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Abstract. Effects of hydraulic redistribution (HR) on hydro-
logical, biogeochemical, and ecological processes have been
demonstrated in the field, but the current generation of stan-
dard earth system models does not include a representation of
HR. Though recent studies have examined the effect of incor-
porating HR into land surface models, few (if any) have done
cross-site comparisons for contrasting climate regimes and
multiple vegetation types via the integration of measurement
and modeling. Here, we incorporated the HR scheme of Ryel
etal. (2002) into the NCAR Community Land Model Version
4.5 (CLM4.5), and examined the ability of the resulting hy-
brid model to capture the magnitude of HR flux and/or soil
moisture dynamics from which HR can be directly inferred,
to assess the impact of HR on land surface water and en-
ergy budgets, and to explore how the impact may depend on
climate regimes and vegetation conditions. Eight AmeriFlux
sites with contrasting climate regimes and multiple vegeta-
tion types were studied, including the Wind River Crane site
in Washington State, the Santa Rita Mesquite savanna site in
southern Arizona, and six sites along the Southern California
Climate Gradient. HR flux, evapotranspiration (ET), and soil
moisture were properly simulated in the present study, even
in the face of various uncertainties. Our cross-ecosystem
comparison showed that the timing, magnitude, and direc-
tion (upward or downward) of HR vary across ecosystems,
and incorporation of HR into CLM4.5 improved the model-
measurement matches of evapotranspiration, Bowen ratio,

and soil moisture particularly during dry seasons. Our re-
sults also reveal that HR has important hydrological impact
in ecosystems that have a pronounced dry season but are not
overall so dry that sparse vegetation and very low soil mois-
ture limit HR.

1 Introduction

Hydraulic redistribution (HR) is the transport of water from
wetter to drier soils through plant roots (Burgess et al., 1998).
Several recent reviews (Neumann and Cardon, 2012; Prieto
et al., 2012; Sardans and Pefiuelas, 2014) summarize results
from the hundreds of empirical and modeling papers describ-
ing HR that have emerged over the last 3 decades. Monitoring
of sap flow (e.g., Scott et al., 2008), soil water potential (e.g.,
Meinzer et al., 2004), soil moisture content (e.g., Brooks et
al., 2002), and isotope (e.g., Brooks et al., 2006) all indicate
that HR can occur in many ecosystems worldwide, ranging
in climate from arid to wet, particularly if the system has a
pronounced dry season. HR-induced transport of water can
be upward (as “hydraulic lift”) from moist deep soils to dry
shallow soils (Richards and Caldwell, 1987), downward (as
“hydraulic descent”) usually following a precipitation event
(Ryel et al., 2003), or lateral (Brooks et al., 2002).

Though effects of HR on hydrological (e.g., Scott et al.,
2008), biogeochemical (e.g., Domec et al., 2012; Cardon et
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al., 2013), and ecological (e.g., Hawkins et al., 2009) pro-
cesses have been amply demonstrated in the field, the current
generation of standard dynamic global vegetation and earth
system models do not include a representation of HR (Neu-
mann and Cardon, 2012; Warren et al., 2015). The several
modeling studies at ecosystem and regional scales that do
include HR do so by incorporating empirical equations de-
scribing HR (e.g., Ryel et al., 2002) into various land surface
models (Lee et al., 2005, CAM2-CLM; Zheng and Wang,
2007, IBIS2 and CLM3; Baker et al., 2008, SiB3; Wang,
2011, CLMS; Lietal., 2012, CABLE; Luo et al., 2013, VIC-
3L; Yan and Dickinson, 2014, CLM4.0; Tang et al., 2015,
CLM4.5). For example, Li et al. (2012) modeled three ev-
ergreen broadleaf forests in tropical, subtropical, and tem-
perate climate, and showed that the ability of CABLE to
match observed evapotranspiration (ET) and soil moisture
was improved by including HR and dynamic root water up-
take (preferential uptake of moisture from areas of the root
zone where moisture is more available, Lai and Katul, 2000).
Currently, few (if any) has investigated the effects of HR
on land surface water and energy cycles in a comprehensive
manner by using both the monitoring and modeling meth-
ods for contrasting climate regimes and multiple vegetation
types. In this study, we attempt to address this research gap
based on both field measurements and numerical modeling
at an ecologically broad selection of eight AmeriFlux sites
characterized by contrasting climate regimes and multiple
vegetation types. Of the eight sites, two have a long history of
empirical research focused on HR: the US-Wrc Wind River
Crane site in the Pacific Northwest (Washington State), and
the US-SRM Santa Rita Mesquite savanna site in southern
Arizona. The other six are new sites along the Southern Cali-
fornia Climate Gradient (US-SCs, g, f, w, ¢, and d), each with
a pronounced dry season, where we suspect HR may occur
during dry periods.

At one of the six Southern California Climate Gradient
sites (the James Reserve, US-SCf), Kitajima et al. (2013) re-
cently used the HYDRUS-1D model and isotopic measure-
ments of xylem water to show that trees and shrubs use deep
water, probably delivered both by HR and to some extent by
capillary rise, during summer drought. In the Pacific North-
west, adjacent to the Wind River Canopy Crane Research
Facility (US-Wrc), stands of Douglas fir (Pseudotsuga men-
ziesii (Mirb.) Franco) have been the focus of numerous pa-
pers examining the importance of HR in this overall moist but
seasonally dry ecosystem. For example, Brooks et al. (2002)
used sap flow and soil moisture information to show that
35% of the total daytime water consumption from the up-
per 2m soil layer was replaced by HR during July—-August
in 2000. Brooks et al. (2006) further reported that HR was
negligible in early summer but increased to 0.17 mmd~? by
late August. Meinzer et al. (2004) reported that the seasonal
decline of soil water potential was greatly reduced by HR.
Based on monitoring of sap flow of Prosopis velutina Woot
(velvet mesquite) and soil moisture, both hydraulic lift and

Hydrol. Earth Syst. Sci., 20, 2001-2018, 2016

hydraulic descent were found at or near the Santa Rita Ari-
zona savanna (US-SRM) site (Hultine et al., 2004; Scott et
al., 2008).

The objectives of this study are to investigate the impact of
HR on land surface water and energy budgets based on both
observational data and numerical modeling, and to explore
how the impact may depend on climate regimes and vegeta-
tion conditions. Observed soil moisture at the six Southern
California Climate Gradient sites was corrected for tempera-
ture first, and then HR signal was checked using the wavelet
method. The modeling investigation is done through incor-
porating the HR scheme of Ryel et al. (2002) into the NCAR
Community Land Model Version 4.5 (CLM4.5). To apply the
hybrid model to the eight AmeriFlux sites, we first examined
the performance of the hybrid model in capturing the mag-
nitude of HR flux and/or soil moisture diel fluctuation, from
which a reasonable HR flux magnitude can be directly in-
ferred; we then analyzed the role of HR in the water and en-
ergy cycles. The sensitivity of the modeled HR to parameters
and the uncertainty in the modeling were also investigated in
the present study.

2 Materials and methods
2.1 Study sites

The sites in this study were chosen based on several criteria.
Concurrent meteorological forcing data, soil moisture data
throughout the soil profile, and ET data for a continuous pe-
riod of several years had to be available. The sites cover a
range of annual rainfall amounts and vegetation types, and
have a seasonally dry climate — a good indicator of ecosys-
tems where HR may occur (Neumann and Cardon, 2013).
Two of the eight sites (US-SRM and US-Wrc) were specifi-
cally chosen because they have a strong record of hydraulic
redistribution research. In contrast, the six Southern Cali-
fornia Climate Gradient sites were chosen because it was
not yet known whether HR occurred at them, and model-
ing results could be compared to new empirical data. Table 1
presents location, elevation, climate, vegetation type, annual
precipitation, average temperature, and years for which we
have atmospheric forcing data, for each of the eight Amer-
iFlux sites. Further details about these eight sites can be
found on the AmeriFlux website (http://ameriflux.Ibl.gov/
sites/site-search/). All sites except Santa Rita Mesquite have
a Mediterranean climate (rainy winters, dry summers); Santa
Rita Mesquite (US-SRM) is a semi-arid site with a dominant
summer rainy season. Precipitation varies from ~ 2200 (US-
Wrc) to ~ 100 mm (US-SCw) per year. Average temperature
ranges from 8.7 (US-Wrc) to 23.8°C (Sonoran Desert US-
SCd). Vegetation ranges from needleleaf and broadleaf forest
to chaparral, grassland, and desert perennials and annuals.
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Table 1. Study site information.

2003

Site Location Elevation (m) Climate Vegetation Annual Average Atmospheric
precipitation  temperature ~ forcing data
(°C) (mm)
Wind River Crane (US-Wrc) 45.8205° N, 121.9519° W, WA 371 Mediterranean (Csb)  Douglas fir/western hemlock 22231" 8.71" 1999-2012
Santa Rita Mesquite (US-SRM) 31.8214° N, 110.8661° W, AZ 1116 Cold semi-arid (BSk)  Mesquite tree, grass 3772 19.63° 2004-2012
Southern California Climate Gradient —  33.7342° N, 117.6961° W, CA 475 Mediterranean (Csa)  Coastal sage 288%" 16.24 2007-2012
Coastal Sage (US-SCs)
Grassland (US-SCg) 33.7364° N, 117.6947° W, CA 470 Mediterranean (Csa) ~ Grass 2814" 16.64 2007-2012
Oak Pine Forest (US-SCf) 33.8080° N, 116.7717° W, CA 1710 Mediterranean (Csa) ~ Oak/pine forest 5264" 13.3% 2007-2012
Pinyon Juniper Woodland (US-SCw) 33.6047° N, 116.4527° W, CA 1280 Mediterranean (Csa)  Pinyon, juniper 1004 16,54 2007-2012
Desert Chaparral (US-SCc) 33.6094° N, 116.4505° W, CA 1300 Mediterranean (Csa)  Desert shrubland 1534 16.3% 2007-2012
Sonoran Desert (US-SCd) 33.6518° N, 116.3725° W, CA 275 Mediterranean (Csa) ~ Desert perennials and annuals ~ 123%" 23.85" 2007-2011

Notes: 1*: 1978-1998, statistic is based on a NOAA station located 5 km north of the US-Wrc tower. 2*: 1937-2007, from Scott et al. (2009). 3*: 2004-2012. 4*: 2007-2012. 5*: 2007-2011.

Table 2. Sources of data for model inputs.

Site Atmospheric Land coverage LAI Canopy height Soil texture Soil organic matter
forcing data
US-Wrc  AmeriFlux tower data Google Earth map; Table 2 in  Shaw et al. (2004); Table 3 in Shaw et al. (2004) Fig. 4 in Warren et al. (2005).  Table 1 in Shaw et
Shaw et al. (2004) (overstory ~ AmeriFlux biological (mean overstory tree height: Sandy loam, with loamy sand al. (2004); AmeriFlux
trees: 24 %; vine maple: 36%;  data file 19.2m) at some depths. biological data file
salal and oregon grape: 40 %)
US-SRM  AmeriFlux tower data Dr. Russell Scott from USDA-  Dr. Russell Scott from  Pottsetal. (2008) (Tree height: ~ AmeriFlux biological data file. ~ AmeriFlux biological
ARS (bare ground: 40%; USDA-ARS 0.25-5m) Mixed sandy loam and loamy data file
mesquite canopy: 35 %; grass: sand.
25%)
US-SCs  UCI Goulden Lab Estimation based on site NCAR database NCAR database UCI Goulden Lab NCAR database
picture (bare ground: 10%; Shallow sand, deep loamy
coastal sage: 90 %) sand
US-SCg  UCI Goulden Lab Estimation based on site pic- NCAR database NCAR database UCI Goulden Lab NCAR database
ture (bare ground: 10 %; grass: Shallow sand, deep loamy
90 %) sand
US-SCf  UCI Goulden Lab Table 3 in Anderson and Table 2 in Fellows and NCAR database UCI Goulden Lab NCAR database
Goulden (2011) (Doak) Goulden (2013) Sandy loam, with loamy sand
at some depths
US-SCw  UCI Goulden Lab Table 3 in Anderson and NCAR database NCAR database UCI Goulden Lab NCAR database
Goulden (2011) (Oshrub) Estimated as sand (sand: 90 %;
clay: 7.5%)
US-SCc UCI Goulden Lab Google Earth map (bare UCI Goulden Lab NCAR database UCI Goulden Lab NCAR database
ground: 78 %; chaparral: Estimated as sand (sand:
22 %) 90 %;
clay: 7.5%)
US-SCd  UCI Goulden Lab Table 3 in Anderson and NCAR database NCAR database UCI Goulden Lab NCAR database
Goulden (2011) (LowDes) Estimated as sand (sand:
99 %;
clay: 0.5%)

2.2 CLMA4.5 parameterization

The NCAR Community Land Model Version 4.5 (CLM4.5)
(Oleson et al., 2013) is used in this study to simulate the en-
ergy fluxes and hydrological processes at the eight Ameri-
Flux sites. Surface heterogeneity in CLM is represented us-
ing a nested hierarchy of grid cells, land units, snow/sail
columns, and plant functional types (PFTs). Different PFTs
differ in physiological, structural, and biogeochemical pa-
rameters. Within each vegetated land unit, multiple columns
can exist, and multiple PFTs can share a column; vegetation
state variables, surface mass, and energy fluxes are solved at
the PFT level, and soil parameters and processes are solved
at the column level. Surface fluxes at the grid cell level (e.g.,
ET) are the area-weighted average across different compo-
nents (PFTs, columns, and land units). The plant growth and
carbon/nitrogen cycles were not simulated in this study. In-
stead, LAIs for each PFT were prescribed based on observa-
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tional data. At each study site, the simulations were imple-
mented for the footprint of eddy flux tower. Table 2 presents
the sources of data used as model input, for atmospheric
forcing and surface properties including coverage of differ-
ent plant functional types (PFTs), LAI, canopy height, soil
texture, and soil organic matter content. At each site, atmo-
spheric forcing data used to drive CLM4.5 are taken from
the corresponding AmeriFlux tower. Surface properties in
the model are set to reflect the AmeriFlux site conditions
when such information is available and were drawn by inter-
polation from corresponding gridded data sets in the NCAR
database (Oleson et al., 2013, and notes in the Supplement
Sect. S1) in the absence of site-specific data. There are 10
active soil layers in CLM, and a maximum depth of 3.8 m is
used in this study (Table 3). The PFT-level root fraction r; in
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each soil layer is

0.5- [exp(—razi—1) +eXp(—rpzi—1) — eXP(—raz;) +Xp(—rpz;)]
rp=1 forl1<i<10 1)
0.5 [exp(—razi—1) +exp(—rpzi—1)] fori =10,

where z; is the depth at the bottom of soil layer i, and zg
is 0. The PFT-dependent root distribution parameters r, and
rp are adopted from Zeng (2001). From Eq. (1), r; decreases
exponentially with depth. In the present study, roots did not
have access to groundwater through the simulation periods
at all sites except US-Wrc where groundwater could rise
into the 10th soil layer during the wet season. However, the
groundwater level was below the 10th soil layers during dry
season when HR occurred at the US-Wrc site as shown in
Sect. 3.1.2.

Within CLM4.5, the Clapp and Hornberger B parameter
(the exponent in the soil water retention curve that varies sub-
stantially with soil texture) strongly influences simulated soil
moisture. We used available sources of soil texture informa-
tion for the eight sites (Table 2) to set the range of appro-
priate B for each site and depth (Table 3), following Clapp
and Hornberger’s (1978) ranges of B for different soil types.
Within each range, however, we tuned the values for B with
depth to get a good match between modeled and measured
soil moisture.

The atmospheric forcing data at the US-Wrc and US-SRM
sites include incident longwave radiation, incident solar radi-
ation, precipitation, surface pressure, relative humidity, sur-
face air temperature, and wind speed. Because incident long-
wave radiation and surface pressure data were not available at
the six southern California sites, CLM4.5 assumes standard
atmospheric pressure and calculates the incident longwave
radiation based on air temperature, surface pressure, and rel-
ative humidity (Idso, 1981). Gap-filled atmospheric forcing
data are at 30 min resolution, and the time step for model sim-
ulations is also 30 min. Time frames for which atmospheric
forcing data are available for each site are shown in Table 1.

2.3 HR model parameterization

To quantify HR, we incorporated the HR scheme of Ryel
et al. (2002) into CLM4.5. Many HR modeling studies used
this HR scheme (e.g., Zheng and Wang, 2007; Wang, 2011;
Li et al., 2012) or its variations (e.g., Lee et al., 2005; Yu
and D’Odorico, 2015). HR-induced soil water flux gur (i, j)
(cmh~1) between a receiving soil layer i and a giving soil
layer j is quantified as

. Froot(i) - Froot(j)
anR(i, ) = ~Crr+ A ¢ =~
— 1'roo!

By summing all giving and receiving layer pairs within the
soil column, total gur can be calculated. Crt is the maxi-
mum radial soil-root conductance of the entire active root
system for water (cm MPa—1h=1); Ag,, is the water poten-
tial difference between two soil layers (MPa); Fyoot (i) is root

@)
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fraction in soil layer i (weighted average of PFT-level root
fractions; Zeng, 2001); and D is a switching factor set to
1.0 during night and 0.0 during the day since during daytime
the transpiration-induced gradient of water potential within
a plant continuum dictates a transport of water from roots to
leaves. The factor reducing soil-root conductance for water
in the giving layer c; is

1

¢. I’
1+(3%)
In Eq. (3), ¢; is soil water potential in layer j (MPa), ¢so
is the soil water potential where soil-root conductance is re-
duced by 50 % (MPa), and b is an empirical constant. Val-
ues for b (3.22) and ¢s0 (—1MPa) were taken from Ryel
et al. (2002) due to lack of site-specific parameters, and we
tested the model sensitivity to the parameters Cgrr, b, and
@s0 at each site. Rather than tuning Crr as Ryel et al. (2002)
did to match modeled HR (calculated in Eq. 2) to measured
HR (from soil sensor data) after a saturating rain, we based
the tuning of Crt on comparison of modeled and measured
magnitude and dynamics of water content in upper soil lay-
ers (0-30cm) at an hourly scale during dry periods. At the
three drier southern California sites (US-SCw, US-SCc, and
US-SCd), Crr was further adjusted to relatively small values
(0.05-0.1) to limit the hydraulic descent in order to reduce
the model bias for soil water potential during dry periods. If
Crt >0.1, the modeled soil water potential would be always
higher than —1 MPa during dry periods, which is not realis-
tic for such dry sites. Specific values of the parameters in the
HR scheme of Ryel et al. (2002) used for the eight study sites
are shown in Table 4.

©)

Cj =

2.4 Combined model

Two multi-year simulations were carried out at each of the
eight study sites. “Without HR” used the default land sur-
face model CLM4.5; “with HR” (CLM4.5+HR) used the
version of the model including Ryel’s representation of HR.
To distinguish the influences of the Clapp and Hornberger
B and HR on the soil moisture modeling, the tuning of the
parameter B was done in the wet season (with high soil mois-
ture) when the HR influence is negligible at the US-Wrc and
southern California sites. Therefore, the B values do not de-
pend on whether the tuning was done with CLM4.5 or with
CLM4.5+HR. At the SRM site, HR is mainly in the form of
hydraulic descent during rainfall events (as shown later in the
“Results” section), we tuned B during dry periods when hy-
draulic descent was minimum to make the minimum value of
the modeled soil moisture from CLM4.5 be close to the ob-
servation for surface soil layers. The B values for soil layers
deeper than 83 cm were not tuned and used the default value
generated by CLM at the US-SRM site. Therefore, at each
site, “without HR” and “with HR” simulations used identical
B values tuned for that site. We then examined whether for
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Table 3. Clapp and Hornberger B used in this study.

Layers Depth at layer US-Wrc US-SRM US-SCs US-SCg US-SCf US-SCw US-SCc US-SCd

interface (m) B Soil B Soil B Soil B Soil B Soil B Soil B Soil B Soil
texture®* texture®* texturel* texturel* texturel* textureZ* texture2* textureZ*

1 0.0175 396 SL 315 LS 507 S 446 S 315 SL 409 S 409 S 227 S

2 0.0451 431 SL 315 LS 509 S 449 S 326 SL 409 S 409 S 227 S

3 0.0906 446 SL 315 LS 513 S 453 S 339 SL 410 S 410 S 227 S

4 0.1655 452 SL 316 LS 530 LS 465 S 318 SL 411 S 411 S 227 S

5 0.2891 439 SL 341 LS 483 LS 427 LS 334 SL 411 S 411 S 227 S

6 0.4929 431 SL 366 LS 463 LS 419 LS 327 SL 411 S 411 S 227 S

7 0.8289 400 SL 391 LS 394 LS 433 LS 327 LS 411 S 411 S 227 S

8 1.3828 585 LS 441 LS 351 LS 4.08 LS 330 SL 411 S 411 S 227 S

9 2.2961 6.65 SL 440 LS 315 LS 390 LS 350 SL 410 S 410 S 227 S

10 3.8019 6.65 SL 440 LS 315 LS 390 LS 350 SL 410 S 410 S 227 S

Note: L*-derived from soil sample data in former studies; 2*-estimated by UCI Goulden Lab. “S” represents sand, “LS" loamy sand, and “SL” sandy loam.
B values for sand, loamy sand, and sandy loam were 2.27-5.83, 2.91-5.85, and 3.15-6.65 in Clapp and Hornberger (1978), respectively.

Table 4. Parameters used in the HR scheme of Ryel et al. (2002)
for the study sites. “Crt” is the maximum radial soil—root conduc-
tance of the entire active root system for water, “¢5q” is the soil
water potential where conductance is reduced by 50 %, and “b” is
an empirical constant.

Site CrT (cmMPa—1h=1) 5 v50 (MPa)
UsS-Wrc 0.1 322 -10
US-SRM 1.0 322 -10
US-SCs 1.0 322 -10
US-SCg  0.25 322 -10
us-scf 1.0 322 -10
Us-scw 0.1 322 -10
Us-SCc  0.05 322 -10
Us-scd  0.05 322 -10

these eight ecologically diverse sites, CLM4.5 with and/or
without HR were able to reproduce basic patterns observed
at the sites in ET, soil moisture with depth, and Bowen ratio.

2.5 Field observations

ET, sensible heat flux, and soil moisture data at the US-SRM
and US-Wrec sites were obtained from AmeriFlux databases.
Data for these variables at the six Southern California Cli-
mate Gradient sites were collected by the Goulden lab (http:
/lwww.ess.uci.edu/~california/). Observed soil moisture was
available for multiple soil layers with the maximum depth
of 200cm and 100cm at the US-Wrc and US-SRM sites,
respectively. Soil moisture data at southern California sites
were processed as described in the notes in the Supplement
Sect. S2. Briefly, each southern California site had four CS-
616 water content reflectometers (three reflectometers at US-
SCd), each sensing 0-30 cm depth. All southern California
sites except US-SCd also had five CS-229 thermal dissipa-
tion probes sensing water potential at five depths (to 200 cm).
Data from both soil moisture sensor types at the southern
California sites were used more cautiously. Though sensor
output suggesting nighttime increases in soil moisture fol-
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lowed by daytime decreases is often used in the literature
as a signature of HR, we only recognized such oscillations
from the 0-30 cm CS-616 or CS-229 probes as signatures of
HR if they were clearly stronger than a putative temperature-
induced oscillation in surrounding portions of the signal trace
(e.g., Fig. Sla in the Supplement, larger oscillations begin-
ning around day 180 in the 5cm trace) and if wavelet trans-
form analysis of the CS-229 probe data corroborated the ex-
istence of HR (see Sect. S2 and Fig. S1b, c in the Supple-
ment).

3 Results
3.1 Soil moisture observations and simulations

Observed soil moisture (grey lines) and CLM4.5 model sim-
ulations with (blue lines) and without (red lines) HR are plot-
ted in Fig. 1 at daily timescale for selected years, for the top
0-30cm soil layer and also at multiple depths where such
data are available. As noted above, CS-229 thermal dissipa-
tion probes were installed from 0 to 200 cm depth at five of
the six California sites, but are known only to provide re-
liable information down to approximately —2.5MPa; sen-
sor output thus flatlined for lower water potentials during
drought. We therefore chose only to include 0-30 cm CS-616
probe data in Fig. 1, with panels ordered from west (US-SCs,
Coastal Sage) to east (US-SCd, Sonoran Desert) down the
panels. However, modeled output by depth increment at the
five instrumented US-SC southern California sites is plotted
in Figs. S2-S6 in the Supplement along with temperature-
corrected data from the CS-229 probes.

Modeled soil moisture content generally follows the mag-
nitude and dynamics in observational data (Fig. 1), except at
depth at US-Wrc. At that site, we set B — the only parame-
ter in the soil water retention curve in the models — based on
the soil texture information from the biological data file at
the US-Wrc AmeriFlux ftp website ftp://cdiac.ornl.gov/pub/
ameriflux/data/Levell/ (sandy loam and loamy sand) with
the maximum value being 6.65 (Table 3). However, Shaw
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Figure 1. Observed and simulated soil moisture over selected years. Labels at the upper right corner of each soil moisture panel show the
depths of observed and simulated soil moisture. For example, “20cm VS 17-29 cm” means the observation depth of soil moisture is 20cm
and the simulated results at depths of 17-29 cm were compared with this observation. Within panels for southern California sites (US-SCs,
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Figure 2. Observed and simulated soil moisture for depth of 0-
30cm during dry periods.

et al. (2004) (and http://ameriflux.ornl.gov/fullsiteinfo.php?
sid=98) report that in some locations soil at depth can ap-
proach silt to clay loam for which the range of B is85+3.4
(clay loam, Clapp and Hornberger, 1978). Using a higher B
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value in the simulations would have reduced the difference
between the simulated and observed soil moisture at depth at
the US-Wrec site.

At US-SRM (Fig. 1), modeled soil moisture at depth
(=49cm) was more dynamic in CLM4.5+HR (blue line)
than in CLM4.5 (red line). The dynamism is also clearly seen
in the observed soil moisture data (grey lines) in both the 60—
70 and 90-100 cm depths at this site. In CLM4.54+HR, this
dynamism is caused by downward HR (hydraulic descent)
when root systems redistribute the infiltrated rainwater from
shallow to deep soils faster than it could be delivered by
percolation alone (Ryel et al., 2003). In Figs. S2-S6, simi-
lar measured dynamism at depth is also detected by CS-229
probes for large rain events at the five instrumented Southern
California Climate Gradient sites.

As discussed in Sect. S2 in the Supplement, using wavelet
analysis of site measurement data, we found clear evidence
of upward HR at the most moist southern California site
US-SCf (Oak Pine Forest), and spotty evidence at US-SCw
(Pinyon Juniper Woodland) and US-SCc (Desert Chaparral)
sites (Fig. S1 in the Supplement). We did not find clear phase-
based evidence of upward HR at US-SCg (Grassland) or
US-SCs (Coastal Sage) sites, and temperature oscillations
at the US-SCd (Sonoran Desert) site were very large, pre-
cluding easy identification of periods of upward HR. Still,
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the CLM4.54+HR results suggested that HR could occur at
the southern California sites given the rooting distribution of
plants and the seasonal drought, but its hydrological effect
on landscape-level eddy flux was predicted to be far lower
(than wetter sites such as US-Wrc) where plant biomass was
small (e.g., US-SCd). This combination of factors (drought,
rooting depth, density of vegetation) influenced the simulated
magnitude of soil moisture fluctuations, and we plot them
with the sensor data in Fig. 2 and Fig. S7 in the Supplement.
The noticeable discrepancy between modeled and measured
rainy season soil moisture at the US-SCd site (indicated with
rectangular box in Fig. 1) are most likely caused by the in-
complete precipitation record (Sect. S3 in the Supplement).

Overall, Fig. 1 and the corresponding root mean squared
error (RMSE) illustrate clear improvement of the match be-
tween modeled and observed soil moisture at the US-SRM
site by incorporating HR into CLM4.5 (Table 5, Fig. S8 in
the Supplement). At the southern California sites, the match
is improved at the US-SCs, g, and f sites during dry peri-
ods (Table 5, Fig. S8 in the Supplement); inclusion of HR
makes little difference at the US-SCw, c, and d sites (Ta-
ble 5, Fig. S8 in the Supplement). Improvement of simulated
soil moisture at shallow layers (e.g., 0-30 cm, 17-29 cm) was
observed at the US-Wrc site during dry periods by incorpo-
rating HR (Table 5, Fig. S8 in the Supplement), but at depth,
the modeling challenges associated with the Clapp and Horn-
berger (1978) B factor (described above) precluded detection
of any change in RMSE with inclusion of HR in CLM4.5.
The reduced model performance in soil moisture modeling
at depth by including HR at site like US-Wrc is not a negli-
gible challenge in HR modeling.

3.1.1 HR flux simulations

To evaluate the simulation of the HR flux, the modeling
results were compared to both direct measurement of HR
flux itself and measurement of soil moisture dynamics from
which HR flux could be inferred. These include (a) observed
downward sap flow at the US-SRM site, (b) observed diel
fluctuations of soil moisture for depth of 0-30 cm during dry
periods at all eight sites, (c) the vertical change of the magni-
tude in the observed diel fluctuations of soil moisture at the
US-Wrc and US-SRM sites, and (d) the seasonal pattern of
HR’s influences on soil moisture at the US-Wrc site.

At the US-SRM site, Scott et al. (2008) monitored
sap flow and estimated hydraulic descent during days
31-109 in 2004 to be 12-38mmH,Od~! at ecosystem
scale; the CLM4.54+HR estimate for the same period was
35mmH,0d~1, within the scope provided by Scott et
al. (2008). CLM4.5+HR could largely capture the amplitude
of the HR-induced diel fluctuations of soil moisture for depth
of 0-30 cm at US-Wrc, US-SRM, US-SCs, US-SCg, and US-
SCf sites during drought (Fig. 2; Fig. S7 in the Supplement).
The simulated amplitude of diel fluctuation during the dry
periods decreased from shallower to deeper layers at all eight
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sites. For example, the simulated amplitude decreased from
0.002 at depth of 2-5 cm to essentially 0 at depth of 17-29 cm
at the US-SRM site, and the decrease of amplitude with depth
is quantitatively consistent with observations at the US-Wrc
and US-SRM sites (results shown in Fig. S9 in the Supple-
ment). At the US-Wrc site, the maximum depth at which the
HR-induced soil moisture increases is identifiable during dry
seasons (mainly limited to the upper 60 cm), and the seasonal
pattern of HR’s influences on soil moisture could also be cor-
rectly reproduced by the CLM4.54+-HR (as shown in detail in
Sects. 3.1.2 and 4.1). As discussed in Sect. 2.3, we used soil
water potential to roughly control the magnitude of HR at the
three drier southern California sites, where the diel fluctua-
tion of soil moisture was clearly influenced by temperature.
These comparisons indicate that the HR flux is properly sim-
ulated in the present study.

3.1.2 Soil moisture simulations with and without HR

Differences between CLM4.5 and CLM4.5+HR in modeled
volumetric soil moisture are plotted in Fig. 3 and Fig. S10
for all sites. Inclusion of HR in CLM4.5 increased summer-
time soil moisture by several percentage points (above the
zero line) in the six southern California US-SC sites (0-
30 cm depths), US-Wrc, and US-SRM (0-49 cm depths) sites
(Fig. 3). In the US-Wrc model profile, these periods of in-
creased shallow soil moisture clearly coincide with those of
decreased soil moisture at depth (49-380 cm depth), consis-
tent with hydraulic lift. In the US-SRM (Fig. 3) and southern
California US-SC site model profiles (Fig. S10 in the Sup-
plement), the patterns of soil moisture with depth are more
complex, with central layers being sources or sinks of wa-
ter depending on time of year and year itself. During rainy
winter seasons at the six southern California US-SC sites,
CLM4.5+HR produced periods of reduced soil moisture in
shallow 0-30 cm layers in all years at US-SCs (Coastal Sage)
and US-SCg (Grassland) sites, consistent with hydraulic de-
scent (Fig. 3). Similar patterns are most clear only during the
wettest winter in 2011 for US-SCd (Sonoran Desert), SCc
(Desert Chaparral), SCw (Pinyon Juniper), and SCf (Oak
Pine) sites.

Pulling together averaged model output from all years, for
0-250 cm depths at each site, Fig. 4 illustrates the complex
patterns in the change in volumetric soil water content driven
by inclusion of the HR scheme of Ryel et al. (2002) in the
CLM4.5 modeling framework, over the annual cycle. Blue
indicates an increase of (up to 0.06) volumetric soil moisture
in the CLM4.54+-HR vs. the CLM4.5 model output. Yellow
indicates a decrease of (up to 0.06) volumetric soil moisture
in the CLM4.5+HR vs. CLM4.5 model output. Here the con-
tours are generated from soil moisture increases or decreases
in each CLM4.5-defined layer node, and the node depths in-
crease exponentially downward. Because soil moisture dif-
ferences result from the cumulative effect of HR, the timing
of maximum differences in soil moisture lags behind the tim-
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Table 5. Root mean square error (RMSE) comparing field observations with modeled output from CLM4.5 or CLM4.5+HR.

Site Bowen ratio Evapotranspiration Soil moisture* Soil moisture (middle/deep layers)
(multi-year, dry period) (multi-year, dry period) (multi-year, dry period) (multi-year, dry period)
CLM4.5 CLM45+HR CLM45 CLM45+HR CLM45 CLM45+HR CLM45 CLM4.5 + HR

US-Wrc  1.36 >* - 0.74 0.77 0.69 7.09 > 592 60cm: 6.11 < 60cm: 7.67
100cm: 8.81 < 100cm: 9.86
150cm: 1156 < 150cm: 11.95
200cm: 22.67 < 200cm: 23.08

US-SRM  13.30 > 6.84 0.53 0.35 2.35 > 1.15 60cm: 1.36 > 60cm: 0.39
90cm: 1.56 > 90cm: 0.47

US-SCs  6.36 > 4.71 0.47 0.42 4.65 > 3.85 - - -

UsS-SCg 2.72 > 1.80 0.53 0.54 2.67 > 246 - - -

US-SCf 3.35 > 1.09 1.14 0.82 2.67 > 245 - - -

US-SCw  6.04 > 3.02 0.40 0.37 2.30 2.36 - - -

US-SCc  5.25 5.27 0.42 0.44 2.38 2.29 - - -

USsS-SCd  6.02 6.05 0.28 0.30 1.67 1.51 - - -

Site Bowen ratio Evapotranspiration Soil moisture (0-30cm) Soil moisture (middle/deep layers)

(multi-year, dry & wet) (multi-year, dry & wet) (multi-year, dry & wet) (multi-year, dry & wet)
CLM4.5 CLM45+HR CLM45 CLM45+HR CLM45 CLM45+HR CLM45 CLM4.5 + HR

US-Wrc 287 2.94 0.74 0.71 8.39 > 8,01 60cm: 5.35 <60cm: 6.17
100cm: 8.59 < 100cm: 9.17
150cm: 1445 < 150 cm: 14.65
200cm: 22.15 < 200cm: 22.40

US-SRM  9.13 > 411 0.51 0.29 1.00 0.88 60cm: 1.79 < 60cm: 1.15
90cm: 2.23 < 90cm: 1.12

US-SCs  5.02 > 4.36 0.49 0.47 7.18 7.34 - - -

US-SCg 201 > 1.29 0.58 0.61 4.85 < 536 - - -

US-SCf 2.70 > 0.89 0.94 0.70 3.02 > 279 - - -

US-SCw  5.33 > 2.85 0.38 0.36 3.51 < 387 - - -

US-SCc  3.80 3.98 0.41 0.42 3.60 3.59 - - -

US-SCd  4.44 431 0.27 0.28 2.43 > 219 - - -

* Southern California observed soil moisture data were calculated from the average of four (or three, for US-SCd) soil moisture probes.

** Differences between CLM4.5 and CLM4.5+HR larger than 0.2 (for Bowen ratio and soil moisture) and 0.05 (for ET) are indicated with “>" or “<”. Smaller RMSE indicates improved model fit to data.
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Figure 3.
show the depths of simulated soil moisture.

Soil moisture difference between simulations with HR and without HR at each site. Labels at the upper right corner of each panel

Table 6. Modeled contribution of HR to ET during dry periods for all simulation years (mean 4 SD, columns 3-6).

Site Dry period HL* ETwithout HR

ETwith HR

HL

HR-induced ET Contribution of HR to ET

(monthday™1) (mmH,0d™1)  (mmH,0d"1)  (mmH,O0d™ 1) increase (ETwith HR v (ETwit HR;itEthg‘m”‘ HR ; 9%)
— ETwithout HR:
mmH,0d 1)
US-Wrc 06/01-09/30 0.60£0.44 1.61+0.82 1.90+0.77 0.29£0.35 0.32 15
US-SRM  05/01-06/30 0.19+£0.10 0.34+£0.45 0.52+0.39 0.18 £0.20 0.37 34
US-SCs 04/01-09/30 041+0.18 0.63+0.50 0.89+0.48 0.26 +0.17 0.46 29
US-SCg 04/01-09/30 0.48+0.13 0.59 +0.46 0.944+0.38 0.354+0.19 0.51 37
US-SCf 04/01-09/30 0.71+0.26 0.85+0.50 1.32+0.47 0.47+0.33 0.53 35
US-SCw  04/01-09/30 0.22£0.07 0.34+£0.31 0.47+£0.31 0.13+0.10 0.46 29
US-SCc 04/01-09/30 0.10£0.07 0.39+0.42 0.45+0.43 0.06 £0.07 0.21 13
US-SCd 04/01-09/30 0.1440.08 0.344+0.38 0.444+0.36 0.104+0.08 0.31 22

* HL represents hydraulic lift (upward HR).

ing of strongest HR, and the time derivative of the soil mois-
ture difference conceptually reflects the magnitude of HR
(Fig. 4 vs. Fig. 5). As shown clearly in Fig. 4, at all sites sim-
ulated, the magnitude of soil moisture differences increases
with time rather abruptly (indicating HR in action) and de-
creases with time rather gradually (as soil moisture diffusion
takes its course). At the wettest US-Wrc site, modeled up-
ward HR (hydraulic lift) is mainly concentrated during the
dry season July—September (~ days 180-270), followed by
a short period of weak downward HR (hydraulic descent)
during October. Effects of HR on modeled soil water con-
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tent persist for a longer time during the year at the other
seven sites. At the US-SRM site, hydraulic lift was weak but
evident in May and June (just before the North American
monsoon season July—September); hydraulic descent could
be found throughout the rest of the year, and would reach its
maximum during the monsoon season. Among the six south-
ern California sites, a gradient in the vertical and temporal ef-
fect of HR on modeled soil moisture was clear. The strongest
upward HR occurred at the most moist (but still seasonally
dry) US-SCf (Oak Pine) site with deciduous oak trees, fol-
lowed by US-SCg (Grassland) and US-SCs (Coastal Sage),

Hydrol. Earth Syst. Sci., 20, 2001-2018, 2016
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Figure 4. Modeled HR-induced change in volumetric soil moisture
at the eight study sites. Results shown here are the averaged values
for Julian days over the entire simulation period.

and US-SCw (Pinyon Juniper); at the much drier US-SCc
(Desert Chaparral) and US-SCd (Sonoran Desert) sites with
sparse vegetation, the temporal spread and depth range of HR
influence were far more limited. Still, hydraulic descent oc-
curred during at least a small portion of December (between
days 330 and 365) at all southern California US-SC sites.
However, despite the small amount of moisture redistributed
through HR at the desert sites, HR-induced soil moisture dif-
ferences of large magnitude persist throughout the year in
deeper layers, due to the lack of strong precipitating events
to facilitate hydraulic descent and the low hydraulic conduc-
tivity in deep soils.

Table 6 shows the average modeled hydraulic lift (in
mmH,0d~1) during dry periods for all simulation years,
for all sites; highest values were found at the two
forested sites with highest annual precipitation (0.71 and
0.60mmH,0d~! for US-SCF and US-Wrc sites, respec-
tively). Modeled hydraulic lift is comparatively small at
the US-SRM (0.19 mm H,0d~1) and the three drier south-
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ern California sites (US-SCw, US-SCc, and US-SCd: 0.10-
0.22mmH,0d™1).

3.2 Evapotranspiration observations and simulations

Figure 6 documents the model performance in simulating ET
at the daily timescale, at all eight study sites, over multiple
years. Figure 6 shows that CLM4.54+HR can simulate ET
well at the US-Wrc and US-SRM sites, but tends to under-
estimate ET during the high ET periods at the six southern
California sites. An increase in modeled ET associated with
HR during drought can be identified (to various degrees) at
all eight sites. Figure 6 and the corresponding RMSE (Ta-
ble 5) illustrate that including HR leads to improvement in
ET simulation at the US-SRM and US-SCf sites during dry
periods and year round, and also improvement at the US-SCs
and US-Wrec sites during dry periods. At other sites, the cor-
responding ET simulations from CLM4.5+HR and CLM4.5
are very similar.

Figure 7 shows the average diel cycles of ET and its com-
ponents during dry and wet periods for all simulation years,
at the eight sites (see the notes in the Supplement Sect. S4).
From Fig. 7, CLM4.54+-HR tended to underestimate the ET
peak around noon at the US-Wrc, US-SRM, US-SCf, and
US-SCw sites, but reproduced observations fairly well at the
US-SCc and US-SCd sites. Under most circumstances, the
simulated ET peaks in CLM4.54+HR are closer to observa-
tions than those in CLM4.5. HR-induced increase in simu-
lated midday transpiration and subsequent increase of ET can
be identified during the dry periods at all eight sites, though
it is very weak at US-SCc and US-SCd. Compared to dry pe-
riods, HR-induced changes in simulated ET were relatively
limited during wet periods at all eight study sites. At the US-
SRM site, a decrease of ground evaporation and increase of
transpiration were both evident during wet periods, caused by
significant hydraulic descent at this site (Figs. 1, 5). The soil
water in shallow layers that would otherwise be evaporated
was redistributed to deep layers during and after rain events
in the monsoon season (July—September), and was eventually
consumed by plants during subsequent transpiration.

Table 6 shows the HR-induced increase in ET
(mmH,0d™1), estimated as the difference in ET be-
tween simulations with and without HR. The contribution
of HR to ET (unit: %) refers to this difference normal-
ized by the ET from CLM4.5+HR. The HR-induced ET
increase is largest at the US-SCf site (0.47 mmH,0d™1),
and corresponding ET increase is comparatively small at
the US-SRM site (0.18 mmH,0d~1) and the three drier
southern California sites (US-SCw, US-SCc, and US-SCd:
0.06-0.13 mm H,0d~1) (Table 6).
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Figure 5. Modeled HR flux, as represented by the amount of soil moisture given or received per day, at the eight study sites. Results shown
here are the averaged values for Julian days over the entire simulation period.

3.3 HR-induced Bowen ratio change

The partitioning of surface energy between latent and sen-
sible heat fluxes, often characterized using the Bowen ratio
(the ratio of sensible heat to latent heat flux), drives the dy-
namics of boundary layer growth and subsequently the trig-
gering mechanisms of convective precipitation (Siqueira et
al., 2009). The influence of HR on Bowen ratio is therefore
important for understanding the broader impact of HR be-
yond the land surface. Including HR improves the model per-
formance in reproducing the Bowen ratio (Fig. 8, Table 5),
especially during dry periods, at all sites except the two dri-
est southern California sites (US-SCc and US-SCd). This in-
dicates that the ET or soil moisture comparison alone does
not capture the full benefit of including HR in the model.
Instead, HR’s impact on ET and soil moisture influences sur-
face temperature and therefore sensible heat flux. The Bowen
ratio synthesizes these effects of HR. The better agreement
between model and observation in Bowen ratio than in ET
may be related to the challenge of the eddy covariance flux
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measurement. Since ET (latent heat flux) and sensible heat
flux are both derived from the same eddy covariance mea-
surement, potential errors in quantifying the eddy covariance
(which are not uncommon as reflected by the energy closure
challenge facing many flux tower measurements) are likely
to have a much smaller impact on the Bowen ratio estimate
than on the magnitude of latent heat flux or sensible heat flux
alone.

Combining the modeling results for daily ET into Fig. 9, a
larger pattern emerges from the cross-site comparison. Each
site is color-coded differently, and HR-induced increases in
ET are plotted against shallow soil moisture (0-30 cm, also
commonly measured at other field sites). At low soil mois-
ture, the driest southern California gradient sites have little
water to redistribute and very sparse vegetation to carry out
HR. At high soil moisture, little driving gradient exists to
support HR. By including all sites in Fig. 9, it is clear that
maximal HR-induced increases in ET primarily occur at sites
(and during seasons) with mid-range soil moisture.
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Figure 6. Observed and simulated daily ET at the eight study sites.

3.4 Sensitivity to HR model parameters

The sensitivity of modeled hydraulic lift, hydraulic descent,
and contribution of HR to ET (defined in Table 6) to param-
eters Crr, @50, and b in the HR scheme of Ryel et al. (2002)
was tested for four sites (US-Wrc, US-SRM, US-SCs and
US-SCw). Both hydraulic lift and hydraulic descent were
nearly insensitive to variation in b (ranging from 0.22 to
4.22) (Figs. S11, S12). Variation of approximately an order
of magnitude in Crr (from 0.1 to 1.5cm MPa~1 h—1) and g5
(from -0.5 to -4.0 MPa) resulted in less than a doubling of
the magnitude of hydraulic lift, even during the periods with
high HR flux (Fig. S11 in the Supplement). However, hy-
draulic descent was notably more sensitive; increasing Crt
from 0.1 to 1.5cm MPa~1 h—! resulted in nearly an order of
magnitude increase in maximum hydraulic descent at US-
Wrc (from ~ 0.1 to ~ 1 mmd~1), and a tripling of hydraulic
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descent at the other sites (Fig. S12 in the Supplement). A
change in g50 from —4.0 to —0.5 MPa led to at most a tripling
of hydraulic descent at all sites. Similarly, the modeled con-
tribution of HR to ET was sensitive to Crt and ¢sg and in-
sensitive to b (Fig. 10).

4 Discussion

The cross-ecosystem comparisons demonstrate that the tim-
ing, magnitude, and direction (upward or downward) of HR
vary across ecosystems (Figs. 1, 5), and incorporation of HR
into CLM4.5 improved model-measurement match particu-
larly during dry seasons (Table 5). The hydrological impact
of HR is substantial in ecosystems that have a pronounced
dry season but are not overall so dry that sparse vegetation
and very low soil moisture limit HR (Figs. 5, 7, 8). The lack
of HR representation in the current generation of land sur-
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deviation of simulation with HR.

face or earth system models thus should be considered as
a source of error when modeling seasonally dry ecosystems
with deep-rooted plant species.

4.1 HR seasonal dynamics and site dependence

Several of the AmeriFlux sites investigated here have hosted
previous field investigations of impacts of HR on soil mois-
ture. CLM4.5+HR was able to capture patterns published
from those empirical data, and added to those data a more
comprehensive view of the seasonal dynamics in the sys-
tems (Fig. 5). For example, at US-Wrc (a ~ 450-year-old
stand of Douglas fir), the CLM4.5+HR results indicated
that HR-induced soil moisture increases during dry seasons
were mainly limited to the upper 60cm of soil (Fig. 4),
which is consistent with field measurements (soil moisture
and soil water potential) in a ~20-year-old and a ~ 450-
year-old Douglas fir stand in the Pacific Northwest (Brooks
et al., 2002; Brooks et al., 2006; Meinzer et al., 2004).
The US-Wrc panel in Fig. 5 also shows that as soil drying
progressed, more water was redistributed to depth of 20—
60 cm from lower layers in late summer than in early sum-
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mer. (It is worth noting that the CLM4.5+HR model does
not include the temperature-fluctuation-driven vapor trans-
port within soil shown by Warren et al. (2011) to occur at the
site.)

US-Wrc is the site with the highest annual rainfall
(>2000 mmyr—1) among those modeled (Table 1), and HR
is constrained to the mid-year dry season and dominated by
hydraulic lift (Fig. 5). Hydraulic descent is limited with an
average value of 5.0mmH,0yr~1 during 1999-2012, per-
haps because soil moisture is higher with depth, limiting the
driving gradient for hydraulic descent. In contrast, hydraulic
lift and hydraulic descent are active nearly year round at five
of the other seven AmeriFlux sites (Fig. 5). At the two dri-
est sites US-SCc and US-SCd, due to the scarcity of wa-
ter that can be moved and the sparse vegetation, the HR-
associated dynamics in soil water content are relatively sub-
dued (Fig. 4). At the US-SCf site, Kitajima et al. (2013) sim-
ulated hydraulic lift from 2007 to 2011 using the HYDRUS-
1D model on a daily scale (without simulating the diel fluc-
tuation of soil moisture), and the simulated hydraulic lift av-
eraged ~ 28 mm per month in July and August, which was
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Figure 8. Observed and simulated weekly Bowen ratio during dry periods.

close to the 24.7 mm per month from CLM4.5+HR. The an-
nual hydraulic lift was ~ 112 mm in Kitajima et al. (2013),
and was 121 mm in CLM4.54+HR. However, the two mod-
eling approaches are quite different. Kitajima et al. (2013)
attributed the source of hydraulic lift to deep moisture in the
weathered bedrock, and did not account for the hydraulic re-
distribution within the soil layers. In contrast, CLM4.5+HR
included HR among the soil layers but not the hydraulic
lift from deep bedrock. Hydraulic descent occurring after
rain was not included in Kitajima et al. (2013), but featured
prominently at year end in the output from CLM4.5+HR
(Fig. 5, panel US-SCf, right-hand side). The missing repre-
sentation of hydraulic lift from deep bedrock as shown in Ki-
tajima et al. (2013) is also a possible reason for the reduced
model performance in soil moisture modeling at depth for a
site like US-Wrec.
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Though sap flow indicated little hydraulic lift during
2004-2005 (Scott et al., 2008), CLM4.5+HR simulated sig-
nificant hydraulic lift during dry periods at the US-SRM site
(Fig. 5), and diel fluctuations of soil moisture indicative of
HR were observed during soil drydown (Fig. 2). Scott et
al. (2008) calculated hydraulic descent using the downward
flow in taproots, and calculated hydraulic lift using lateral
root flow moving away from the tree base. Flow was more
concentrated and more easily measured in the taproot than in
lateral roots, which was considered the reason why hydraulic
descent was far more detectable than hydraulic lift.

4.2 HR-induced evapotranspiration change
The influence of HR on transpiration and/or ET has been es-

timated in many studies, including at sites studied here. At
the US-Wrc site, Brooks et al. (2002) used diel fluctuations
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in soil moisture, and total soil water use, to calculate that HR
supplied about 28 % of the total daily water use from the top
2m soil layer in a 20-year-old Douglas fir stand during dry
August, comparable to the 32 % estimated here (Table 6). At
the US-SRM site and seasonal scale, Scott et al. (2008) re-
ported that the hydraulic descent during the dormant season
(DOY 31-109) represented 15-49 % of the estimated tran-
spiration of the growing season (DOY 110-335) in 2004; the
corresponding simulated value during the same period in the
present study is 36 %. ET was notably underestimated at the
US-SCf site by both CLM4.5+HR and HYDRUS-1D (Kita-
jima et al., 2013). The lack of hydraulic lift from bedrock in
this study, and the lack of HR within soil layers in Kitajima
et al. (2013) might be reasons for this underestimation.

4.3 Sources of uncertainty

Results in this study are subject to uncertainties from a num-
ber of sources. As noted in the methods, data essential for
the CLM4.5 and HR models were drawn from each site
when available, but otherwise were drawn from large data
sets commonly used in large-scale models (Table 2). Also, as
noted in the methods and notes in the Supplement Sect. S2,
soil moisture measurements were challenging at the southern
California sites because large temperature gradients devel-
oped along CS-616 probes, soils dried outside the range of
CS-229 probes, and there appeared to be a thermal gradient
between reference thermistor and sensor connection points
in measurement junction boxes aboveground. More subtle
and interesting sources of uncertainty also likely influenced
the model-measurement match. For example, strong inter-
annual variation of precipitation, fire, and recovery from fire
caused rather abrupt changes of PFT coverage and LAI at
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the US-SCs site. The US-SCg site is undergoing restoration
to a native grassland community, and a large community of
ephemeral annuals comes up following winter or summer
rains at the US-SCc site. These variations were difficult to
capture by satellite remote sensing data but undoubtedly af-
fected soil moisture and ET in interesting ways. Without de-
tailed ground-observational data to quantify them, simula-
tions in this study used a climatological LAl seasonal cycle.

Another potentially important source of uncertainty is the
parameters Cgrr, b, and ¢sp in the HR model. Quantifying
these parameters remains a major challenge. Results from
our sensitivity experiments show that CLM4.5+HR output
is relatively insensitive to variation in the parameter b, so of
the three parameters, giving b a default value is least prob-
lematic. As shown in Ryel et al. (2002), maximum conduc-
tance Crt can be determined from site-specific data (soil
moisture, soil water potential, and root distribution). But in
the absence of such data, an approach might be developed
based on the hypothesis that in any ecosystem there must
be sufficient maximum soil-whole plant conductance (Crr)
to support the annual maximum observed LAl when soil is
saturated (Wullschleger et al. 1998). Determining a reason-
able way to estimate gsg may require the most effort. Field
measurements combined with modeling may be necessary
to enable setting the value of ¢sp and to ground truth a re-
lationship between Crr and annual maximum LA, ideally
across a range of ecosystem types, vegetation densities, soil
textures, and/or other site-specific properties that are already
input variables for earth system models. In addition, the ef-
fects of several important factors warrant further investiga-
tion, including, for example, the root architecture (Yu and
D’Odorico, 2014), dynamic root water uptake (Zheng and
Wang, 2007), deep tap roots (Markewitz et al., 2010), above-
ground storage capacity (Hultine et al., 2003), temperature
fluctuation-driven vapor transport within soil (Warren et al.,
2015), and macro-pore flow (Fu et al., 2012, 2014). It is also
important to compare different representations of HR mod-
els (Amenu and Kumar, 2008; Quijano and Kumar, 2015) to
examine uncertainties related to model structure.

5 Main findings
The key findings in this study are as follows:

— Simulated hydraulic lift was largest at the two forested
sites with highest annual rainfall (0.60 US-Wrc and
0.72mmH,0d~1 US-SCf; Table 6), and smallest at
US-SRM and the three driest southern California sites
(from 0.10 US-SCc to 0.22 mm H,0 d~! US-SCw; Ta-
ble 6).

— Hydraulic descent was a dominant hydrologic feature
during wet seasons at semi-arid US-SRM (Figs. 1, 4)
and four (moister) of the six southern California sites
(Fig. 4, Figs. S2-S6 in the Supplement) with annual pre-
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Figure 10. Sensitivity of simulated contribution of HR to ET (defined in Table 6) to selected parameters in the HR scheme of Ryel et

al. (2002). Circled parameter set was used in Table 6.

cipitation <~ 500 mm (Table 1), contributing to signif-
icant dynamism in soil moisture at depth.

— HR caused modeled ET to increase, particularly during
dry periods; values for the increase ranged from 0.06,
0.10, and 0.13mmH,0 d~! at the driest sites (US-SCec,
US-SCd, and US-SCw, respectively; Table 6) to 0.18,
0.26, 0.29, 0.35, and 0.47mmH,0d1 at the wetter
sites (US-SRM, US-SCs, US-Wrc, US-SCg, and US-
SCf, respectively; Table 6).

— Measurement and modeling both demonstrate that the
timing, magnitude, and direction (upward or downward)
of HR vary across ecosystems, and incorporation of HR
into CLM4.5 improved model-measurement match for
Bowen ratio, evapotranspiration, and soil moisture (e.g.
shallow layers), particularly during dry seasons.

— Modeling and measurements indicate that HR has hy-
drological impact (on evapotranspiration, Bowen ratio,
and soil moisture) in ecosystems that have a pronounced
dry season but are not overall so dry that sparse vegeta-
tion and very low soil moisture limit HR.

— CLM4.54+HR output was relatively insensitive to vari-
ation in the parameter b in the HR scheme of Ryel et
al. (2002), but was somewhat sensitive to variation in
Crr and ¢so. Variation of approximately an order of
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magnitude in Crt and ¢sg resulted in less than a dou-
bling of the magnitude of hydraulic lift during the peri-
ods with high HR flux, but hydraulic descent was more
sensitive.

Previous modeling studies either focus on model-data com-
parison at one site or conduct large scale simulations with
few concrete data to compare against, making it very difficult
to answer the fundamental question: when and where must
HR be included to appropriately model hydrologic charac-
teristics of diverse ecosystems? HR has been confirmed in
various ecosystems where plant root systems span soil wa-
ter potential gradients (Neumann and Cardon, 2012; Prieto
et al., 2012; Sardans and Pefiuelas, 2014). For this reason,
one might argue that HR should be included for all ecosys-
tems. However, our comparative study using combined em-
pirical data and modeling helps hone the answer by includ-
ing eight AmeriFlux sites that differ in vegetation, soil, and
climate regimes. The summary suggestions are (a) hydrolog-
ical modeling will not be clearly influenced if not including
HR for overall drier sites that have little water to redistribute
and sparse vegetation to carry out HR and overall wetter
sites/periods that are likely to develop little driving gradient
to support HR, while HR should be included for the season-
ally dry ecosystems with mid-range annual rainfall and soil
moisture, and (b) quantifying parameters in the HR model is
a key if including HR in hydrological modeling.
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