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Abstract. Possible future climate change effects on dryness

conditions in Poland are estimated for six climate projec-

tions using the standardized precipitation index (SPI). The

time series of precipitation represent six different climate

model runs under the selected emission scenario for the pe-

riod 1971–2099. Monthly precipitation values were used to

estimate the SPI for multiple timescales (1, 3, 6, 12, and

24 months) for a spatial resolution of 25 km for the whole

country. Trends in the SPI were analysed using the Mann–

Kendall test with Sen’s slope estimator for each grid cell

for each climate model projection and aggregation scale,

and results obtained for uncorrected precipitation and bias

corrected precipitation were compared. Bias correction was

achieved using a distribution-based quantile mapping (QM)

method in which the climate model precipitation series were

adjusted relative to gridded precipitation data for Poland. The

results show that the spatial pattern of the trend depends on

the climate model, the timescale considered and on the bias

correction. The effect of change on the projected trend due

to bias correction is small compared to the variability among

climate models. We also summarize the mechanisms under-

lying the influence of bias correction on trends in precipita-

tion and the SPI using a simple example of a linear bias cor-

rection procedure. In both cases, the bias correction by QM

does not change the direction of changes but can change the

slope of trend, and the influence of bias correction on SPI is

much reduced. We also have noticed that the results for the

same global climate model, driving different regional climate

model, are characterized by a similar pattern of changes, al-

though this behaviour is not seen at all timescales and sea-

sons.

1 Introduction

Drought is an extreme event that can produce significant

deleterious effects under both present and future climatic

conditions according to the recent Special Report by the In-

tergovernmental Panel on Climate Change (IPCC) on Man-

aging the Risk of Extreme Events and Disasters to Advance

Climate Change Adaptation (SREX).

The assessment of future drought scenarios is crucial for

many aspects of the national economy, including agricul-

ture, energy, biodiversity, forestry, and the health and water

sectors (Jenkins and Warren, 2015). Therefore, drought can

significantly influence the well-being of society and its ca-

pacity for resilient development. Recent IPCC reports and

scientific articles indicate that drought events have been in-

creasing in frequency and intensity in some regions over the

last part of the 20th century as a result of climate change

(Kaczmarek et al., 1996; Alexander et al., 2006; Bartholy

and Pongracz, 2007; Brázdil et al., 2009; Kiktev et al.,

2009; Somorowska, 2009; Dai, 2011; KLIMADA, 2012;

Seneviratne et al., 2012). Climate projections suggest that

drought is likely to increase (at a medium level of confi-

dence) and may become more intense in some regions, in-

cluding central Europe (IPCC, 2012), especially in areas

with dry conditions in today’s climate (IPCC, 2014, AR5).

Poland has relatively limited water resources, and in some

areas of Poland temporary difficulties in maintaining ade-

quate water supply can occur. Previously published analy-

ses of drought in Poland have mainly been concerned with

the classification of drought types and the development of

drought indices (Łabędzki, 2007; Łabędzki and Kanecka-

Geszke, 2009; Tokarczyk, 2013), monitoring of drought con-

ditions (Tokarczyk and Szalińska, 2013; Łabędzki and Bąk,
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2014) and drought hazard assessment for periods when ob-

servations are available (Tokarczyk and Szalińska, 2014).

Analysis of the potential impact of climate change on

drought in Poland has been addressed by a few other stud-

ies at a regional scale. Rimkus et al. (2012) analysed 50-

year trends (1960–2009) under the recent climate and for

drought projections for the future climate (up to 2100) in

the Baltic Sea region using the standardized precipitation

index (SPI). For the assessment of the observed climatic

conditions, gridded precipitation time series at a 1◦ reso-

lution from the Climate Research Unit at the University of

East Anglia were used. The trend estimated using a Mann–

Kendall test indicated an increase in the SPI values for differ-

ent time averaging periods over most of the studied area, ex-

cept for Poland, where decreases were found. Future dryness

was projected using COSMO Climate Limited-area Model

(CCLM) driven by initial and boundary conditions from the

global climate model ECHAM5/MPIOM for two emission

scenarios (A1B and B1). According to both scenarios, the

intensity of drought will likely decline in most of the Baltic

Sea area, except in the southern parts, including Poland. Fol-

lowing the A1B scenario, drought occurrence will increase

in the summer months in the future in those regions.

The study of the impact of climate change on drought in

Poland, carried out within the framework of the project “De-

velopment and implementation of a strategic adaptation plan

for the sectors and areas vulnerable to climate change” with

the acronym KLIMADA (http://www.klimada.mos.gov.pl),

indicated that future predictions of annual total precipita-

tion do not show any clear trends (Liszewska et al., 2012).

The assessment of trends in seasons shows an increase in

winter precipitation (DJF – December, January, and Febru-

ary) of up to 20 % in the eastern part of Poland and a de-

crease in summer precipitation in south-eastern Poland. In

contrast, changes in precipitation in spring and autumn tend

to be much smaller (Liszewska et al., 2012). The number of

dry days with daily precipitation of less than 1 mm shows

an increasing trend. These changes are more pronounced in

eastern and south-eastern Poland (NAS, 2013).

Assessment of the impact of climate change on drought

using a climatic water balance (defined as the difference

between precipitation and potential evapotranspiration for a

given period) for three periods 1971–2000, 2021–2050 and

2071–2100 was carried out by Osuch et al. (2012). The re-

sults of the study indicate significant differences between

projections derived from the different climate models anal-

ysed. A comparison of the median of the ensemble of models

in these three periods indicates an increase in water scarcity

in Poland. These changes are more pronounced in the south-

eastern part of Poland.

Another study of drought projections at continental scale

was carried out by Bleckinsop and Fowler (2007). In this pa-

per six climate model simulations were analysed following

the Special Report on Emission Scenarios (SRES) A2 emis-

sion scenario. A considerable model uncertainty due to inter-

model variability on regional and local scales was demon-

strated. The projections indicate likely decreases in summer

and likely increases in winter precipitation. For longer du-

ration droughts, the projections indicate fewer droughts in

northern Europe due to larger increases in winter precipita-

tion and more droughts of increasing severity in the south.

Orlowsky and Seneviratne (2013) presented an investiga-

tion on future SPI 12 characteristics, again on a continental

scale. The results for central Europe showed an increasing

trend in median SPI 12.

A new study by Stagge et al. (2015b) presents an analy-

sis of meteorological drought using the most current climate

models (23 simulations) for the three projected emission sce-

narios (RCP2.6, RCP4.5, and RCP8.5) for Europe at a spatial

resolution of 0.11◦ (∼ 12.5 km). Meteorological drought was

estimated using the SPI at 3-, 6-, and 12-month aggregation

periods. In that work the relationship between aggregated

precipitation and SPI was developed for the reference period

(1971–2000). Then the same transformation was used for

future scenarios (2011–2040, 2041–2070, and 2071–2100).

The results indicated that precipitation is likely to increase in

central and northern Europe; therefore, that area is likely to

experience fewer precipitation-based droughts.

Results assessing the influence of climate change on

drought in Poland, which are available so far, are limited to

either a coarse resolution (1◦), few climate models consid-

ered (e.g. only one regional climate models (RCM)–GCM

combination was used by Rimkus et al., 2012) or to the

choice of drought indices, e.g. climatic water balance, that

are not suitable for adaptation purposes due to its simplified

form with unlimited losses related directly to air temperature

increase without limits (i.e. water availability). Three types

of drought can be distinguished: meteorological drought,

which is evaluated on the basis of precipitation deficit, agri-

cultural drought reflecting a soil moisture deficit, and hy-

drological drought resulting in a streamflow, groundwater,

or reservoir deficit. A meteorological drought often initiates

agricultural and hydrological drought but other factors also

have an effect on the occurrence and development of agricul-

tural and hydrological drought. The term “drought” has dif-

ferent meanings, depending on the end-user involved. For the

description, monitoring and quantification of drought, sev-

eral indices are used in research and in practice. A detailed

review of these indices is presented in Dai (2011). In this ar-

ticle we focus on the description of the degree of meteorolog-

ical dryness using the SPI developed by McKee et al. (1993).

A description of this index is presented in the following sec-

tion. Dryness, followed in this paper, reflects a wider range

of conditions than drought as it describes a state of precipi-

tation deficit in the range from normal conditions down to an

extreme drought (Fischer et al., 2013).

Projections of dryness/wetness conditions under a future

climate are carried out using simulated climate data obtained

from RCM, which are run based on boundary conditions de-

rived from GCM. These models simulate the best-available
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approximation of future climate conditions, although there

remains uncertainty related to our insufficient knowledge of

physical laws governing the atmosphere and the environ-

ment, differences in techniques for coupling RCM and GCM

models, as well as assumptions related to global and regional

economic and demographic development as represented by a

given SRES greenhouse gas emission scenario.

Comparison of the simulations with observations indicates

that climate models are able to simulate important aspects of

current climate including many patterns of climate variabil-

ity across a range of scales, for example annual patterns of

air temperatures and storm tracks (Ehret et al., 2012; IPCC,

2014, AR5). In particular, models lead to the same or sim-

ilar tendencies in changes at large spatial and temporal ag-

gregation scales (Ehret et al., 2012). The reliability of such

simulations is, however, not proven for all climatic variables.

Simulations of precipitation fields are highly biased due to

the variety of complex processes leading to precipitation

generation in the atmosphere, which includes microphysics

of clouds, convection processes, processes in the planetary

boundary layer, and the interactions between the ground sur-

face and the atmosphere. Errors occurring in simulated pre-

cipitation fields are due to necessary simplifications in the

description of these processes in climate models. This prob-

lem is well known and reported by many authors (Piani et al.,

2010; Hagemann et al., 2011; Liszewska et al., 2012; Osuch

et al., 2012; Madsen et al., 2014; Sunyer et al., 2015; Vor-

moor et al., 2015). Therefore, most studies considering the

impact of climate change on processes related to precipita-

tion use statistical downscaling and/or bias correction of the

climate simulations relative to observations, rather than bas-

ing such analyses on raw (uncorrected) climate model out-

puts (Madsen et al., 2014).

An application of a bias correction significantly improves

the simulations in the control time period, but at the same

time, it changes a relationship between climate variables and

can violate conservation principles (Ehret et al., 2012). Con-

sistency between the spatio-temporal fields of a climate vari-

able can also be altered. Other problems, which potentially

undermine a reliable interpretation of the results of projec-

tions, include neglected feedback mechanisms and an as-

sumption of stationarity of bias correction method parame-

ters derived for a period with available observations but later

used for changed conditions during future periods. Applica-

tion of bias correction in the modelling chain can alter cli-

mate change signals (Hagemann et al., 2011; Cloke et al.,

2013; Gutjahr and Heinemann, 2013; Teng et al., 2015). The

ongoing discussion on the suitability of bias correction of

data derived from climate model simulations was initiated

by Christiansen et al. (2008) and has been taken further by

Ehret et al. (2012), Muerth et al. (2013), and Teutschbein

and Seibert (2013), among others. Proposed solutions to this

problem include presenting results for both bias corrected

and non-corrected inputs and analysis of the worst case sce-

nario. The best, but also the most challenging, solution could
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Figure 1. A scheme of the applied modelling chain.

be achieved by the improvement of climate models (Ehret et

al., 2012) such that bias correction is not required.

The aim of this paper is an estimation of potential local

changes in the degree of dryness in Poland resulting from

future climate change, as interpreted from changes in the es-

timated SPI. We apply an ensemble of six GCM–RCM mod-

els in order to consider some of the uncertainty introduced

by differences between climate model projections. The influ-

ence of bias correction on the resulting projections of trends

in the SPI values is also analysed. Such work has not been

previously undertaken for the whole of Poland, but is a neces-

sary input for developing climate change adaptation policies

related to the projected degree of meteorological dryness.

The article is organized as follows. In Sect. 2 we describe

the methodologies used to develop precipitation and SPI pro-

jections for Poland. In Sect. 3 a comparison of the simulated

and observed precipitation time series is presented, together

with the estimated tendencies in spatio-temporal changes in

drought condition in Poland over the period 1971–2099. The

last section presents a discussion and summarizes the most

important results of the study.

2 Methods

The chain of analysis underlying the estimation of changes in

drought indices is illustrated in Fig. 1. For these analyses, a

multi-model ensemble of climate projections has been used

in keeping with recommendations for such work (e.g. van

der Linden and Mitchell, 2009; Knutti et al., 2010). Precipi-

tation time series generated by the climate models have been

bias corrected relative to observations and further details are

given below. On the basis of the corrected precipitation se-

ries from the climate projections, the meteorological dryness

indices have been calculated. Tendencies in changes are esti-

mated using non-parametric trend analysis (Kundzewicz and

Robson, 2004). For the assessment of the influence of the

bias correction method on the temporal variability of the me-

teorological dryness, the analyses are carried out for both un-

corrected and bias corrected precipitation time series from

the climate models.

2.1 Climate data

Climate variables have been obtained from the EU FP6 EN-

SEMBLES project (van der Linden and Mitchell, 2009), in

the form of time series of precipitation derived from six dif-

ferent RCM–GCMs: DMI HIRHAM5 ARPEGE, SMHIRCA

www.hydrol-earth-syst-sci.net/20/1947/2016/ Hydrol. Earth Syst. Sci., 20, 1947–1969, 2016



1950 M. Osuch et al.: Trends in projections of standardized precipitation indices in a future climate in Poland

BCM, RM51 ARPEGE, MPI M REMO ECHAM5, KNMI

RACMO2 ECHAM5 r3, and DMI HIRHAM5 BCM follow-

ing A1B climate change scenario for the time period: 1971–

2100. The A1B emission scenario belongs to the SRES fam-

ily described in the IPCC SRES (Nakicenowic et al., 2000)

and used to make projections for the IPCC Third Assess-

ment Report (TAR) and in the IPCC Fourth Assessment Re-

port (AR4). These six simulations are based on five RCMs

(DMI HIRHAM5, SMHIRCA, RM51, MPI M REMO,

and KNMI RACMO2) driven by three different GCMs

(ARPEGE, ECHAM5, and BCM). In two cases, the same

RCM was used with different GCMs (ARPEGE and BCM).

These combinations of RCM–GCM simulations are shown in

Table 1. In this work we applied simulations of climate mod-

els transformed to normal grids (non-rotated) with a spatial

resolution of 0.25◦× 0.25◦. The analyses were carried out

for two periods: a reference period 1971–2000 and the entire

available period 1971–2099.

The simulations in the reference period (1971–2000) were

compared with observations from synoptic stations (point

measurements) and also with the latest available version of a

European daily high-resolution gridded data set (E-OBS ver-

sion 10) from the European Climate Assessment and Data set

(ECA & D; Haylock et al., 2008) of the Royal Netherlands

Meteorological Institute (KNMI). The spatial resolution of

the E-OBS grid cells is the same as the ENSEMBLES RCM

domain (i.e. 0.25◦× 0.25◦).

2.2 Bias correction

Our previous analyses (Liszewska, et al., 2012; Osuch et

al., 2012) indicated that raw climate simulations, especially

for precipitation time series, are highly biased. Following

the papers of Ehret et al. (2012) and Sunyer et al. (2015)

we included an additional post-processing step, i.e. bias cor-

rection of climatic variables, which is a standard procedure

for climate change impact studies. In this work we used a

distribution-based quantile mapping (QM) method (Piani et

al., 2010) applied to daily values subsampled on a monthly

basis to correct biases in the precipitation time series derived

from the climate models. The correction was done relative to

E-OBS reanalysis precipitation data (Haylock et al., 2008),

as this data set provides the best estimate of grid box av-

erages and has the same resolution as the outputs from the

climate models considered. Quantile mapping methods have

a number of advantages over methods that only correct the

mean and variance (Sunyer et al., 2015) and have been used

in numerous previous studies, e.g. Dosio and Paruolo (2011)

and Gudmundsson et al. (2012). The QM method is based

on the assumption that a transformation (h) exists such that

the distribution of quantiles describing the simulated time se-

ries of precipitation (PRCM) can be mapped onto the quantile

distribution of the observations (P obs):

PObs
= h

(
PRCM

)
. (1)

Table 1. GCM and RCM combinations used from ENSEMBLES

project. The number denotes number of simulations.

GCM–RCM ARPEGE ECHAM5 BCM Total

scenarios

DMI HIRHAM5 1 0 1 2

SMHIRCA 0 0 1 1

RM51 1 0 0 1

MPI M REMO 0 1 0 1

KNMI RACMO2 0 1 0 1

Total scenarios 2 2 2 6

In the application of this method here, observed and simu-

lated time series were fitted to a gamma distribution. The

distribution parameters were estimated using the maximum

likelihood method. Only wet days (P > 0.0 mm day−1) were

included in this analysis. The inverse of the derived gamma

distribution for observed time series is used to correct the

quantiles of simulations, following the transformation:

P̂RCM
corr = F

−1
Obs

(
FRCM

(
PRCM

))
(2)

where FObs denotes the cumulative distribution function

(cdf) of observations and FRCM is the cdf of simulated val-

ues.

The relationship (Eq. 2) between quantile-corrected and

simulated data was parametrized using the power transfor-

mation:

P̂RCM
corr =

{
b
(
PRCM

− x0

)c
for PRCM

≥ x0

0 for PRCM < x0
, (3)

where coefficients b and c are calibrated for the best fit, x0 is

estimated threshold value of precipitation below which mod-

elled precipitation is set to zero.

In addition to the correction of precipitation values, the

number of wet days is also corrected based on the empiri-

cal probability of non-zero values in the observations. This

is a necessary part of the bias correction, as RCMs tend to

simulate too many wet days with low values of precipitation.

All values for precipitation below this threshold (x0) are set

to zero for the simulated data. The transformation h and the

wet day correction derived for the control period are further

applied in the correction of precipitation data for future pe-

riods. The correction parameters are evaluated for every grid

and every month separately.

2.3 Standardized precipitation index

Many different indicators of meteorological drought can be

found in the literature (Mishra and Singh, 2010), although

the SPI is one of the most widely applied. The index is used

for both research and operational purposes in over 60 coun-

tries (e.g. Bordi et al., 2009; Moreira et al., 2012; Sienz et

al., 2012; Gocic and Trajkovic, 2013; Liu et al., 2013; Dutra
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et al., 2014; Zargar et al., 2014; Jenkins and Warren, 2015;

Swain and Hayhoe, 2015; Zarch et al., 2015).

SPI has been developed by McKee et al. (1993). It is a rel-

atively simple index based only on precipitation and quanti-

fies a precipitation deficit for a sequence of data (Hayes et

al., 1999; Seiler et al., 2002). Time series of precipitation

for a particular location are fitted to the gamma distribution,

following the recommendation by Stagge et al. (2015a). SPI

values are then estimated by a transformation of the cumu-

lative probability to a standard normal variable with a zero

mean and a variance equal to 1. Negative values of SPI indi-

cate lower than median precipitation, whilst positive values

denote higher than median precipitation. The calculated val-

ues of SPI give estimates of the degree of dryness for a given

period and location. Different thresholds of SPI value are es-

tablished to distinguish a meteorological drought. Originally

McKee et al. (1993) proposed a threshold SPI= 0, although

a later assessment by Agnew (2000) and Łabędzki (2007)

suggested that drought conditions start at SPI=−1. Due to

the standardization of variables, SPI values can be used to

represent wetter and drier areas in a comparable way.

The SPI can be used to quantify the precipitation deficit at

multiple timescales (1, 3, 6, 12, 24 months). These timescales

reflect the impact of drought on the short-term water sup-

plies, which are important for agriculture, as well as on sys-

tems that may have more storage and, therefore, a longer re-

sponse time such as water resources in the form of stream-

flow, reservoir storage, and groundwater supplies.

In the assessment of a meteorological dryness using the

SPI index, the length of the precipitation series and the

probability distribution describing data are very important

(Mishra and Singh, 2010). Wu et al. (2005) recommended

the use of the longest possible period for the derivation of

the SPI, as short data sets could result in large errors of es-

timated values. For the comparison of indices between dif-

ferent locations, the choice of the same period is suggested.

Following that recommendation, the aggregated precipitation

totals from the entire period (1971–2099) were normalized.

The analysis of SPI values based on the entire time series

presents an opportunity to estimate the tendency of changes

in the SPI time series, which was one of the major aims of

this work. However, for the purpose of adaptation to climate

change, the reference period to which the changes are related

plays an important role. Namely, when the whole period is

taken for the normalization, normal conditions refer to the

year 2035, which in the case of non-stationarity may lead to

some difficulties in interpreting the results, as it changes the

analyst’s perspective.

In an alternative approach presented by Stagge et

al. (2015b) a non-linear transformation (normalization) is

developed for the present period (for example 1971–2000)

and that transformation is further applied to future climate

conditions. That approach also has some drawbacks. Future

climate conditions could be different than those observed;

therefore an application of a relationship based on present

conditions could lead to extrapolation outside the range of

observed values. The second problem with the alternative ap-

proach is related to shorter time series that could result in er-

rors in the fitting of the distribution and the normalization of

the aggregated time series. This problem is mentioned in the

work of Wu et al. (2007).

In this work the gamma distribution was chosen for de-

scription of the precipitation time series following the rec-

ommendation of McKee et al. (1993), Lloyd-Hughes and

Saunders (2002) and analyses of suitable statistical tests

(Anderson–Darling, chi-square and Lilliefors). The distribu-

tion parameters were estimated using the maximum likeli-

hood method. For locations where no precipitation occurs

in the time series for a given period over analysed aggrega-

tion timescale, the cumulative probability H(x) is calculated

from the following equation

H(x)=

{
q if x = 0

q + (1− q)G(x) if x > 0,
(4)

where q is the probability of no precipitation for the pe-

riod estimated from the frequency of observations of zero,

and G(x) denotes the cumulative probability derived from

gamma distribution.

The SPI is the inverse of the normal cumulative distri-

bution function corresponding to the normalized probabil-

ity H(x). The influence of dry days on the normality of de-

rived SPI values at different timescales was tested by the An-

derson Darling test, where the null hypothesis is that a sam-

ple comes from a population described by a normal distribu-

tion. The results indicated that the applied test fails to reject

the null hypothesis at 0.05 level in all cases. Other methods

of normality testing of the SPI values have been applied in

other published studies, e.g. the Shapiro–Wilk statistic and

absolute value of the median smaller than 0.05 (Wu et al.,

2007; Kumar et al., 2009; Stagge et al., 2015a).

2.4 Trend analysis

The last element in the applied modelling chain presented in

Fig. 1 is the trend analysis of the estimated SPI time series.

There are many techniques that can be used to estimate trends

in time series, such as linear regression, Spearman’s rho test,

Mann–Kendall test, seasonal Kendall test, and also the ap-

plication of time series models (Kundzewicz and Robson,

2004). In this work the modified Mann–Kendall test (Mann,

1945; Kendall, 1975; Hamed and Rao, 1998) was applied to

estimate monotonic trends in the SPI time series. In this ap-

proach it is assumed that the data are not serially correlated

over time. There are no assumptions related to the distribu-

tion of residuals as is the case for a linear regression.

The original Mann–Kendall test for trend is based on a

rank correlation test for the observed values and their order

in time and operates on all possible combinations of points.
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Figure 2. Comparison of mean monthly sums of precipitation calculated over the reference time period for two grid cells located close to

Białystok (NE Poland) and Wrocław (SW Poland). Black continuous lines denote observations from meteorological stations, dashed lines

denote observations from E-OBS reanalysis grid cells, red lines denote uncorrected precipitation series from the RCMs, and blue lines denote

the bias corrected precipitation series.

The Mann–Kendall test statistics S is calculated from the

following equation:

S =

n−1∑
k=1

n∑
j=k+1

sgn
(
xj − xk

)
=

 +1 if
(
xj − xk

)
> 0

0 if
(
xj − xk

)
= 0

−1 if
(
xj − xk

)
< 0

, (5)

where n is the number of observations. For independent and

randomly ordered data for large n, the S statistics approxi-

mate a normal distribution with mean E(S)= 0 and a vari-

ance equal to var(S)= n(n− 1)(2n+ 5)/18.

The significance of a trend is tested by comparing the stan-

dardized Z test statistics with the standard normal cumula-

tive distribution at a selected significance level. Positive val-

ues of Z statistics indicate a positive trend (an increasing

trend) while negative Z values indicate a decreasing trend.

The trend is statistically significant at α= 0.05 level when

the absolute value of Z is higher than 1.96.

The application of the Mann–Kendall test can be affected

by a serial correlation of data and also by seasonality effects,

as discussed by Hamed and Rao (1998). As we perform inde-

pendent analysis for each month and season, the seasonality

effect is eliminated.

To avoid problems with autocorrelation a modified Mann–

Kendall test has been developed (Hamed and Rao, 1998).

The modification allows the test to be applied to data with

serial correlation as is the case of SPI values for longer

time steps (12 and 24 months). The modified Mann–Kendall

test was used for all aggregation scales (1, 3, 6, 12, and 24

months). To account for an effect of a serial correlation the

correction ratio n/n∗S is introduced during the calculation of

a variance of the S statistics.

var∗(S)= var(S)
n

n∗S
, (6)

n

n∗S
=1+

2

n(n− 1)(n− 2)

n−1∑
i=1

(n− i)

(n− i− 1)(n− i− 2)ρS(i), (7)

where ρS is the autocorrelation function.

The slope of trend can be estimated using the Sen’s method

where the trend is assumed to be linear (Wilcox, 2005). Fol-

lowing that method, the slopes between all data pairs are cal-

culated and then the overall slope is estimated using the me-

dian of these slopes. The median value is used such that the

results are not strongly affected by outliers.

3 Results

3.1 Comparison of simulated and observed data for the

reference period

3.1.1 Seasonal pattern of precipitation

In the first step of analysis, a comparison of observed

and simulated (both uncorrected and bias corrected) aver-

age monthly precipitation for the reference period (1971–

2000) was performed. The results in the form of annual runs

for two grid cells located close to Białystok (NE (north-

eastern) Poland) and Wrocław (SW (south-western) Poland)

are presented in Fig. 2. It can be seen that uncorrected RCM

precipitation values (shown as red lines) overestimate the ob-

servations (black lines) and the observed seasonal pattern is

not reproduced. For the uncorrected data, significant differ-

ences between the RCM–GCM combinations are evident es-

pecially during the summer months. Application of bias cor-

rection leads to an improvement relative to observed values.

The bias corrected precipitation values are characterized by a

similar seasonal pattern to that of the observed values, with a

slight underestimation of monthly precipitation values rela-

tive to observed values. This is partly due to the fact that bias
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 Figure 3. Comparison of spatial patterns of relative differences [%] in the average monthly precipitation in February between uncorrected

and bias corrected data for the reference period 1971–2000.

correction was undertaken using E-OBS data rather than sta-

tion data. However, in addition, it must be remembered that

bias correction is performed on individual daily precipitation

values, rather than monthly totals. In addition, a gamma dis-

tribution is used as an approximation to the empirical dis-

tribution of values. Therefore, some differences in the final

results are to be expected.

A comparison of the spatial patterns of the difference be-

tween average monthly precipitation based on uncorrected

and bias corrected RCM data was performed, and an exam-

ple for the month of February is shown in Fig. 3. Red in-

dicates negative and small positive differences between un-

corrected and the bias corrected values, whilst blue indicates

large differences (> 200 %) after bias correction. Similari-

ties between the climate models can be observed, and in all

cases, the largest differences are found in the eastern and

north-eastern regions of Poland. Figure 3 also suggests that

the highest precipitation intensities are simulated by RCMs

driven by the ARPEGE GCM, as the largest relative discrep-

ancies shown in the figure are associated with that model.

The pattern of differences between corrected and un-

corrected values for monthly precipitation varies between

months. A comparison of the spatial pattern of residuals for

July is presented in Fig. S1 (Supplement). Generally, the dif-

ferences for July are smaller than in winter months. In the

case of summer months the RCM results are not consistent,

and significant differences in direction of changes and inten-

sities are apparent.

In addition to the comparison of mean monthly values, the

variability in the monthly precipitation during the reference

period was also analysed. The results of that comparison for

two grid cells located in the NE and SW Poland are presented

in Fig. 4. The results indicate similar tendencies in observed

and simulated data, with higher variability in monthly values

for precipitation during summer months and lower variability

during winter months. Uncorrected RCM data overestimate
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Figure 4. Comparison of standard deviation of monthly sum of precipitation calculated over the reference time period for two grid cells

located close to Białystok (NE Poland) and Wrocław (SW Poland). The black continuous line denotes observations from meteorological

stations, black dashed lines denote observations from the E-OBS reanalysis, red lines denote precipitation values from uncorrected RCMs,

and blue lines denote bias corrected RCM precipitation data.

the variability in monthly precipitation in the winter months

and underestimate it in the summer period for most of mod-

els, relative to both observed stations and E-OBS data. Cor-

rected data are characterized by similar variability through-

out the year to the observed data sets.

A comparison of the spatial pattern of differences in the

standard deviation of monthly precipitation is shown in Fig. 5

for the month of February. The outcomes indicate a similar

pattern of differences between the climate models, although

the intensities vary between the models. The pattern is sim-

ilar to those obtained for differences in mean value with the

highest differences in eastern and north-eastern regions of

Poland. The uncorrected ARPEGE model simulations again

show the largest discrepancies relative to observed values, as

indicated by large differences between uncorrected and cor-

rected data.

3.1.2 Number of wet days

The number of wet days can be important for the estima-

tion of meteorological drought. Figure 6 shows a compari-

son of the observed (E-OBS data and point measurements

at meteorological stations) and the simulated mean monthly

number of wet days for two grid cells located close to Bi-

ałystok (NE Poland) and Wrocław (SW Poland). The num-

ber of wet days simulated by climate models is significantly

different from observations, both for annual and seasonal

totals. Almost all uncorrected RCM simulations overesti-

mate the number of days with precipitation relative to ob-

servations. The largest differences are associated with the

RM51 ARPEGE climate model for the month of May for

both locations. The DMI HIRHAM5 ARPEGE model gives a

very low number of wet days in July, August, and September.

The bias corrected simulations reveal the observed annual of

mean monthly number of wet days.

Figure 6 illustrates the dependence of the simulation re-

sults on the minimum rainfall threshold. The upper diagrams,

which illustrate all of the days with precipitation, show that

most of the models simulate continuous rain of varying in-

tensity. Introducing a threshold of 1 mm (lower row in Fig. 6)

changes the seasonal pattern and makes it more comparable

with the observed number of wet days.

The derived pattern of direction and intensity of local cor-

rections for corrected and raw number of wet days is very

similar to the seasonal pattern sum of precipitation presented

in the previous section.

3.2 Future changes

Following the methodology presented in the previous sec-

tion, SPI indices were calculated on the basis of simulated

precipitation time series from the period 1971–2099. The

analysis was carried out for

– each grid cell (49× 26) excluding 108 grid cells over

the Baltic Sea;

– each climate model (6 models);

– 1-month (SPI 1), 3-month (SPI 3), 6-month (SPI 6), 12-

month (SPI 12), and 24-month (SP 24) timescales.

An example of the SPI 12 time series for raw climate data

for one grid cell located close to Białystok (NE Poland) is

shown in Fig. 7. It is seen that the results depend on the cli-

mate model considered and that for all models there is a high

degree of interannual variability.

In order to examine the influence of bias correction on the

meteorological dryness projections, the Mann–Kendall test

for trend was applied and the slope of the SPI trend was esti-

mated using Sen’s method for raw and corrected precipitation

data.

3.2.1 SPI 1

The results of trend analysis for the SPI 1 for one grid cell

located in the NE Poland close to Białystok are presented in

Table 2. This selection was made on the basis of the results
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Figure 5. Comparison of spatial patterns of differences in the standard deviation of monthly precipitation for February for uncorrected

relative to corrected RCM data for the month of February for the reference period 1971–2000.

of Liszewska et al. (2012). The largest changes in winter pre-

cipitation are projected to be in that area. On the left side of

the table outcomes of the analysis for the bias corrected data

are shown, whilst on the right side the trends for raw data

are presented. It is clear that the sign of the estimated trends

depends on the month, climate model, and whether or not

the data are bias corrected. The results for uncorrected data

in February, May, October, and November lack statistically

significant trends. In those cases the results are consistent be-

tween models. In the other months there is no consistency be-

tween models with respect to the estimated trends. According

to the estimated trends, the RCM–GCM models can be clas-

sified into wet vs. dry models. “Dry” models (e.g. ARPEGE

GCM) project a decrease in SPI values in the summer period

and no statistically significant changes in winter. The oppo-

site is true for the “wet” models (ECHAM5 and BCM), for

which an increase in SPI 1 values is projected in January and

December with no statistically significant trend in summer.

The application of bias correction slightly alters the re-

sults of the trend analyses. In this case, the DMI HIRHAM

ARPEGEs project a decrease of the SPI 1 values in April

and August using uncorrected data but does not for bias cor-

rected data. The trends in SPI 1 in February for two climate

models are statistically significant for corrected data. The re-

sults for other months are consistent for uncorrected and bias

corrected data.

The results represent one grid cell point located in north-

eastern Poland. The same analyses were carried out for all

grid cells in the analysed domain. The slopes of the estimated

trends for the SPI 1 for the time series for January are shown

in Fig. 8. It is seen that for the uncorrected data, the estimated

slope of SPI 1 (January) in the period 1971–2099 strongly

depends on the climate model and the region within Poland.

For the ARPEGE GCM, there is no statistically significant

trend across the whole of Poland. The outcomes from other

models indicate an increase in the SPI 1 values (indicating
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Figure 6. Comparison of mean monthly number of wet days with the minimum rain threshold values set to 0.1 mm (upper panels) and 1 mm

(lower panels) for the uncorrected RCM data (raw), calculated over the reference time period for two grid cells located close to Białystok

(NE Poland) and Wrocław (SW Poland). The black continuous line denotes observations from the meteorological stations, black dashed

lines denote observations from the E-OBS reanalysis, red lines denote uncorrected precipitation values from the RCMs, and blue lines denote

corrected RCM precipitation values.
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Figure 8. The results of the Mann–Kendall trend analysis for SPI 1 for January. The colour scale denotes the slope of the estimated trend.

White colour indicates a lack of a statistically significant trend.

wetter conditions), but the magnitude of the changes (as in-

dicated by the slope of the trend) and the location of areas

with or without statistically significant trends are not consis-

tent. The application of the bias correction procedure slightly

changes the results. In this case, the tendency of changes is

similar as for uncorrected data (no trend for ARPEGE model

and an increase in SPI values for BCM and ECHAM5 mod-

els). The magnitude of the changes varies between models,

but in some cases it is slightly larger than for the corrected

data.

A comparison of statistically significant trends in the SPI 1

for July is presented in Fig. 9. There are significant differ-

ences between climate models. Trend results based on the

ARPEGE climate model are characterized by a decrease in

the SPI 1 values for the whole of Poland. The ECHAM5 cli-

mate model projects a decrease in SPI 1 in the south-eastern

part of Poland but no statistically significant changes in the
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Figure 9. Results of the modified Mann–Kendall test for SPI 1 for July. Colour scale denotes the slope of the estimated trend. White areas

indicate a lack of a statistically significant trend.
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Figure 10. The differences in the percentage of grid cells with a sta-

tistically significant trend for data with and without bias correction.

rest of the country. A different tendency is seen for the trend

analysis based on the BCM climate model; i.e. an increase in

the SPI values in the north-eastern and north-western regions

of Poland and no change in other areas.

Analyses of the estimated trend for raw and corrected data

indicate similar tendency of changes with small differences

in trends in the SPI 1 values as a result of the bias correction

procedure.

To summarize the influence of the bias correction on the

estimated trends of SPI 1 values, a comparison of the num-

ber of grid cells with statistically significant trends is pre-

sented in the Supplement (Table S1). It is seen that the lat-

ter strongly depends on the month, climate model, and to a

lesser extent also on whether or not bias correction has been

applied. The total area with statistically significant trends for

the uncorrected data is the largest for analyses based on the

BCM and ECHAM5 climate models for winter months (De-

cember, January, and March) and for the ARPEGE model

in summer months (July, August, and September). The use

of bias correction slightly decreases the area with statis-

tically significant trends in summer months (June, July,

and August) and slightly increases in the other months

(Fig. 10). The largest differences are noted in September for

DMI HIRHAM ARPEGE (18.51 %) and RM51 ARPEGE

(−11.92 %), in February for KNMI RACMO2 ECHAM5

(16.04 %), in March for MPI M REMO ECHAM5 (16.04 %)

and in August for DMI HIRHAM ARPEGE (12.01 %). In

the other months the differences in the areas with statisti-

cally significant trend between raw and bias corrected data

are smaller than 10 %.

In addition to changes in the area with a statistically sig-

nificant trend for raw and corrected data also mean slope of

trend is slightly altered. The magnitude of these small dif-

ferences depends on a climate model and the month under

consideration. The highest differences were estimated for the

ARPEGE models as an effect of the highest biases of simu-

lated data; therefore, the most intense bias correction is ap-

plied in that case.

www.hydrol-earth-syst-sci.net/20/1947/2016/ Hydrol. Earth Syst. Sci., 20, 1947–1969, 2016



1960 M. Osuch et al.: Trends in projections of standardized precipitation indices in a future climate in Poland

 40 

R
aw

 d
at

a
 

   

   

C
o
rr

ec
te

d
 d

at
a

 

   

   

 

Figure 11. Results of the trend estimation using the Mann–Kendall method for the SPI 3 for the winter season (DJF). Colour scale denotes

slope of the estimated trend. White colour denotes lack of statistically significant trends.

3.2.2 SPI 3 and SPI 6

In addition to the SPI 1, the SPI 3 for four seasons (DJF –

December, January, and February, MAM – March, April, and

May, JJA – June, July, and August, SON – September, Octo-

ber and November) and the SPI 6 for two seasons, a cold one

(November–April) and a warm one (May–October), are also

analysed. The 12 maps presenting the slope of the trend for

the SPI 3 for the winter season (DJF) are shown in Fig. 11.

The outcomes for raw data presented in the upper part of

Fig. 11 indicate that the results for ARPEGE differ from

those for other climate models. According to that model, the

estimated trends are not statistically significant for almost the

whole of Poland. The other four models project an increase

in the SPI 3 values.
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Figure 12. Trend for the SPI 3 for the summer period (JJA). The colour scale denotes the slope of the estimated trend. The white areas

indicate the lack of a statistically significant trend.

The application of bias correction slightly alters the find-

ings of the analysis. In that case the results resemble the lat-

ter for uncorrected data. The differences in the projections

of climate models are preserved. As an effect of bias correc-

tion the number of grid cells with a statistically significant

trend is slightly increasing for almost all climate models ex-

cept DMI HIRHAM BCM. The slope of trend is also slightly

higher for corrected data indicating more rapid changes.

The results of the analyses for the SPI 3 calculated for the

summer season are presented in Fig. 12. The outcomes for

uncorrected data in the upper part of figure indicate signif-

icant differences between the climate models. The simula-

tions of the BCM global climate model project an increase

in the SPI values in summer, corresponding to wetter con-

ditions in the future. The other models simulate a decrease
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of the SPI, which is equivalent to an increase of a degree of

dryness.

The slope of the trend for the corrected data is statistically

significant for a larger area for three models: DMI HIRHAM

ARPEGE, DMI HIRHAM BCM, and SMHIRCA BCM, and

slightly lower for the RM51 ARPEGE and ECHAM5 mod-

els. The bias correction also influences the mean (over study

area) magnitude of changes. In the case of DMI HIRHAM

ARPEGE the mean slope of trend increases due to bias cor-

rection. Results for the other two models (MPI M REMO and

RM51 ARPEGE) show an opposite tendency – an increase in

the mean slope.

The results of the SPI 6 for the cold season (November–

April) are similar to those for the SPI 3 winter (Fig. S2). The

application of the bias correction procedure slightly changes

the outcomes obtained for the uncorrected data. There are

still large differences in the tendency of the change between

climate models.

For the warm period of the year (May–October), the es-

timated trends in the SPI 6 resemble those estimated for

the summer months (JJA). The results are not similar be-

tween models. The ARPEGE GCM once again indicates an

increase in the SPI values whilst the other climate mod-

els project a decrease. The application of bias correction

leads to an increase in the area with statistically significant

trends and the magnitude of the changes for DMI HIRHAM

ARPEGE and corresponds to drier conditions. In the case of

RM51 ARPEGE a decrease of number of grid cells with sta-

tistically significant trend and also its magnitude is achieved

as a result of bias correction.

3.2.3 SPI 12 and SPI 24

The SPI was also estimated for longer timescales. The re-

sults for the annual scale (SPI 12, values extracted for pre-

cipitation totals over the calendar year, January–December)

are shown in Fig. 13. The outcomes for the uncorrected data

indicate differences between models. The ARPEGE model

projects a decrease in the SPI values, whilst the other models

show an increase in the SPI, corresponding to wetter condi-

tions.

At the annual timescale the application of bias correc-

tion does not change the sign of the trend, but there are

differences in the area affected and the magnitude of the

changes. In the case of DMI HIRHAM ARPEGE and

MPI M REMO ECHAM5, the correction of modelling biases

leads to increases in the number of grid cells with a trend

and also an increase in the magnitude of changes. On the

other hand, the application of the bias correction procedure

to RM51 ARPEGE model simulations leads to decreases in

these factors.

The analysis of trends in the time series of the SPI 24

was also performed. Similarly to the outcomes for SPI 12,

the estimated trends differ between the climate models. The

results based on the ARPEGE model project a decrease in

the SPI values (drier conditions). The other models indicate

an increase in the SPI, corresponding to wetter conditions.

The simulations of all global climate models (the ARPEGE,

ECHAM5 and BCM) do not change the sign of the trend

when bias correction is applied, but it makes a difference in

the magnitude of the changes, leading to differences in the

number of grid cells with statistically significant trend.

3.3 Influence of bias correction on trend in

precipitation and SPI values

The results shown in the previous section indicate that the

influence of bias correction on the trends is small in compar-

ison with the variability between climate models. In order to

explain the mechanism by which bias correction influences

trends in precipitation, let us analyse a simple example of a

linear dependence of precipitation on time, for one grid cell

and 1 month:

PRCM
= βRCMt +αRCM, (8)

where βRCM and αRCM are coefficients of a linear trend.

After transformation using Eq. (3) we get

PRCM
corr = b(βRCMt +αRCM− x0)

c. (9)

Assuming c= 1 (i.e. that the relationship can be approxi-

mated as linear in our case) the equation can be simplified

to

PRCM
corr = b (βRCMt +αRCM− x0)= bβRCMt + bαRCM− bx0 (10)

and the slope of corrected time series can then be estimated

as

βcorr = bβRCM. (11)

In the simplified case, the slope of corrected time series de-

pends on the slope of uncorrected time series multiplied by

the parameter b of the transformation function. The values of

parameter b give the sign and magnitude of the biases. When

PRCM is higher than PObs the biases are positive and the val-

ues of parameter b are smaller than 1; therefore, the slope of

the trend of corrected time series is smaller than that for the

uncorrected time series. In the opposite situation with nega-

tive biases (i.e. PRCM<PObs), the values of parameter b are

higher than 1, and as a result the corrected slope is higher

than the uncorrected one.

In the case of precipitation time series, the values of these

series are non-negative; therefore, the values of parameter b

(Eq. 3) are also non-negative. These considerations lead to

the conclusion that the application of bias correction does

not change the sign of estimated trend, but its slope may be

changed. Due to changes in slope, the number of grid cells

with a statistically significant trend in the sums of precipita-

tion may also change.
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Figure 13. Trends in the SPI 12. Colour scale denotes the slope of the estimated linear trend. White areas indicate the lack of statistically

significant trend.

The bias correction also influences the trends in the SPI

values, however to a much smaller degree. The SPI is calcu-

lated by a non-linear transformation of the precipitation time

series from a gamma distribution into a standard normal dis-

tribution. An example of such relationship between monthly

sum of precipitation and SPI 1 values for DMI HIRHAM

ARPEGE model simulations for one grid cell located close

to Białystok is presented in Fig. 14. In each case (month) two

such curves are presented. The red and black curves denote

the relationship for uncorrected and corrected variables, re-

spectively.

Figure 14 shows that quite large changes in precipitation

are transformed into small changes in the SPI 1 values. The

transformation is monotonic; hence, the direction of changes

(trends) in precipitation is reflected in changes of SPI. How-

ever, due to the shape of the transformation these changes are
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Figure 14. The scatter plots showing relationship between monthly sum of precipitation and estimated SPI 1 values for one grid cell lo-

cated close to Białystok (NE Poland) for DMI HIRHAM ARPEGE model. The colour denotes type of data used, red colour – uncorrected

precipitation and SPI 1, black corrected ones.

reduced. The dependence between the values of the SPI and

precipitation shown in Fig. 14 for a specific model indicates

that a simple relationship between the SPI values based on

corrected and raw precipitation projections can be derived. In

particular, under the assumption that bias correction is quasi-

linear and follows Eq. (3) with a power parameter c= 1, the

corrected SPI is linearly related to the SPI based on raw pre-

cipitation data with correlation parameters depending on the

bias correction parameter b (Eq. 3) and normalising trans-

formation of precipitation sums into SPI values shown in

Fig. 14.

In reality, additional factors have an effect on the SPI, in-

cluding an uncertainty of distribution fitting applied in bias

correction and the SPI calculation procedures. A test of dif-

ferences between uncorrected and corrected SPI time series

was performed using the Pearson correlation coefficient. The

results of the correlation analysis for six climate models and

12 months for all grid cells are presented in Table 3. In all

cases the correlation is statistically significant at the 5 % level

and the values of the minimum Pearson correlation coeffi-

cient are above 0.8, indicating a nearly linear relationship be-

tween the indices. We also tested the dependence of relative

differences in monthly precipitation on the correlation in the

SPI values. The outcomes for all grid cells are presented in

Fig. 15. A non-linear relationship is visible for most months

and models that is statistically significant at 5 % level, ex-

cept for DMI HIRHAM ARPEGE and DMI HIRHAM BCM

in June. The strength of these dependencies assessed using

the Spearman correlation coefficient (SCC) varies from 0 up

to 0.7954 with differences between months and models. The

deviation from zero of the SCC values quantifies the influ-

ence of additional effects that include the non-linearity of the

bias correction function and uncertainty in probability distri-

bution of observed and simulated aggregated precipitation.

4 Discussion and conclusions

Potential future trends in the SPI index over the period 1971–

2099 have been analysed using a modified Mann–Kendall

test applied to precipitation time series derived from six

ENSEMBLE RCM projections. Monthly precipitation time-

series have been used for the estimation of standardized pre-

cipitation index (SPI) for multiple timescales (1, 3, 6, 12, and

24 months) at a spatial resolution of 25 km for the whole

country. In the first stage, the simulated monthly sums of pre-

cipitation for the reference period (1971–2000) were com-

pared with observed sums derived on the basis of the E-OBS

reanalysis for the same period. We also compared those sim-

ulations with bias corrected precipitation time series. Results

indicate that the uncorrected RCM time series overestimate

precipitation values and that the annual pattern of monthly

precipitation is not correctly reproduced. We also noticed

large differences between results for various RCM–GCM

combinations. The comparison of the simulated and observed

number of wet days indicated that uncorrected RCM precip-

itation time series highly overestimate the total number of

rainy days, as has been previously well established (Sunyer
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Figure 15. The scatter plots showing relationship between relative differences in the raw and corrected monthly sum of precipitation and

Pearson correlation coefficient estimated for raw and corrected SPI 1 values for all grid cells.

et al., 2015). Application of bias correction using the quantile

mapping method leads to improved precipitation values with

respect to the seasonal pattern of precipitation, monthly total

precipitation and the number of wet days, when compared

with observed values.

For the estimation of trends in the SPI, we used a modified

Mann–Kendall trend test for the SPI time series for each grid

cell, each climate model and multiple temporal aggregations

(1, 3, 6, 12, and 24 months). The choice of this approach was

dictated by its relative simplicity and robustness. Projections

of SPI values indicate a decrease in the degree of dryness

(better water availability) during the winter months and an

increase in the summer period (more water scarcity) that con-

firm findings by Bleckinsop and Fowler (2007), Liszewska

et al. (2012), Osuch et al. (2012), Rimkus et al. (2012), and

Stagge et al. (2015b). The outcomes for longer timescales

(SPI 12 and SPI 24) indicate an increasing trend in an ensem-

ble SPI 12 (similarly to Orlowsky and Seneviratne, 2013) and

considerable inter-model variability on regional and local

scales. The ARPEGE GCM-driven RCM projections show a

decrease of the SPI 12 and the SPI 24, whilst the other GCM-

driven RCMs show an increase in the SPIs, corresponding to

wetter conditions. These results confirm the general findings

of Bleckinsop and Fowler (2007) showing considerable dif-

ferences between climate model simulations. In general, our

study also confirms the results of Stagge et al. (2015b) with

some differences due to different climate models, emission

scenarios and change estimation methods applied. In partic-

ular, our selection of climate models shows larger differences

between climatic projections.

Our results indicate that the spatial pattern of the trend de-

pends on the climate model, the temporal aggregation con-

sidered and, to some extent, whether or not bias correction is

applied. Differences between the climate model projections

were found to be larger than the discrepancies introduced by

bias correction for all aggregation scales (1, 3, 6, 12, and

24 months). These results contradict findings of Maurer and

Pierce (2014) where uncertainty introduced by bias correc-

tion was found to be larger than the differences between

climate models. This could reflect differences between the

study areas, as precipitation projections for Poland are not

consistent between the different climate models. We also no-

ticed that results from the same GCM, but different RCMs,

are characterized by similar patterns of change, although this

behaviour occurs only at some temporal scales and seasons.
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Table 3. Estimated values of Pearson correlation coefficient between raw and corrected SPI time series for six climate models. A minimum

value over all grid cells is shown.

Index GCM ARPEGE ECHAM5 BCM

RCM DMI RM51 MPI M KNMI DMI SMHIRCA

HIRHAM REMO RACMO2 HIRHAM

SPI 1

Jan 0.9002 0.9043 0.9434 0.9391 0.9134 0.9059

Feb 0.8718 0.9104 0.9055 0.9252 0.8783 0.8932

Mar 0.9452 0.9341 0.9502 0.9396 0.9018 0.9551

Apr 0.9436 0.8964 0.9638 0.9589 0.8939 0.9374

May 0.9490 0.8897 0.9343 0.9680 0.9568 0.9711

Jun 0.9738 0.8544 0.9440 0.9573 0.9582 0.9173

Jul 0.9749 0.9368 0.9488 0.9698 0.9415 0.9798

Aug 0.8200 0.9513 0.9436 0.9207 0.9217 0.9614

Sep 0.8064 0.9730 0.9728 0.9619 0.9260 0.9702

Oct 0.9601 0.9386 0.9666 0.9529 0.8253 0.9028

Nov 0.9364 0.9592 0.9619 0.9591 0.9332 0.9161

Dec 0.9103 0.9492 0.9687 0.9721 0.9138 0.9532

SPI 3

DJF 0.8679 0.9344 0.9580 0.9588 0.9215 0.9157

MAM 0.9171 0.8450 0.9544 0.9542 0.9187 0.9604

JJA 0.9376 0.9105 0.9436 0.9664 0.9224 0.9592

SON 0.8758 0.9429 0.9462 0.9508 0.8788 0.9134

SPI 6
Nov–Apr 0.9014 0.9348 0.9534 0.9660 0.9214 0.9220

May–Oct 0.9077 0.9077 0.9369 0.9659 0.8874 0.9626

SPI 12
Calendar

0.8522 0.8840 0.9450 0.9514 0.8680 0.9360
year

SPI 24

Two

0.8651 0.9029 0.9411 0.9479 0.8450 0.9137calendar

years

An analysis of the impact of bias correction on the trends

in SPI values was carried out in two steps: (i) an assessment

of the effects of bias correction on the trend of aggregated

precipitation and (ii) an assessment of the effect of that trend

on the SPI values. The results of the analysis indicate that

bias correction may change the magnitude of the trend in

precipitation values but not its direction. These changes vary

throughout the year and between climate models, but spatial

patterns showing areas with a statistically significant trend

are preserved. These findings are confirmed by a theoreti-

cal investigation of the influence of bias correction on trends

in precipitation using a simple example of a linear bias cor-

rection procedure. In that case the slope of the trend of the

corrected precipitation time series is influenced by the pa-

rameters of the power relationship between uncorrected and

corrected precipitation values in the reference period.

Where the SPI values are concerned, the influence of the

bias correction has a similar character but are much reduced

in comparison with precipitation due to the normalization

procedure included in both the bias correction and the SPI

definition. The analysis of correlation between the SPI values

based on corrected and uncorrected precipitation indicates a

nearly one-to-one relationship between them. However, that

correlation decreases when the relative differences between

corrected and uncorrected precipitation increase.

The differences between SPI values for bias-corrected and

raw precipitation projections depend on the month and cli-

mate model. Those monthly differences are consistent with

the bias correction parameters (Eq. 3). The largest differ-

ences occur for months when the bias correction is the

strongest. In reality, additional factors have an effect on the

trends in the SPI that include the non-linearity of the bias

correction function and uncertainty in the probability distri-

bution of observed and simulated precipitation totals. Further

analyses of an influence of bias correction on trends in hydro-

meteorological variables are recommended.

The Supplement related to this article is available online

at doi:10.5194/hess-20-1947-2016-supplement.
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Łabędzki, L. and Kanecka-Geszke E.: Standardized evapotranspira-

tion as an agricultural drought index, Irrig. Drain., 58, 607–616,

2009.
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