the

11 members are quite different to those of the observation, it

is apparent that bias correction is needed.

Figure 8a presents the PDFs of the observed precipitation

and the resampled precipitation which represents the natu-

ral variability of the observation. Figure 8b shows the natural

Hydrol. Earth Syst. Sci., 20, 2019–2034, 2016 www.hydrol-earth-syst-sci.net/20/2019/2016/
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Figure 5. The four-step procedure of the proposed bias correction method.

Figure 6. Structure of the IHACRES model.

variability of monthly mean precipitation which has been es-

timated from the resampled precipitation.

4.2 Conventional bias correction

Figure 9 illustrates the result of the conventional bias cor-

rection method. As expected, the PDFs of the observation

and 11-member ensemble are nearly identical to one another

(Fig. 9a), and the parameters of the corrected precipitation

are all in the centre of the parameter space of the observation

(Fig. 9b, c, and d). As previously noted, the spread of the en-

semble under this conventional approach is greatly reduced,

and, in turn, the overall characteristics of hydro-climate vari-

ables are nearly identical across different model runs.

4.3 Proposed bias correction

To preserve the spread of the ensemble members, a system-

atic modelling scheme is proposed. Figure 10a presents the

PDFs of the observation, bias uncorrected members, and bias

corrected members. One can see that the corrected members,

although they are not exactly the same as the observation,

are closer to the observation than the uncorrected members.

It is clearer if we see the result in terms of the parameter

space (Fig. 10b). The parameters of the corrected members

are all within the boundary of the natural variability of the

observed precipitation. In addition, the distributions of the

11 members’ parameters after bias correction are quite sim-

ilar to those of the observation (Fig. 10c and d). Therefore,

one can assume that all ensemble members represent realistic

precipitation scenarios when the natural variability is consid-

ered.

4.4 Comparison of bias corrected monthly mean

precipitation

Figure 11 compares the result of the conventional and pro-

posed bias correction schemes in terms of reproducing the

mean precipitation. Figure 11a shows that the monthly mean

precipitation of 11 members for the period 1961–1990 is

quite different to that of the observation. The ensemble

means are similar to the observation only in February and

March. The ensemble means generally overestimate the ob-

servations from April to June and underestimate the observa-

tions from July to January. When we apply the conventional

www.hydrol-earth-syst-sci.net/20/2019/2016/ Hydrol. Earth Syst. Sci., 20, 2019–2034, 2016
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Figure 7. Parameter distributions of the observation and 11 members: (a) probability density function of the observed and 11-member

precipitation time series before bias correction; (b) scatter plot between shape and scale parameters of the observed and bias uncorrected

precipitation; (c–d) probability density functions of shape and scale parameters for the observed and bias uncorrected precipitation.

Figure 8. (a) PDFs of the observed precipitation and the resampled precipitation; (b) natural variability of monthly mean precipitation.

method, the corrected monthly mean precipitation of all 11

members is very similar to the observation, and the spread of

the ensemble is almost entirely removed (Fig. 11b). Correc-

tion through the proposed method results in simulated rain-

fall that has reasonable means, does not have systematic bias

in the mean (i.e. no consistent over- or under-estimation is

present), and represents the spread due to the natural vari-

ability (Fig. 11c).
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Figure 9. Results of the conventional bias correction method: (a) probability density functions of the observed and simulated (i.e. 11-member)

precipitation after bias correction; (b) scatter plot between shape and scale parameters of the observed and bias corrected precipitation; (c–d)

probability density functions of the shape and scale parameters of the observed and bias corrected precipitation.

4.5 Hydrological application

As presented in Fig. 11, the bias and spread of monthly mean

precipitation using the proposed bias correction method are

more variable than the conventional method. Next, to investi-

gate the impact of these two different bias correction schemes

on flow simulations, we used the aforementioned hydrologi-

cal model (IHACRES). Since the focus of the proposed bias

correction scheme is on correcting the mean value and the

spread of RCM precipitation ensembles, the same character-

istics have been examined in the simulated flow.

Figure 12a shows the range of monthly mean flow simu-

lated from the precipitation ensembles for the period 1961–

1990. The 5–95th percentile spread has been plotted. Fig-

ure 12b shows the range of monthly spread, i.e. the differ-

ence between the two lines in Panel (a). Figure 12c shows

the annual average value of the range, i.e. the mean value of

each line in Panel (b). The flow ensemble simulated from the

uncorrected RCM precipitation (blue dashed line) obviously

has bias and the range of the spread is inconsistent compared

with that of the observed flow (black straight line). The flow

ensemble simulated using bias corrected RCM precipitation

(both conventional and proposed methods) is similar to that

of the observed flow since the bias of the precipitation has

been removed. However, when we focus on the range of the

spread, the overall trend of using the proposed method (blue

straight line) is closer to the observation than when using

the conventional method (red straight line). Specifically, in

wet seasons, it is apparent that the proposed method is better,

while in dry seasons, there are no differences between differ-

ent bias correction schemes. From this result, our new bias

correction scheme is indeed an improvement to the current

practice in agreeing with the spread of the simulated flow

ensemble.
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Figure 10. Results of the proposed bias correction method: (a) probability density functions of the observed, bias uncorrected, and bias

corrected precipitation; (b) scatter plot between the shape and scale parameters of the observed, bias uncorrected, and bias corrected precip-

itation; (c–d) probability density functions of the shape and scale parameters of the observed and bias corrected precipitation.

Figure 11. Monthly mean precipitation for the period 1961–1990 derived from the model simulations. The mean values for the observation

and 11 members are displayed as well. (a) Uncorrected 11 members; (b) corrected 11 members by the conventional bias correction; and

(c) corrected 11 members by the proposed bias correction.
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Figure 12. (a) The range of monthly mean flow simulated from

the precipitation ensembles for the period 1961–1990 (5–95th per-

centile spread); (b) the range of monthly spread; (c) annual average

value of the range.

4.6 One transfer function for 11 members

An experiment is carried out to identify whether to correct

each member individually or to treat them as a group. The

idea is that in order to maintain the spread of 11 members, in-

stead of using each transfer function for an individual mem-

ber, only one transfer function from the unperturbed mem-

ber is built based on the conventional method, and then this

transfer function is applied to the rest of the members. If only

one transfer function is used for correcting the biases of 11

members, those members may maintain the spread after bias

correction. However, if the spread is not properly preserved,

the corrected ensemble will not represent the true variation

of 11 members. Figure 13 shows an example of using one

transfer function. The transfer function is built by matching

the CDF of an unperturbed member to that of the observation

and this transfer function is applied to the other 10 members.

As shown in the figure, the spread of the 11-member param-

eters after bias correction is not matched by the spread of the

observation. Therefore, the existing approach based on the

conventional bias correction scheme generally fails to pre-

serve the ensemble spread. However, on the other hand, the

result of applying one transfer function can also be a possible

realization depending on how to estimate the natural variabil-

ity of the observation which is discussed in the next section.

5 Discussion

Climate change scenarios are generated using climate mod-

els (e.g. GCMs and RCMs) and emission scenarios, and are

the key information for understanding future changes in hy-

drologic systems. While RCMs are designed to better simu-

late local climate at finer spatial and temporal scales, it has

been acknowledged that bias correction for the outputs from

RCMs is generally required to reduce biases due to system-

atic errors. An ensemble approach has previously been in-

troduced to deal with the systematic errors (i.e. uncertain-

ties) and to provide more relevant scenarios informed by a

probability density function. However, the spread of the en-

semble, with useful information to understand uncertainties,

has not been properly considered in the existing bias correc-

tion scheme. In other words, all the ensemble members are

matched to the observations in terms of statistical character-

istics, so that the advantage of the ensemble with respect to

a single model output is excluded. The major contribution of

this study is the proposal of a new bias correction scheme,

which reasonably preserves the spread of the RCM ensemble

members.

Bias in climate models can be introduced by imperfect pa-

rameterization of some climate processes (Ehret et al., 2012;

Teutschbein and Seibert, 2012), incorrect boundary condi-

tions and initialization (Bromwich et al., 2013), inadequate

reference data sets such as reanalysis data (Dee et al., 2011;

Thorne and Vose, 2010), and limitations in input data res-

olution (Wood et al., 2011). Eleven ensemble members of

HadRM3 consist of 1 unperturbed member and 10 members

with different perturbations to the atmospheric parameteriza-

tions. Since different members are the outputs from different

parameterizations, they would have different aspects of bi-

ases. Therefore, although the evidence is not conclusive, it

is more reasonable to consider each ensemble member on

its own and conduct the bias correction separately for each
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Figure 13. Result of using one transfer function for bias correction.

member rather than pooling all the members in the bias cor-

rection procedure.

Ideally, if we have numerous numbers of observation data,

more reliable climate statistics could be derived. However, in

reality, 30 years of observation data have been used as the

reference climate, which is just one realization of many pos-

sibilities, and the uncertainty associated with distributional

parametric uncertainty needs to be considered in designing

and conducting impact studies of climate change. Distribu-

tional parametric uncertainty exists when limited amounts of

hydrologic data are used to estimate the parameters of PDFs.

On the other hand, initial conditions or parameters in climate

models can be perturbed to generate a large number of en-

semble members. Given the results we achieve, these ensem-

ble members need to be examined to ensure that they are

plausible.

This study attempts to evaluate the reliability of the RCM

ensemble in terms of natural variability and to propose a new

bias correction scheme conforming to the RCM ensembles.

However, the proposed scheme is just one of the necessary

conditions to assess the RCM ensembles, and a comprehen-

sive scheme including more conditions, if any, needs to be

further developed. It does not mean that the RCM which

meets this condition is a good model, but if it does not meet

this condition, the RCM ensemble fails to represent the nat-

ural climate variation (hence such a condition is a necessary

condition, not a sufficient condition). We believe that there

should be a set of necessity conditions to better assess and

improve future climate projections in various aspects of un-

certainty analysis.

We would like to point out some limitations of this study.

First, as previously mentioned, bias correction is a contro-

versial issue. In addition, there are no generic one-suit-fits-

all bias correction methods for rainfall data, since rainfall

time series have many aspects and cannot be all corrected si-

multaneously. The way of correcting the bias should depend

on the data purpose, since the bias depends on the specific

rainfall characteristic (Kew et al., 2011). In this study, we

have focused on matching underlying statistical properties

between the observed and simulated rainfall, which are the

cumulative probability distribution and the spread of rainfall

series. In the future, other statistical properties for param-

eter distributions may also be included. Second, depending

on how to estimate the observational uncertainty, the inter-

pretation of Fig. 13 can be different. In this study, we have

used a bootstrap method to describe the observational un-

certainty from 30 years of observation data. However, in re-

ality, there is no way to describe the uncertainty that is not

captured by the 30 years of observations. For instance, vari-

ability of observations on a slow timescale (decadal or cen-

tennial), or realizations of precipitation amounts with very

long return periods (exceeding the record length of this ob-

servation data set), cannot be estimated, but may be highly

relevant. It may well be that the ensemble is more able to

capture modes of variability (both decadal oscillations and

unprecedented extremes) that may not be captured by the ob-

servations. In that sense, it may be possible that the estimated

spread of observational uncertainty in Fig. 13 could be nar-

rower than the true spread, and the result of using one trans-

fer function may be more realistic than that from our pro-

posed method. In summary, if the natural variability is fully

obtainable from the observation, our proposed methodology,

in theory, should work better than the conventional method.

However, it should be pointed out that the natural variabil-

ity may not be fully captured by the decades of observation.

Therefore, further studies are needed to explore how to cap-

ture the natural variability beyond the local observation. In

this regard, a simulation technique based on multiscale ap-

proaches (e.g. wavelet transform analysis and the empirical

mode decomposition technique) could be a way to better rep-

resent the natural variability.
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6 Conclusions

Conventionally, all climate model simulations are corrected

to the observation. With this scheme, the uncertainty of the

model from the ensembles will be lost and as a result the 11-

member ensemble will be similar to just 1 member. Another

approach is to apply one transfer function based on the unper-

turbed member to the remaining 10 members. This will keep

the spread properties of the ensemble, but this spread may not

conform to the spread from the real natural system. Therefore

they do not look as if they are drawn from the natural system.

In this study, we have proposed a new scheme which over-

comes the shortcomings of the aforementioned two schemes

(i.e. 11 transfer functions all conformed to one observed re-

alization or 1 transfer function for 11 members, which re-

sults in the bias corrected ensembles being too narrow or too

wide), and the proposed method is a good balance between

the two. Therefore, the new bias correction scheme for RCM

ensembles is novel and makes better use of the ensemble in-

formation. In this scheme the spread of the ensemble is main-

tained to a certain degree after bias correction, which is com-

patible with the natural variability (i.e. sampling uncertainty)

of the observation. This is because the transfer functions are

built under the assumption that the corrected members must

originate from within the bounds of the natural variability of

the observation.
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Appendix A: Hydrological model IHACRES

The IHACRES model is composed of a non-linear module

and a linear module as shown in Fig. 6 and the model param-

eters are listed in Table A1. A non-linear module converts

total rainfall to effective rainfall, which is calculated from

Eq. (A1).

Uk = [C (k − l)]
prk, (A1)

where rk is the observed rainfall, C is the mass balance, l is

the soil moisture index threshold, and p is the power on soil

moisture respectively. The soil moisture (∅k) is calculated

from

∅k = rk + (1−
1

τk
)∅k−1, (A2)

where τk is the drying rate given by

τk = τwexp[0.062f (tr− tk)], (A3)

where τw is the drying rate at the reference temperature, f is

the temperature modulation, tr is the reference temperature,

and tk is the observed temperature. A linear module assumes

that there is a linear relationship between the effective rain-

fall and flow. Two components in this module, quick flow

and slow flow, can be connected in parallel or in series. In

this study two parallel storages in the linear module are used

because such a combination reflects the catchment conditions

and the streamflow (xk) at time step k is defined by the fol-

lowing equations:

xk = x
(q)

k + x
(s)
k , (A4)

x
(q)

k = βqUk −αqx
(q)

k−1, (A5)

x
(s)
k = βsUk −αsx

(s)
k−1, (A6)

where x
(q)

k and x
(s)
k are quick flow and slow flow respectively,

and α and β are recession rate and peak response respec-

tively. The relative volumes of quick flow and slow flow can

be calculated from

Vq = 1−Vs =
βq

1+αq

= 1−
βs

1+αs

. (A7)

Table A1. Parameters in the IHACRES model.

Module Parameter Description

Non-linear c Mass balance

τw Reference drying rate

f Temperature modulation of

drying rate

Linear αq,αs, Quick and slow flow recession

rate

βq,βs Fractions of effective rainfall

for peak response

τs Slow flow recession time con-

stant, τs =−1/ ln(−αs)

τq Quick flow recession time con-

stant, τq =−1/ ln(−αq)
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