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Abstract. In spite of geophysics being used increasingly, it

is often unclear how and when the integration of geophysical

data and models can best improve the construction and pre-

dictive capability of groundwater models. This paper uses a

newly developed HYdrogeophysical TEst-Bench (HYTEB)

that is a collection of geological, groundwater and geophysi-

cal modeling and inversion software to demonstrate alterna-

tive uses of electromagnetic (EM) data for groundwater mod-

eling in a hydrogeological environment consisting of various

types of glacial deposits with typical hydraulic conductivi-

ties and electrical resistivities covering impermeable bedrock

with low resistivity (clay). The synthetic 3-D reference sys-

tem is designed so that there is a perfect relationship between

hydraulic conductivity and electrical resistivity. For this sys-

tem it is investigated to what extent groundwater model cal-

ibration and, often more importantly, model predictions can

be improved by including in the calibration process electrical

resistivity estimates obtained from TEM data. In all calibra-

tion cases, the hydraulic conductivity field is highly param-

eterized and the estimation is stabilized by (in most cases)

geophysics-based regularization.

For the studied system and inversion approaches it is found

that resistivities estimated by sequential hydrogeophysical

inversion (SHI) or joint hydrogeophysical inversion (JHI)

should be used with caution as estimators of hydraulic con-

ductivity or as regularization means for subsequent hydro-

logical inversion. The limited groundwater model improve-

ment obtained by using the geophysical data probably mainly

arises from the way these data are used here: the alterna-

tive inversion approaches propagate geophysical estimation

errors into the hydrologic model parameters. It was expected

that JHI would compensate for this, but the hydrologic data

were apparently insufficient to secure such compensation.

With respect to reducing model prediction error, it depends

on the type of prediction whether it has value to include geo-

physics in a joint or sequential hydrogeophysical model cali-

bration. It is found that all calibrated models are good predic-

tors of hydraulic head. When the stress situation is changed

from that of the hydrologic calibration data, then all models

make biased predictions of head change. All calibrated mod-

els turn out to be very poor predictors of the pumping well’s

recharge area and groundwater age. The reason for this is

that distributed recharge is parameterized as depending on

estimated hydraulic conductivity of the upper model layer,

which tends to be underestimated. Another important insight

from our analysis is thus that either recharge should be pa-

rameterized and estimated in a different way, or other types

of data should be added to better constrain the recharge esti-

mates.

1 Introduction

1.1 Using hydrologic models for decision support

Groundwater models are commonly constructed to support

decision-makers in managing groundwater resources. The

model can, for example, be used to predict the impact of

changes in groundwater pumping on hydraulic head and

wellhead protection areas or to predict the fate and transport

of groundwater pollution. In general terms, process models

are used to base predictions of interest on all of the knowl-

edge that we have about the physical/chemical system and

the driving key processes. In this paper we will focus on 3-
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D models typically used for decision support on large spa-

tial scales (from tens to thousands of square kilometers) with

a heterogeneous and possibly complex geology. Determin-

istic groundwater modeling is generally used in such cases

because the model simulation time is too long to make it fea-

sible to use stochastic modeling. We will therefore mainly

focus on deterministic groundwater modeling in the follow-

ing.

A deterministic groundwater model is based on a con-

ceptual model that encapsulates prior knowledge of impor-

tant physical and chemical conditions and processes of the

complex real world system. The conceptual model is trans-

lated into a numerical groundwater model whereby its rea-

sonableness can be tested by comparing forward simulations

with field observations. If the conceptual model appears rea-

sonable, the groundwater model is calibrated by adjusting

model parameters until simulated values fit corresponding

field observations sufficiently well. The calibrated model is

subsequently used to make predictions (Reilly, 2001; Reilly

and Harbaugh, 2004). However, the prediction will be uncer-

tain for various reasons, of which we will emphasize three.

(i) Model calibration is done by fitting uncertain data. The

calibrated parameters will therefore also be uncertain and

this uncertainty is propagated to the model predictions (Hill,

1998; Moore and Doherty, 2006; Tonkin et al., 2007). A

model’s predictive uncertainty will only be reduced by cal-

ibration if the information content of the calibration data

set constrains the parameter values that significantly influ-

ence the prediction (Harvey and Gorelick, 1995; Feyen et

al., 2003; Franssen et al., 2003). Thus this source of uncer-

tainty can only be reduced by collecting more or more accu-

rate data of type(s) and location(s) that constrain parameter

values important to the prediction. The data will typically

be hydrologic or hydraulic, but they can also be geophysi-

cal. (ii) Because of scarcity and lack of sensitivity of data,

there will always be small-scale heterogeneity that cannot be

resolved. A groundwater model will therefore always con-

tain small-scale structural errors, which may not cause bias

in predictions but may still cause large prediction uncertainty

(Cooley, 2004; Cooley and Christensen, 2006; Refsgaard et

al., 2012). (iii) A model is also prone to possessing large-

scale structural errors that can cause significant bias and un-

certainty of estimated parameters and simulated predictions

(Doherty and Welter, 2010; Doherty and Christensen, 2011;

Refsgaard et al., 2012). This bias and uncertainty can be re-

duced by collecting data that resolve the large-scale struc-

tures of the studied hydrogeological system, which can then

be accurately represented in the model. These can, for exam-

ple, be spatially dense geophysical data sets.

Model errors will lead to errors and uncertainties in pre-

dictions of interest. One of the key questions to address in

creating models for decision support is the following: which

additional data are most likely to improve key predictions?

The types of data available for use in hydrologic analysis are

increasingly diverse, including physical, chemical, isotopic,

and geophysical data. In light of this complexity, it can be

very difficult to compare the likely contributions of diverse

data to model-based decision support.

1.2 Informing hydrologic models with geophysics

Over the last 3 decades, noninvasive geophysical methods

have been used increasingly to construct groundwater mod-

els (Hubbard and Rubin, 2000; Vereecken et al., 2004). This

is particularly true for data collected by airborne electromag-

netic methods (AEM) because they can be collected quickly,

densely, and at a relatively low cost for the very large spa-

tial coverage (Steuer et al., 2008; Viezzoli et al., 2010b;

Abraham et al., 2012; Faneca Sànchez et al., 2012; Refs-

gaard et al., 2014; Munday et al., 2015). Large-scale AEM

(or ground-based EM) investigations have been used to de-

lineate aquifers, aquitards, and buried valleys or other struc-

tures containing aquifers (Auken et al., 2003; Sandersen and

Jørgensen, 2003; Jørgensen et al., 2003; Abraham et al.,

2012; Oldenborger et al., 2013), to assess aquifer vulnerabil-

ity (Refsgaard et al., 2014; Foged et al., 2014), to map salt-

water intrusion (Fitterman and Deszcz-Pan, 1998; Viezzoli

et al., 2010b; Lawrie et al., 2012; Herckenrath et al., 2013b),

and to map freshwater resources (Steuer et al., 2008; Faneca

Sànchez et al., 2012; Munday et al., 2015). The main draw-

backs of electromagnetic (EM) data are (1) ambiguity in re-

lating electrical properties to hydraulic properties, and (2) re-

duced lateral and vertical resolution with depth. The former

effect can limit the quantitative use of geophysical data for

parameterizing groundwater models. The latter effect makes

identification of deep structures difficult (Danielsen et al.,

2003; Auken et al., 2008), which will have different in-

fluences on predictions that are dominated by shallower or

deeper flow paths.

Geophysical data must be related to properties or states

of hydrologic relevance to use them in constructing hydro-

logic models. Whether the geophysical data are used to de-

fine hydrostratigraphic units or subregions or to parameter-

ize the model, the data are often inverted. The way in which

hydrologic and geophysical data are inverted and integrated

can impact the extraction of information from geophysical

data (Dam and Christensen, 2003; Day-Lewis, 2005; Moysey

et al., 2005; Linde et al., 2006; Singha and Gorelick, 2006;

Singha and Moysey, 2006; Hinnell et al., 2010).

The simplest inversion approach is sequential hydrogeo-

physical inversion (SHI). In the first step of this approach,

the geophysical data are inverted independently of the hy-

drologic data or model. In the second step, the inverted geo-

physical properties are used to zonate or directly parameter-

ize the hydrologic model (Hubbard et al., 1999; Dam and

Christensen, 2003; Seifert et al., 2007; Koch et al., 2009; Di

Maio et al., 2013; Marker et al., 2015). This is based on the

assumption that the geophysical responses are sensitive to

some of the same structures and property distributions that

the hydrologic data are sensitive to. Using the SHI approach
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has built-in challenges. In the first step, the geophysical in-

versions are typically stabilized by using regularization and

smoothing constraints that do not reflect real physical con-

ditions (Day-Lewis, 2005; Linde et al., 2006; Singha and

Gorelick, 2006; Singha and Moysey, 2006). Therefore one

must be cautious when using such geophysical property es-

timates to infer hydraulic zones or property estimates to be

used in the second step of the SHI (Day-Lewis, 2005; Slater,

2007; Hinnell et al., 2010). Furthermore, with the SHI ap-

proach used in the following, the geophysical models cannot

be easily updated to conform to the hydrologic observations.

Such updating is allowed by the SHI approach of Dam and

Christensen (2003).

Two inversion alternatives to SHI are coupled hydrogeo-

physical inversion (CHI) and joint hydrogeophysical inver-

sion (JHI) (Hinnell et al., 2010). For both alternatives, the

hydrologic and geophysical data sets are inverted simultane-

ously. In CHI, the simulated response of one model (e.g., the

geophysical model) is used to constrain the other model (e.g.,

the hydrologic model). CHI has been applied successfully for

reducing parameter uncertainty by using ground penetrating

radar and electrical resistivity tomography data in hydraulic

models (Kowalsky et al., 2005; Hinnell et al., 2010). In JHI,

the hydrologic and geophysical models are coupled directly

through some of their parameters using assumed relation-

ships among the geophysical and/or hydrologic parameters

(Hyndman et al., 1994). For EM data, JHI is typically done

using a relationship between hydraulic conductivity and elec-

trical resistivity inspired by Archie’s law (Archie, 1942; Re-

vil and Cathles, 1999; Purvance and Andricevic, 2000; Slater,

2007).

Applications of sequential and joint versions of hydrologic

and geophysical data using a petrophysical relationship in

groundwater modeling have been demonstrated by Hercken-

rath et al. (2013a) and Vilhelmsen et al. (2014). Herckenrath

et al. (2013a) were comparing a SHI with JHI for a large-

scale groundwater model using ground-based EM data. Vil-

helmsen et al. (2014) were demonstrating a method for joint

inversion of aquifer test data, magnetic resonance sounding

data, and ground-based electromagnetic data. For synthetic

benchmarking, both of these studies were using a simple

model with a few layers with constant parameter values, and

they were evaluating the model performance by the means

of improved model parameter values and reduction of pa-

rameter uncertainty. However, as concluded by, e.g., Zhou et

al. (2014), the goal of groundwater model calibration is not

just parameter identification, but also to increase the model’s

prediction capability.

Petrophysical relationships between hydraulic conductiv-

ity and electrical resistivity are difficult to establish, be-

cause such translation tends to be site, scale and facies spe-

cific (Hyndman and Tronicke, 2005; Slater, 2007). Therefore

methods have been developed that do not rely on a petro-

physical relationship between a property of the geophysical

model and the property of the hydrological model. For ex-

ample, Marker et al. (2015) developed a deterministic SHI

approach where spatially dense AEM data are first inverted,

then combined with scarce lithological data from boreholes

to form a clay fraction model for the sediments of the sub-

surface (Foged et al., 2014); subsequently, cluster analysis of

electrical resistivity and clay-fraction values is used to gen-

erate one or more structural model realizations for the sub-

surface (Foged et al., 2014); finally, the structural model(s)

are used in the groundwater model that is calibrated against

hydrological data. He et al. (2014, 2015) developed a similar

methodology where the transition probability method is used

to generate the structural model realizations from borehole

data and AEM estimated resistivities. The methodologies of

Marker et al. (2015) and He et al. (2015) were both used by

them on a large spatial scale. However, the number of cali-

brated parameters was kept small by assuming hydraulic con-

ductivity to be constant within an entire deposit or structure.

The methodologies are thus stochastic in terms of generat-

ing structure but deterministic in terms of representing and

estimating property fields.

Full stochastic approaches have been developed. For ex-

ample, Ruggeri et al. (2013) developed a Bayesian simu-

lation approach to estimate the hydraulic conductivity field

from measurements of geophysical parameters. So far the

method has only been used for estimation along short profile

lines (Ruggeri et al., 2013, 2014), and the Bayesian scheme

has not yet been extended to also involve hydrological data

and groundwater modeling. Furthermore, the methodology

of Ruggeri et al. (2013) requires the existence of a petro-

physical relationship between electrical resistivity and hy-

draulic conductivity; the relationship does not need to be

known, in which case a data set of collocated measure-

ments of electrical resistivity and hydraulic conductivity is

required. An alternative Bayesian approach was presented

by Hermans et al. (2015), who integrate multiple and multi-

scale data types to falsify alternative structural models using

a stochastic search method. The methodology was demon-

strated for a field case using hydraulic head data and electri-

cal resistivity tomography to constrain a hydrological model.

Stochastic inversion approaches have been developed that in-

vert electrical resistivity (ER) and hydrological data. Irving

and Singha (2010), for example, describe a Markov chain

Monte Carlo (McMC) method to estimate a binary hydraulic

conductivity field from ER and tracer test data. As explained

by Irving and Singha (2010, p. 13), their McMC approach

is computationally expensive. Their demonstration examples

were therefore 2-D and small in scale, and application to field

data has not yet been attempted (Irving and Singha, 2010, p.

13).

In the following we therefore keep focus on use of geo-

physics in connection with deterministic groundwater mod-

eling. We particularly focus on application and comparison

of SHI and JHI when used in connection with groundwater

investigation of large domains with 3-D heterogenous hydro-

geological and geophysical systems.
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1.3 Testing the worth of using geophysics

It is intuitively clear that spatially dense geophysics can offer

valuable information for improved groundwater modeling for

decision-making. However, many important questions can be

raised. For example: how beneficial is it to collect and use

EM data in groundwater modeling for a complex 3-D hydro-

geological system? How much can be gained by using for

example JHI instead of SHI for model calibration? Are both

inversion approaches prone to leading to biased parameter

estimates or model predictions? And what model prediction

types will benefit from using EM data in connection with the

model development and calibration? The answers to these

questions will to some (large?) extent depend on the actual

hydrogeological setting as well as on what types of predic-

tion are going to be made by the groundwater model.

To provide such answers we have developed a cross-

disciplinary, flexible platform to examine the worth of geo-

physical data for improvement of groundwater model pre-

dictions in potentially complex environments. The platform

can be used to build synthetic experiments that have similar-

ity with the actual hydrogeological and geophysical systems

to be investigated, the types of data to potentially be col-

lected, and the types of models to potentially be used. The

flexibility of the platform allows easy investigation of the

data worth when using alternative data sampling and alter-

native modeling or inversion strategies. Because of the sup-

posed similarity between the synthetic and the actual sys-

tems, the conclusions from the synthetic study can be trans-

ferred to actual investigation. The platform is called HYTEB,

which is an abbreviation of HYdrogeophysical TEst-Bench.

HYTEB builds on a merge of software from different disci-

plines such as stochastic hydrogeological modeling, ground-

water modeling, geophysical modeling, and advanced highly

parameterized inversion using SHI, CHI or JHI. HYTEB can

also support examination of use of geophysics in a stochastic

groundwater modeling context (which will be demonstrated

in a manuscript in preparation).

1.4 Objectives

The paper has the following objectives. First, it will present

the important elements and steps in the use of HYTEB. Since

HYTEB and its use are interdisciplinary, the presentation

and the following case study introduce geophysicists to the

methods, challenges, and purposes of groundwater model-

ing, and groundwater modelers to some of the challenges of

using mainly electromagnetic data for groundwater model

calibration purposes. Second, HYTEB is used to examine

the worth of adding a ground-based time-domain electro-

magnetic data set to a hydrological data set when making

a groundwater model for a glacial landscape of a kind that

is typical of parts of northern Europe and North America. It

is investigated whether the worth of adding the geophysical

data depends on the type of groundwater model prediction

as well as on whether the geophysical and hydrological data

are inverted sequentially or jointly. Section 2 of this paper

describes the elements of HYTEB and how they are used,

Sect. 3 describes the case study, Sect. 4 presents the results,

while Sect. 5 makes a summary and draws conclusions.

2 The elements and concept of HYTEB

(HYdrogeophysical TEst-Bench)

Our primary objective in developing HYTEB is to provide

a synthetic environment that allows users to determine the

value of geophysical data and, furthermore, to investigate

how best to use those data to develop groundwater models

and to reduce their prediction errors. We suggest that this can

best be investigated by using a synthetic case study for which

the “generated synthetic”, in the following termed “refer-

ence”, hydrologic and geophysical systems are known and

the influences of different sources of error can be investi-

gated. We use physical and geophysical forward simulators

to generate measurements that would be collected from the

reference systems in the absence of noise. We then examine

the influence of measurement error and other sources of error

on model predictions of interest. By repeating this for differ-

ent synthetic system realizations (i.e., for different reference

systems) and for different data sets it becomes possible to

statistically quantify the worth of the various data for im-

proving the predictions of interest. The workflow of HYTEB

is shown in Fig. 1. The procedure is divided into six steps,

which will be described separately and briefly in the follow-

ing subsections.

2.1 Step 1 – Generation of geological realization

The first step is to generate a synthetic realization of the

type of geological system under study. The generation can

be made conditional on lithological data from boreholes. The

borehole data can be imaginary, a real data set, or a combina-

tion of data, hydrogeologic structure, and geostatistics. Fig-

ure 1, step 1, displays an example of a generated system con-

sisting of categorical geological deposits on a plain as well

as in a valley buried under a part of the plain. The deposits

are underlain by impermeable bedrock (not shown). Such

categorical geological settings can, for example, be gener-

ated using T-PROGS (Carle, 1999) or BlockSIS (Deutsch,

2006). The spatial discretization used for the geological real-

ization also defines the spatial discretization of the numerical

model used to simulate groundwater flow or any other pro-

cess model that a user decides to integrate into HYTEB.

2.2 Step 2 – Generation of reference groundwater

system, data set, and predictions

Using the same spatial discretization as in step 1, the second

step is to define the boundary conditions and the hydraulic

and solute transport property values for the generated geo-
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Figure 1. Workflow of the HYTEB. Each numbered dashed box marks a major step in the workflow. In parts 1 and 5 the red, yellow, blue and

green colors indicate different categories (types) of geological deposits; color variation within each category (in part 6) indicates variation in

hydraulic conductivity.

logical system. The hydraulic and solute transport proper-

ties can include, for example, hydraulic conductivity, specific

storage, and effective porosity. For categorical deposits (as

in Fig. 1) the value of each type of property will typically

vary among categories as well as within each category. Such

variation can be simulated as categorical random fields by us-

ing, e.g., SGSIM (Deutsch and Journel, 1998) or FIELDGEN

(Doherty, 2010). The generated realization of boundary and

property values is used in a numerical simulator of ground-

water flow and solute transport to simulate a set of state vari-

ables to be used in step 5 as hydrologic observations used for

model calibration; random error is typically added to these

observation data to represent all sources of noise that cor-

rupt real observations. The numerical simulator is also used

to simulate a set of predictions that are considered of particu-

lar interest to the study. We have implemented MODFLOW-

2000 (Harbaugh et al., 2000) as the numerical simulator of

groundwater flow and MODPATH (Pollock, 1994) to simu-

late solute transport by particle tracking.

In the following, the numerical simulators using the

boundary conditions and property values that represent the

system realization are called “the reference groundwater sys-

tem”, and the predictions (for example forecasts) simulated

for this system are called “reference predictions”.

2.3 Step 3 – Generation of a reference geophysical

system and data set

The third step is to define the property values of the geophys-

ical system corresponding to the geological realization gen-

erated in step 1. Like the hydraulic properties, the geophys-

ical properties can be considered and simulated as categori-

cal random fields. A geophysical property of relevance can,

for example, be the electrical resistivity of the spatially vari-

able geological deposits. For some geological systems, it is

found or assumed that there is a correlation between electri-

cal resistivity and hydraulic conductivity. In this case, the hy-

draulic and geophysical property fields must be generated to

be dependent. Various empirical petrophysical relationships

between hydraulic conductivity and electrical resistivity have

been proposed (Slater, 2007). Both positive and negative re-

lationships have been reported, and there can be significant

uncertainty in the relationship (e.g., Mazáč et al., 1985). It is

common to use a linear log–log relationship, which is given

some theoretical support by Purvance and Andricevic (2000).

Having defined the property values of the geophysical refer-

ence system, the geophysical instrument responses are sim-

ulated to produce a noise-free geophysical data set that can

be corrupted by adding method-specific and random error.

Ideally a 3-D code should be used. Codes for 3-D compu-
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tation of TEM responses have been developed (e.g., Árna-

son, 1999), but the computation is impractical and burden-

some. As a practical alternative we suggest simulating TEM

responses by a 1-D code, where the 1-D geophysical model is

created from the reference system by pseudo-3-D sampling,

that is by taking the logarithmic average of the cells within

the radius of the EM footprint at a given depth. Modeling

TEM in 1-D can be problematic in connection with mineral

exploration, but for sedimentary environments the 1-D ap-

proach should work well (Auken et al., 2008; Viezzoli et al.,

2010a). In HYTEB we use AarhusInv (Auken et al., 2014) to

simulate electromagnetic instrument responses.

In the following, the geophysical simulator using the ac-

tual realization of geophysical parameter values is called the

“reference geophysical system”.

2.4 Step 4 – Model construction and parameterization

In this step, the synthetic data are used to constrain parameter

estimation for a groundwater model of the reference ground-

water system. Each property of the real groundwater and geo-

physical systems needs to be parameterized in the groundwa-

ter model. This step thus corresponds to the construction of

a groundwater model of a real field system on the basis of

the available real data. In the synthetic case, the groundwater

model can be discretized exactly as the “reference ground-

water system” or it can use a coarser discretization. Here we

adopt the former alternative to reduce numerical discretiza-

tion error. However, this effect could be examined if it were

of interest to a particular study.

In studies of real systems, the groundwater model is often

constructed to consist of zones of uniform hydraulic proper-

ties. The subdivision into zones is typically done subjectively

by an expert on the basis of geological, hydrological, and

geophysical data (Seifert et al., 2007; Di Maio et al., 2013).

This principle can also be used to define zones of a model

of the synthetic groundwater system by using the synthetic

lithological data from boreholes used in step 1, the hydro-

logical data set generated in step 2, and geophysical models

estimated by inverting the geophysical data sets generated in

step 3. In this case, the geophysical data must be inverted be-

tween step 3 and step 4. The inverted data are used either in

step 4 to support parameterization of the groundwater model

or in step 5 for groundwater model calibration. To avoid over-

reliance on the geophysical data, it may be argued that they

should not be used in both steps 4 and 5. If the geophysical

data are used in step 4, they must be inverted before invert-

ing the hydrological data (carried out in step 5); this is an

example of sequential hydro-geophysical inversion (SHI).

An alternative parameterization approach uses the concept

of pilot points (Certes and De Marsily, 1991) to parameterize

the property fields and to let the data determine the variation

of the model property fields (e.g., Doherty, 2003). Pilot point

approaches result in a smooth property variation within the

model domain (Doherty, 2003) rather than sharp zonal pa-

rameter fields. Pilot points can be used in combination with

zones, e.g., to represent property variation within categorical

deposits.

HYTEB allows any type of parameterization, for example

zones, pilot points, or combinations hereof.

It is emphasized that in the following we use the term

“groundwater model” for a simulator that is set up, parame-

terized, and calibrated to make “model predictions” of states

occurring in the reference groundwater system. States occur-

ring in (i.e., simulated for) the reference groundwater sys-

tem are here termed “reference predictions”. The objective of

model calibration is to make the model predictions as similar

as possible to the reference predictions.

2.5 Step 5 – Calibrate the model(s)

The fifth step is to calibrate the groundwater model by us-

ing the data set produced in step 2 to estimate the model

parameters. The step may also include estimation of geo-

physical model parameters on the basis of the data sets pro-

duced in step 3. The simultaneous estimation of the hydro-

logic and geophysical parameters can be done by using ei-

ther the coupled (CHI) or joint (JHI) hydro-geophysical in-

version approaches (Hinnell et al., 2010; Vilhelmsen et al.,

2014). When the number of parameters is large compared to

the number of data, the minimization can be aided by using a

regularization technique (for example singular value decom-

position or Tikhonov regularization); see Oliver et al. (2008)

for an overview.

2.6 Step 6 – Simulate model predictions, then repeat

steps 1–6

After successful calibration, the groundwater model is used

to make model predictions equivalent to the reference predic-

tions of step 2. (A prediction is a state variable different from

the calibration data, for example a forecast.) For each predic-

tion, this produces one value computed by a calibrated model

that can be compared with the equivalent reference value. It is

not possible to make a meaningful inference about a model’s

ability to make a specific prediction from just one experi-

ment. To test the reproducibility of the experiment, steps 1 to

6 need to be repeated a number of times. Each repetition in-

volves generation of a new realization of the geological sys-

tem and the corresponding reference groundwater and geo-

physical systems, new data sets (i.e., new reference systems),

model calibration, and predictions. The number of repetitions

should be sufficient to provide a basis for making a consistent

statistical inference on the model prediction results.

2.7 Step 7 – Evaluate model prediction results

When steps 1 to 6 have been completed, an ensemble of

pairs of model prediction and equivalent reference predic-

tion is plotted to evaluate the model performance. As dis-

cussed by Doherty and Christensen (2011), if the plotted
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data do not scatter around the identity line, it indicates bias

in the model prediction. If the intercept of a regression line

through the scatter of points deviates from zero, it indicates

consistent bias in the prediction due to consistent errors in

null space parameter components omitted from the param-

eterized groundwater model; if the slope of the regression

line deviates from unity, it indicates parameter surrogacy in-

curred through model calibration (see Doherty and Chris-

tensen (2011) for further explanation).

Ultimately, calibrated models are used to make predictions

of interest. These predictions are generally in the future and

may describe the response of the system to alternative man-

agement actions. The calibrated model, or model ensemble,

can be used to predict future hydrologic responses to near-

term actions, thereby providing information critical to in-

formed decision-making. Increasingly, these decisions con-

sider both the accuracy (bias) and the uncertainty of model

predictions in a probabilistic framework (Freeze et al., 1990;

Feyen and Gorelick, 2005; Nowak et al., 2012).

3 Demonstration model

We demonstrate the use of HYTEB through a synthetic case

focusing on making three types of model predictions that

are commonly useful for groundwater management: (i) hy-

draulic head; (ii) head recovery and change of groundwater

discharge related to abandoning pumping from a well; and

(iii) the recharge area and the average age of groundwater

pumped from that well. The synthetic demonstration model

used here is, to a large degree, inspired by the model of Do-

herty and Christensen (2011). The hydrogeological setting of

the model domain is typical for large areas of northern Eu-

rope and North America: a glacially formed landscape with

a buried tunnel valley eroded into impermeable bedrock (fat

clay) with very low electrical resistivity (Wright, 1973; Pi-

otrowski, 1994; Clayton et al., 1999; Jørgensen and Sander-

sen, 2006). The case is designed to have a perfect relation-

ship between hydraulic conductivity and electrical resistiv-

ity. This is chosen to make a best possible case for resolving

change of lithology and change of hydraulic conductivity in-

ferred from of electrical resistivity. The deposits above the

bedrock are glacial of different types. For the sake of clarity,

the synthetic model will be described in the section below,

and the exceptions and changes from the setup of Doherty

and Christensen (2011) will be highlighted. Each HYTEB

step will be presented in order following Fig. 1.

3.1 Generation of geological system realizations

(Step 1)

The domain is rectangular, 7 km north–south (N–S) and 5 km

east–west (E–W). It is capped by 50 m of glacial sediments

deposited as gently N–S elongated layered structures com-

posed of sand, silt or clayey till. The bedrock consists of

Figure 2. A map of locations of boreholes, a pumping well, geo-

physical data, pilot points, predictions of interest and location of a

geological cross section. (The positions of the pilot points and geo-

physical measurements are coincident.)

impermeable clay with a horizontal top surface in most of

the catchment, but a 150 m deep and 1500 m wide valley has

been eroded into it in the central part of the domain (Doherty

and Christensen (2011) used a 1000 m wide valley). The val-

ley has sloping sides with an angle of approximately 17◦ and

runs in the N–S direction from the coast and 5 km inland (Do-

herty and Christensen (2011) used a steeper 21◦ slope). The

valley is filled with glacial sediments deposited in highly N–

S elongated layered structures consisting of gravel, sand, silt

or clayey till. The exact stratigraphy is only known at the lo-

cations of 35 synthetic boreholes of varying depth (Fig. 2).

This borehole stratigraphy was used to condition all gener-

ated geological system realizations.

Realizations of the 3-D geological model were generated

on a uniform rectangular grid. The cells of the grid have hori-

zontal dimensions of 25 m× 25 m and 10 m thickness, so the

overall dimensions of the grid are (nx , ny , nz)= (200, 280,

20), giving a total of 1 200 000 cells. The categorical deposi-

tional geology of the 3-D model grid was simulated using T-

PROGS (Carle, 1999). The proportions and mean lengths for

the different categories of sediments are provided in Table 1.

The bedding is represented as a maximally disordered sys-

tem using “maximum entropy” transition frequencies (Carle,

1999).

A total of 1000 geologic system realizations were gener-

ated. These categorical realizations were all conditioned on

the same stratigraphy for the 35 boreholes, but are otherwise

independent. Figure 3 shows one of these realizations.
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Table 1. Geostatistical parameters for stochastic hydraulic field employed by the hydraulic reference model. K is for hydraulic conductivity

(ms−1),R is for recharge (ms−1) to the groundwater model, and phi for porosity. µ is mean value to the log10 ofK , a is range for small-scale

variability, and σ 2 the sill. The semivariograms are exponential.

log10 (K) log10 (R) log10 (ϕ)

Category µ a σ 2 µ a σ 2 µ a σ 2

Gravel −3.00 200. 0.0227 −8.20 200. 0.007752 −0.60 200. 0.000428

Sand −4.00 200. 0.0227 −8.20 200. 0.007752 −0.60 200. 0.000428

Silt −6.00 200. 0.0227 −8.60 200. 0.007752 −0.74 200. 0.000428

Clay −7.00 50. 0.122 −8.82 50. 0.007752 −1.00 50. 0.000428

Figure 3. Hydraulic conductivity field for one of the model realizations. (Red shades are for gravel, yellow for sand, green for silt, and

cyan/blue for clay.)

3.2 Reference groundwater system, data, and

predictions (Step 2)

The groundwater system is bounded to the south by a

large freshwater lake (specified head), while the other lateral

boundaries are closed (no flux). The flow is steady state and

driven by recharge caused by the difference between precip-

itation and evapotranspiration. The local recharge depends

on the type of sediment at the surface (because this is as-

sumed to influence evapotranspiration). Most of the ground-

water discharges into the lake directly from the subsurface,

but approximately 35 % discharges into a straight stream run-

ning 3.5 km inland S–N in the middle of the domain from

the southern boundary (coast). (The setup used by Doherty

and Christensen (2011) did not include a stream.) Further-

more, groundwater is pumped from a deep well located in

the south–central part of the buried valley. The well is lo-

cated at x = 2487.5 m and y = 1912.5 and the pumping rate

is 0.015 m3 s−1. The well screens the deepest 10 m of the val-

ley in a laterally extensive body of sand and gravel.

Within each category of sediment, the hydraulic conduc-

tivity varies as a horizontally correlated random field. The

same is the case for porosity and recharge. The random fields

were generated by FIELDGEN (Doherty, 2010) using the se-

quential Gaussian simulation method (Deutsch and Journel,

1998) with the geostatistical parameters given in Table 1.

3.2.1 Hydrological data set

All 35 boreholes have been constructed as monitoring wells;

each well screens the deepest 10 m (deepest cell) of sand

registered in the borehole (Table 2; Fig. 2). For each real-

ization, groundwater flow was simulated as confined using

MODFLOW-2000 (Harbaugh et al., 2000). The correspond-

ing set of values for the hydrological observations, consist-

ing of hydraulic head in the 35 wells and the river discharge,

were extracted from the MODFLOW-2000 output. Indepen-

dent Gaussian error with zero mean and 0.1 m standard devi-

ation was added to the true head values to produce the head

observations. Gaussian error with zero mean and a standard

deviation corresponding to 10 % of the true river discharge

was added to the discharge to produce the stream flow obser-

vation used for model calibration.
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Table 2. Location and screened layer of boreholes with head mea-

surements for model calibration.

Location

Borehole X(m) Y (m) Screened layer

well_1 3692 6100 4

well_2 2375 5824 8

well_3 850 5662 4

well_4 4308 5602 3

well_5 2717 5570 6

well_6 1201 5550 4

well_7 2144 5477 8

well_8 2384 5006 16

well_9 2634 4830 14

well_10 1174 4583 3

well_11 4243 4506 4

well_12 2708 4330 15

well_13 2375 4127 19

well_14 1155 3905 3

well_15 2616 3720 20

well_16 2394 3637 19

well_17 4073 3565 4

well_18 2828 3498 12

well_19 2140 3421 10

well_20 2412 3184 20

well_21 665 3042 4

well_22 2311 2823 13

well_23 2884 2379 6

well_24 2421 2231 20

well_25 1460 2064 5

well_26 2506 2024 20

well_27 2611 1990 18

well_28 2468 1750 20

well_29 2893 1741 9

well_30 4255 1632 4

well_31 2542 1482 20

well_32 2357 1047 5

well_33 900 705 5

well_34 2838 649 11

well_35 2384 400 12

3.2.2 Reference predictions

Collecting and using new geophysical data is likely to con-

strain some groundwater model parameters more than others.

Different predictions of interest will have different sensitivi-

ties to different model parameters. As a result, the addition of

geophysical data for groundwater model calibration is likely

affect the error of model predictions differently. To illustrate

this, we present seven types of predictions of interest in Ta-

ble 3.

Prediction types 1 to 3 relate to steady-state flow condi-

tions with groundwater being pumped from the deep well in

the buried valley. This is the same situation for which the

hydrological data set was generated. Type 1 concerns head

prediction at ten locations (Fig. 2 and Table 4). Type 2 is the

size of the recharge area of the pumping well. Type 3 is the

average age of the groundwater pumped from the well.

Prediction types 4 to 7 relate to a new steady-state long

after pumping from the well has been stopped. Type 4 is head

recovery at the ten locations given in Fig. 2 and Table 4. Type

5 is the travel time of a particle flowing with the groundwater

from the location where it enters the system at the northern

domain boundary (x = 2500, y = 6975.5, z= 0) until it exits

the system either into the lake (at the southern boundary) or

into the stream. Type 6 is the relative location of the exit point

of that particle defined as the Euclidean distance between the

reference and the model predicted endpoint in a 3-D space.

Type 7 is groundwater discharge into the stream.

The prediction types 1, 4 and 7 were simulated by

MODFLOW-2000 (Harbaugh et al., 2000). The other pre-

diction types were simulated by forward particle tracking us-

ing MODPATH version 5 (Pollock, 1994) and MODFLOW-

2000 results. Types 5 and 6 were simulated by tracking a

single particle with MODPATH. Types 2 and 3 were simu-

lated by placing particles in a horizontally uniform 25 m grid

at the surface (i.e., releasing one particle at the surface at

the center of each model cell) and tracking them forward in

time until they reached either the river, the southern bound-

ary, or the pumping well. Each particle represents an area

of 25× 25 m2. The number of particles ending in the pump-

ing well thus defines the well’s recharge area. The average

groundwater age is computed as the weighted average of the

travel time for all of the particles captured by the well. The

weight for a particle is calculated as the recharge rate (in

m3 s−1) from the 25× 25 m2 surface area represented by the

particle divided by the pumping rate. This sum of all weights

adds to one because water only enters the model through the

uppermost layer.

3.3 Reference geophysical system and data – Step 3

In the demonstration example, the geophysical property of

interest is electrical resistivity of the subsurface. For simplic-

ity it is assumed that there is a perfect relationship between

hydraulic conductivity and electrical resistivity. The relation-

ship is of the form

log10 (K)= β1+β2 · log10 (ρ), (1)

where K is the hydraulic conductivity (m s−1) derived from

resistivity, ρ is the electrical resistivity (ohm-m), and β1 =

log10

(
1e−12

)
and β2 = log10 (4) are empirical shape factors

that are constant within the model domain. The shape factor

values reflect conditions where, for example, clay has low

electrical resistivity and also low hydraulic conductivity, and

sand has high electrical resistivity and high hydraulic con-

ductivity. Equation (1) was used to compute the resistivity

within each cell of the geological system from the corre-

sponding cell hydraulic conductivity.

Using a perfect relationship to generate resistivity from

hydraulic conductivity must be characterized as the ideal
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Table 3. Different types of model predictions with and without a pumping well.

With pumping (the flow situation when calibrating ) Without pumping

1. Head at 10 locations 4. Head recovery at 10 locations

2. Recharge area 5. Particle travel time

3. Average groundwater age 6. Relative particle endpoint

7. River discharge

Table 4. Head and head recovery prediction points and screened

layer.

Location

Head pred. point X(m) Y (m) Screen

pred_1 2500 5100 5

pred_2 900 2000 4

pred_3 1025 5600 5

pred_4 4100 5825 4

pred_5 2580 3975 15

pred_6 2260 5650 5

pred_7 1600 3650 5

pred_8 2606 1950 19

pred_9 2464 2128 20

pred_10 2505 1615 15

case because in this case electrical resistivity data can be ex-

pected to provide maximal information about hydraulic con-

ductivity. In practice, when possible, estimation of hydraulic

conductivity from electrical resistivity is usually based on

a site-specific noisy linear log–log relationship (see, e.g.,

Mazáč et al., 1985; Revil and Cathles, 1999; Purvance and

Andricevic, 2000; Slater, 2007), which has been found to be

a positive relationship in some cases (Urish, 1981; Frohlich

and Kelly, 1985), and a negative relationship in other cases

(Worthington, 1975; Heigold et al., 1979; Biella et al., 1983).

3.3.1 Geophysical data set

It is assumed that measurements of the geophysical system

are conducted at 77 uniformly distributed locations within

the domain (Fig. 2) using a ground-based time-domain elec-

tromagnetic system (TEM). It is assumed that the TEM sys-

tem uses a receiver loop centered inside a 40× 40 m2 square

transmitter loop. Measurements are gathered from about 10

to 10 ms using a steady current of 20 Ampere, which gives a

magnetic moment of 32 000 Am2 that, for the studied envi-

ronment, would provide a penetration depth of around 250 m

(Danielsen et al., 2003). For this system the electromagnetic

field is propagating downwards and outwards like smoke

rings increasing with depth at an angle of approximately 30◦

(West and Macnae, 1991). In other words, the sounding loses

resolution with depth because of its increasing footprint. In

the following, we use the AarhusInv 1-D simulation code

(previously called em1Dinv; Auken et al., 2014) to simulate

the geophysical responses. To mimic the loss of resolution

with layer depth, we use the logarithmic average resistivity

of all model cells inside the radius of the footprint at a given

depth. To obtain the geophysical data set, the simulated data

were contaminated with noise consisting of (i) Gaussian 3 %

noise contribution and (ii) “background” contribution with a

value of 3 nV m−2 according to the noise model suggested

by Auken et al. (2008). The noise-perturbed data were sub-

sequently processed as field data (Auken et al., 2009).

3.4 Model construction and parameterization (Step 4)

The groundwater model uses the true boundary conditions

except that recharge is to be estimated together with hy-

draulic conductivity. Because the reference groundwater and

geophysical systems were generated with correlation be-

tween hydraulic conductivity and electrical resistivity, the

hydraulic conductivity is parameterized by placing pilot

points in each of the 20 layers at the locations where a geo-

physical sounding has been made. However, pilot points are

excluded at depths of the impermeable bedrock. The number

of pilot points used for hydraulic conductivity therefore totals

550 (Fig. 2). Kriging is used for spatial interpolation (here us-

ing the correct correlation lengths) from the pilot points to the

model grid. This kind of parameterization creates a smooth

transition in hydraulic conductivity that may seem problem-

atic to use in the current case where there are “categorical”

(lithological) shifts in the reference fields. However, because

the property contrasts between categories are so large and the

geophysical data and the pilot points so many, it is expected

that the categorical shifts in property value can be fairly well

resolved by the used interpolation.

Recharge is parameterized by assuming a linear log–log

relationship between recharge and hydraulic conductivity of

the uppermost layer. The two shape factors of the log–log re-

lationship are chosen as parameters to be estimated; they are

assumed to be constant within the model domain. The total

number of parameters for estimating recharge from hydraulic

conductivity is thus two.

Electrical resistivity is sensitive to porosity, but that is

not incorporated in the relationship within the present work.

Therefore porosity cannot be estimated from the hydrologi-

cal and geophysical data available here, we always use the

reference porosity field for making model predictions. A

geophysical model is set up for every location of the 77

Hydrol. Earth Syst. Sci., 20, 1925–1946, 2016 www.hydrol-earth-syst-sci.net/20/1925/2016/



N. K. Christensen et al.: Testing alternative uses of electromagnetic data 1935

TEM soundings. Each geophysical model is parameterized

to have a fixed number of layers equal to 1 plus the num-

ber of groundwater model layers above the bedrock; the lay-

ers above the bedrock all have a fixed 10 m thickness, while

the bedrock is assumed to be of infinite thickness. The esti-

mated parameters of the model are the resistivity within each

model layer. The total number of parameters for the 77 geo-

physical models is thus 627. The model responses were sim-

ulated using AarhusInv neglecting lateral heterogeneity. In

other words, the inverse model is 1-D, following the state of

practice (Viezzoli et al., 2010a; Auken et al., 2014).

3.5 Model calibration by inversion (Step 5)

Calibrations of geophysical and groundwater models are

conducted independently. However, for our demonstration

problem, we want to explore the amount of “hydraulic” in-

formation contained within the geophysical data set. We will

do this by applying three different calibration methods.

3.5.1 Three calibration methods

Method 1 estimates groundwater model parameters on the

basis of hydrologic data only (HI). This estimation involves

constrained minimization of the misfit between model-

simulated responses and the equivalent observation data.

This misfit is quantified by the measurement objective func-

tion

8m = n
−1
h

nh∑
i=1

(
hobs,i −hsim,i

σh,i

)2

+ n−1
r

nr∑
i=1

(
robs,i − rsim,i

σr,i

)2

, (2)

where hobs and hsim are observed and corresponding simu-

lated hydraulic heads; robs and rsim are observed and corre-

sponding simulated river discharge; σh and σr are the noise

levels (standard deviations) for the head and discharge data,

respectively; nh and nr are the number of head, discharge

observations, respectively. However, Eq. (2) cannot be min-

imized uniquely because the number of groundwater model

parameters (552) is larger than the number of measurements

(36). Method 1 therefore relies on minimization of the regu-

larized objective function

8t =8m+µ ·8r, (3)

where φt is the total objective function, φm is the measure-

ment objective function given by Eq. (2), µ is a weight fac-

tor, and φr is a Tikhonov regularization term. Here, φr is de-

fined as preferred difference regularization, where the pre-

ferred difference between neighboring parameter values is

set to zero. The regularization weight factor, µ, is iteratively

calculated, based on a linearized model approximation, dur-

ing each optimization iteration making φm equal to a user

specified target value (for details, see Doherty, 2010). In this

case, for φm defined by Eq. (2), the target value is set to 2 (in-

dicating that the fitted data residuals correspond to the data

noise levels).

Method 2 is joint hydrogeophysical inversion (JHI). For

JHI, the hydrological model and the geophysical models are

set up separately, but hydrological and geophysical parame-

ters (hydraulic conductivity and electrical resistivity at the pi-

lot points) are estimated simultaneously by minimization of

a joint objective function where the regularization term uses

an assumed relationship between electrical resistivity and hy-

drological conductivity (Herckenrath et al., 2013a). The min-

imized objective function is of the same form as Eq. (3), but

the measurement and regularization terms are different. For

Method 2 the measurement objective function is defined as

8m,joint = n
−1
h

nh∑
i=1

(
hobs,i −hsim,i

σh,i

)2

+ n−1
r

nr∑
i=1

(
robs,i − rsim,i

σr,i

)2

+ n−1
tem

ntem∑
i=1

(
Vobs,i −Vsim,i

σtem,i

)2

, (4)

where nTEM are of TEM observations, respectively. The first

two terms on the right hand side of Eq. (4) are identical to the

terms in Eq. (2). The values of Vobs and Vsim are observed and

corresponding simulated decay data from TEM. Finally, σtem

is the noise level for the TEM data. Each of the three terms

on the right hand side of Eq. (4) is divided by the number

of respective measurements to promote a balanced weight

among the three data sets. The regularized objective term for

the joint approach is also preferred differences, now defined

as

8r,joint = µ ·

nkpar∑
i=1

(
log10

(
Kjoint,i

)
− log10

(
Kmf,i

))2
. (5)

In Eq. (5),Kmf,i is the estimate of the hydraulic conductivity

at the ith pilot point of the groundwater model;Kjoint,i is also

an estimate of hydraulic conductivity but inferred from the

estimated electrical resistivity at the same depth and location

by using Eq. (1). In this case, the target value of φm,joint is set

equal to 3.

Method 3 is sequential parameter estimation (SHI) mod-

ified from by Dam and Christensen (2003). First, the geo-

physical model parameters (electrical resistivities) are esti-

mated on the basis of the geophysical data. Secondly, the

groundwater model parameters are estimated on basis of the

hydrologic data as well as the resistivity estimates that are

used as regularizing prior information on the hydraulic con-

ductivity. In the first step, the geophysical inversion is done

as “smooth model” inversion (Constable et al., 1987). This

means that each geophysical model has fixed 10 m layer

thicknesses, while the resistivity within the layers is esti-

mated. The 77 1-D models are inverted independently using

AarhusInv (Auken et al., 2014), but vertical constraints were

used to stabilize the inversion of each 1-D model (Consta-

ble et al., 1987). In the second step, the estimated electrical

resistivities are used to constrain the subsequent hydrologic

inversion, which is carried out as minimization of Eq. (3)

where the measurement objective function φm is defined by
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Eq. (2), while the preferred difference regularization term is

defined by

8r,seq = µ ·

nkpar∑
i=1

ωi
(
log10

(
Kseq,i

)
− log10

(
Kmf,i

))2
. (6)

As in Eq. (5), Kmf,i is the hydraulic conductivity at the

ith pilot point of the groundwater model; Kseq,i is the hy-

draulic conductivity at the pilot point calculated from the cor-

responding resistivity, estimated in the first step of Method

3, by using Eq. (1). In Eq. (6), ωi is a weight that can be

varied between the terms of the summation in Eq. (6). The

results presented in the following were obtained by using a

weight of 1.0 for all preferred differences. We also tried us-

ing weights determined as ωi = (β2V (ρi))
−1 where V (ρi)

is the variance of the log-resistivity estimate used to compute

log10

(
Kseq,i

)
. Changing the weights did not change the es-

timation results much; some prediction errors did decrease,

others increased, but we found no general improvement by

using ωi = (β2V (ρi))
−1 instead of the simple choice ωi = 1.

For the studied case the problem is that the hydrological data

have low sensitivity to the hydraulic conductivity distribu-

tion within the deepest part of the buried valley, which is also

where the resistivity estimates are most uncertain. Therefore,

weighting in Eq. (6) will have very little influence on the hy-

drological inversion result for the deepest part of the valley;

this mainly depends on the choice of initial parameter val-

ues. Similarity is seen by a comparison of JHI-H and JHI-G

results in Fig. 5. Choice of weights can be important in other

cases, for example, that of Beaujean et al. (2014). For method

3, the target value of φm is set equal to 2.

For all three methods, the objective function is minimized

iteratively by the modified Gauss–Newton method. This in-

volves recalculation of the sensitivity matrix for each itera-

tion, which is time consuming due to the large number of

model parameters.

3.5.2 Initial parameter values

We did the following to investigate how much the choice of

initial parameter values influences the parameter estimates

obtained by the three inversion approaches.

For method 1 (HI), we ran two inversions. In the first run,

termed HI-T, we used the reference (true) hydraulic conduc-

tivity values at each pilot point as initial values. We acknowl-

edge that this is not a realistic occurrence, but it is done as

a control to show the supposedly best possible outcome of

HI. In the second run, termed HI-H, we assumed a homo-

geneous initial hydraulic conductivity field with K equal to

1×10−6 m s−1, which is equal to the true mean value of silt.

For method 2 (JHI), we ran three inversions. In the first

run, termed JHI-T, we used the reference (true) parameter

values for hydraulic conductivity and electrical resistivity

at the pilot points. As above this is done to show the sup-

posedly best possible outcome of JHI. In the second run,

termed JHI-H, we used a constant hydraulic conductivity of

1×10−6 m s−1 and a constant electrical resistivity of 40 ohm-

m at the pilot points. In the third run, termed JHI-G, we first

ran independent geophysical inversions (one for each sound-

ing location) using a homogeneous half space of 40 ohm-m

as the starting model. The resulting estimates of electrical re-

sistivity were subsequently used as initial parameter values

for JHI-G at the resistivity pilot points, and they were used

together with relation (1) to produce the JHI-G initial values

of hydraulic conductivity at the hydraulic conductivity pilot

points.

For method 3 (SHI), we present results from only one in-

version sequence, termed SHI-G. First we ran the indepen-

dent geophysical inversions using a homogeneous half space

of 40 ohm-m as the initial model. Subsequently we used the

estimated resistivities together with relation (1) to produce

the initial values for hydraulic conductivity at the pilot points

that were used for the hydrologic inversion carried out in step

two of SHI-G. (As for JHI, we also tried using an initially

homogeneous hydraulic conductivity field for SHI; this gave

a more blurred estimated hydraulic conductivity field than

what is presented later. So, like is shown later for JHI, the

result of SHI was found to depend on the choice of initial

parameter values.)

3.5.3 Inversion software

The objective functions were minimized using BeoPEST, a

version of PEST (Doherty, 2010) that allows the inversion to

run in parallel using multiple cores and computers. We used

a new version of BeoPEST modified by John Doherty par-

ticularly for our purpose to do gradient-based minimization

involving several models with each of their parameters; thus,

the modified BeoPEST exploits the fact that different parts of

the sensitivity matrix can be calculated by running just one

of the models. However, for method 3, the geophysical data

were inverted using AarhusInv (Auken et al., 2014).

3.6 Picking 10 realizations

For this demonstration, the computational burden would be

overwhelming if the entire HYTEB analysis was to be car-

ried out for each of the 1000 system realizations. We there-

fore sought a way to reduce the number of models to just 10

that would maintain a representative diversity of models. The

strategy we used to down sample from 1000 realizations to

10 was as follows.

We first decided to group the models based on the pre-

dictions of interest. It would be reasonable to group models

based on other characteristics, such as underlying conceptual

model, or zonation, or imposed boundary conditions. How-

ever, we contend that for both practical and scientific appli-

cations, it is more often the predictions of models that are

of primary interest than the structure or parameterization of

the models. We began by creating an ensemble from the 25
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Figure 4. Measurement objective function value obtained for the various groundwater model calibration cases and for the 10 different system

realizations. The two dashed lines in the top plot indicate the target value for the various model calibrations: the upper dashed line is the

target value for the JHI, and the lower dashed line is the target value for HI and SHI. The dashed line in the three lower plots similarly marks

the respective target value.

predictions of interest listed in Table 3 over all 1000 real-

izations. We then used k-means clustering to group the pre-

diction sets into 10 clusters within this prediction space. Be-

cause the units of the predictions varied, all predictions were

whitened, or normalized, before clustering. For stability, we

ran 1000 repetitions of the clustering to minimize the effects

of initial cluster selection. Once the clusters were defined,

we identified the prediction set that was closest to the cen-

troids. This resulted in ten models that broadly represent the

range of model behaviors, including both the range of each

prediction and the correlations among predictions.

4 Results

4.1 Model calibration

Figure 4 shows the measurement objective function value,

8m, obtained for the various groundwater model calibration

cases and for the 10 different system realizations. It also

shows the separate terms of the objective function. We aimed

at using weights that would make each term contribute by a

value of approximately 1.0. For HI and SHI there are two

terms, quantifying fit to head data and fit to the flux measure-

ment, respectively; the results in Fig. 4 show that the head

data are fitted as intended, while the flux measurement is fit-

ted more closely than intended. This fitting picture is also

seen for JHI. JHI tends to produce a better fit to the hydro-

logic data than HI and SHI.

For JHI the objective function (4) has a third term quan-

tifying the fit to decay data of the TEM measurements. Fig-

ure 4 indicates that the actually used weighting for JHI ended

by producing a slightly better fit to the hydrologic data than

to the TEM data. It also shows that for JHI the fit to the

hydrologic data is not strongly dependent on the choice of

initial parameter values; JHI-T for example did not always

produce better fits than JHI-G or JHI-H. That JHI-T, JHI-

G, and JHI-H lead to different fits (and different parameter

estimates) shows that the JHI minimization problem is non-

unique.

For two realizations HI-T produced much a worse fit to the

hydrologic data than HI-H (Fig. 4): the HI-T minimization

got stuck at a local minimum where a parameter adjustment

improving the fit to head deteriorated the fit to the flux mea-

surement. We did not investigate whether PEST parameters

could have been set differently to overcome this problem.

4.2 Estimated hydraulic conductivity fields

Figure 5 shows the reference hydraulic conductivity fields of

the uppermost six layers and a representative cross section

for one of the 10 chosen system realizations. It also shows
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Figure 5. Reference and estimated hydraulic conductivity fields for model realization number 189: (a) shows the fields for layers 1 to 6;

(b) shows the field along an east–west cross section in the middle of the domain.

Figure 6. Pilot-point-by-pilot-point scatterplot of reference versus

estimated hydraulic conductivity for the six inversion runs. Black

dots are estimated parameter values from the capping part of the

model, while the red dots are estimated parameter values within the

buried valley.

the corresponding estimated hydraulic conductivity fields ob-

tained by six different inversion runs. The figure can thus

be used to visually compare the estimated hydraulic con-

ductivity fields and to judge whether they resolve the struc-

tures of the reference system. Figure 6 shows corresponding

pilot-point-by-pilot-point scatterplots of reference versus es-

timated hydraulic conductivity. Except when noted specifi-

cally, the results in Figs. 5 and 6 for this realization are typi-

cal for all 10 chosen system realizations.

The second and third rows of Fig. 5 show results for the

two hydrologic inversion (HI) runs. Inversion HI-T, which

used true (reference) parameter values as initial values, pro-

duces very blurred hydraulic conductivity fields. This is

caused by the used Tikhonov regularization constraint that

guides the inversion to estimate a field as smoothly as pos-

sible while still fitting the calibration data. The estimated

field for layer 1 has some structural similarity to the refer-

ence field, but the estimated values vary much less than the

reference values. Similar results are seen for layers 2 to 5,

while structure has disappeared from the deeper layers repre-

senting the deposits in the buried valley. Similar results were

achieved for three other realizations. For the remaining six

realizations HI-T produced very blurred hydraulic conduc-

tivity fields for all model layers, having essentially no resem-

blance to the structure of the reference fields. The third row

of Fig. 5 illustrates that for inversion HI-H, which used ho-

mogeneous initial hydraulic conductivity fields, there is al-

most no structural similarity between the estimated and ref-

erence hydraulic conductivity fields, and for most layers the

estimated field appears to be almost homogeneous. However,

the cross sections show that the structure with high hydraulic

conductivity in the bottom of the buried valley is resolved

to some degree by both HI-T and HI-H. Figure 6 shows that

both HI-T and HI-H underestimate hydraulic conductivities

for high-permeability deposits (sand and gravel) but overesti-
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mate them for low-permeability deposits (silt and clay). For

HI-H, the range of estimated conductivities is the same for

high-permeability and low-permeability deposits. For HI-T,

there is a small difference between the two ranges – they are

slightly shifted in the correct directions compared to HI-H.

The fourth row of Fig. 5 shows hydraulic conductiv-

ity fields estimated by the sequential geophysical approach

(SHI-G). For the upper layers, the true (reference) structures

can be recognized, but the resolution decreases with depth.

The cross section shows that the true structures of the up-

per five layers can be identified to some degree from the es-

timated fields. Because of loss of resolution, the structures

cannot be identified inside the buried valley. Figure 6 shows

that for low-permeability deposits, the range of estimated

log-hydraulic conductivities is twice as large as the reference

range of values, and the horizontal scatter around the iden-

tity line is considerable. For high-permeability deposits, the

range of estimated values is much larger than the range of

reference values, and the estimated values tend to be orders

of magnitude too small (Fig. 6). This happens because the

resistivities estimated from the TEM data in the first step of

the SHI scheme often turn out to be too small if the resis-

tivity at depth is high. This is a well-known result from the

fact that the sensitivity of TEM data with respect to layers

of high resistivity reduces with depth, which causes prob-

lems of equivalence for the geophysical models. (This has

been demonstrated and discussed by Auken et al. (2008) for

a similar type of geological system.) When resistivity esti-

mates that are too small are used to regularize the second

hydrologic inversion step of the SHI scheme, the hydraulic

conductivity estimates are likely to be too small as well. Sim-

ilarly, hydraulic conductivity estimates are too high in some

high-resistivity parts of the shallow layers (Fig. 6) because

the resistivity estimated from TEM tends to be too high due

to low sensitivity of the TEM data. For the studied system,

this shows that resistivities estimated by independent TEM

data inversion must be used with caution as estimators of

hydraulic conductivity or as regularization means for subse-

quent hydrological inversion. In this case, the absolute rela-

tionship between hydraulic conductivity and reference elec-

trical resistivity led to an over-reliance on the use of inferred

resistivities to populate the model’s hydraulic conductivity

field.

The last three rows of Fig. 5 show hydraulic conductiv-

ity fields estimated by the three joint hydrogeophysical in-

version runs (JHI-T, JHI-H and JHI-G), respectively. JHI-T,

which used true (reference) parameter values as initial val-

ues, resolves the true structures of the upper five layers well,

while the estimated field of layer six is blurred; the cross sec-

tion shows that the true structures within the buried valley are

also resolved to some degree. Figure 6 shows that estimated

versus reference hydraulic conductivity values plot nicely

along the identity line for JHI-T. The resolution of structures

(Fig. 5) and the quality of the K estimates (Fig. 6) deterio-

rate for JHI-H and JHI-G, both of which use less informative

initial parameter values. Figure 5 visually indicates that JHI-

G resolves structures better than JHI-H. Figure 6 shows that

estimated hydraulic conductivity for sand and gravel tends

to be much too small for both JHI-G and JHI-H (the expla-

nation of which is similar to that given for SHI above), and

that particularly JHI-H cannot resolve variations in hydraulic

conductivity within the buried valley: the estimated values

vary only within roughly an order of magnitude, whereas the

reference values vary within 5 orders of magnitude.

4.3 Prediction results

For each of the ten chosen geological realizations, each of

the six calibrated groundwater models was used to make the

model predictions described in Sect. 3.2.2. Figure 7 shows

five examples of scatterplots of reference predictions ver-

sus calibrated model predictions; each plot shows ten points,

each of which corresponds to a particular geological real-

ization selected by the clustering. Each plot also gives the

mean error of the prediction (ME) calculated from the ten

model predictions. The five predictions represented in Fig. 7

are head in the capping layer at location 1, head recovery at

location 1, head recovery within the deepest part of the buried

valley at location 8 near the pumping well (Fig. 2), ground-

water discharge to the river after pumping has stopped, and

recharge area of the pumping well.

Figure 8 shows the mean absolute relative error (MARE)

for the 25 model predictions made by models calibrated with

six inversion approaches. The relative error magnitudes are

calculated as the absolute value of the difference between the

reference and model predicted value for each prediction of

interest averaged over the ten geological realizations consid-

ered. The prediction results are discussed individually below.

4.3.1 Head prediction

All calibrated groundwater models appear to be fairly good

predictors of hydraulic head. Nearly unbiased head predic-

tion is exemplified by the plots in the first column of Fig. 7

for which the points scatter around the identity line. This in-

dicates that all calibrated models make unbiased prediction

of hydraulic head at location 1. However, the scatter around

the identity line appears to be larger for HI calibrated models

than for JHI calibrated models. This indicates that the use of

geophysical data in JHI reduces the uncertainty of this head

prediction as compared to the HI calibrated models. The scat-

terplots for the other head predictions are similar to those

shown for location 1.

Figure 8 shows that for all head predictions except at lo-

cation 2, the use of geophysical data with SHI-G, JHI-H and

JHI-G reduces the prediction error when compared to the HI-

based predictions. It also shows that the relative error magni-

tude is smaller for head predictions than for most other pre-

diction types. Only change in discharge prediction has a rela-

tive error magnitude comparable to the head predictions. The
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Figure 7. Scatterplots of calibrated model prediction versus reference prediction for five predictions (explained in the body text). Each plot

shows results from ten system realizations.

small relative head prediction errors are likely due to the fact

that this type of prediction is similar to the head data used for

model calibration. Only the location differs between predic-

tion and calibration heads.

4.3.2 Head recovery prediction

Head recovery due to cessation of pumping is a type of pre-

diction that turns out to be biased for all calibrated models.

This is exemplified by the results shown in the second and

third columns of Fig. 7. The two plots at the top of the sec-

ond column indicate that head recovery at location 1 tends

to be underpredicted by the models calibrated by purely hy-

drologic inversion (HI-T and HI-H). The third plot in this

column indicates that SHI-G slightly reduces the bias seen in

the HI-based model. Finally, the last three plots in the sec-

ond column of Fig. 7 show that all the models calibrated by

JHI appear to be better predictors for this head recovery than

the HI- and SHI-G-based models. The quality of this model

prediction appears to be unaffected by the choice of initial

parameter values used for JHI. However, for JHI the points

tend to scatter around a line with an intercept less than zero

and a slope larger than unity. The former indicates consistent

bias in the prediction, probably due to consistent errors in

null space parameter components omitted from the parame-

terized groundwater model; the latter probably indicates pa-

rameter surrogacy incurred through model calibration (see

Sect. 2.7). The appearances of scatterplots for head recovery

at locations 2 to 7 are similar to that for recovery at location

1 (Fig. 7).

The second plot in the third column of Fig. 7 indicate

that head recovery at location 8 within the deeper part of
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Figure 8. Mean absolute relative prediction error calculated from

the ten geological realization results. The symbol type indicates the

inversion approach and the symbol color indicates the initial pa-

rameter values used when calibrating the groundwater model. Red

labels at x axis highlight prediction errors that are reduced by using

TEM data and TEM models for groundwater model calibration.

the buried valley is predicted fairly well for nine out of ten

geological realizations when the model is calibrated by hy-

drologic inversion (HI-H); however, the nine points tend to

fall slightly below the identity line, while the tenth point

falls far above the identity line. Generally, the plots indicate

a consistent underprediction of head using HI-based inver-

sion. The remaining plots in the third column show that re-

covery prediction at location 8 turns out to be too large for

the models calibrated with geophysical data (JHI) or by using

geophysics-based regularization (SHI).

Figure 8 shows that for recovery predictions 1 to 7, the use

of geophysical data with SHI-G, JHI-H and JHI-G reduces

the prediction error when compared to the HI-based predic-

tions. For recovery 1, this is confirmed by the scatterplots in

column two of Fig. 7. On the contrary, for recovery predic-

tion 8, located within the buried valley, both Figs. 7 and 8

show that including the geophysics in the groundwater mod-

eling with either SHI-G, JHI-H or JHI-G tends to increase

the prediction error as compared to HI-H and HI-T. Depend-

ing on the choice of initial parameter values, a similar result

is seen for recovery predictions 9 and 10. (An explanation

for this predictive degradation is given above, in the end of

the first paragraph of this subsection.) It is finally noted that

recovery prediction 2 benefits from use of geophysical data,

while head prediction at the same location does not, and that

the relative error magnitude is larger for recovery predictions

than for head predictions. This is likely because head recov-

ery depends on a different stress situation than that repre-

sented by the head calibration data.

4.3.3 Discharge prediction

The scatterplots in the fourth column of Fig. 7 indicate that

discharge to the river without pumping is overpredicted ex-

cept for the HI-T and JHI-T based models. Furthermore, this

is a type of model prediction that is not improved by includ-

ing geophysical data by the SHI or JHI inversions used here

(compare for example the HI-H plot with the JHI-G plot).

This is confirmed by the relative error magnitudes for dis-

charge shown in Fig. 8.

4.3.4 Recharge area and other particle tracking

predictions

The plots in the fifth column of Fig. 7 are for the recharge

area prediction. Except for JHI-T and JHI-G, the points in all

plots appear to fall along an almost vertical line; the scatter

along the vertical axis is much longer than the scatter along

the horizontal axis, indicating that all of these models are a

poor, highly biased predictor of the pumping well’s recharge

area. Including TEM data in the model calibration only im-

proves this model prediction for JHI-T and JHI-G. Further

analysis shows that at least part of the reason for the poor

prediction is that the estimated areal average recharge for

the model domain in all cases is too low. Lower estimated

recharge rates requires a larger predicted recharge area to

balance the rate of water pumped from the pumping well.

For the JHI-T models, the estimated areal recharge amounts

to about two-thirds of the actual average recharge. For the

JHI-H models the estimated recharge tends to be less than

half (for one model realization as low as one-third) of the

actual area. The estimated areal recharge for the other mod-

els is between the JHI-T and JHI-H estimates. It should be

mentioned that all calibrated models sufficiently fit the river

discharge measurement; the underestimated recharge means

that the simulated discharge to the lake turns out to be too

small (typically less than half of the actual discharge to the

lake; for one calibrated model there is almost no simulated

lake discharge).

It is finally mentioned that the scatterplots look similar to

those in column 5 of Fig. 7 for the prediction of the aver-

age age of groundwater pumped from the well and for the

prediction of particle travel time. The explanation for these

poor predictive performances must be because the calibrated

hydraulic conductivity field is too smooth (and the hydraulic

connectivity therefore exaggerated) in the calibrated models.

Figure 8 shows that use of TEM data does not improve the

model performance with respect to prediction of groundwa-

ter age and particle travel time.
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5 Discussion and conclusions

It is intuitively clear that geophysics can offer valuable infor-

mation for improved groundwater modeling, but for an ac-

tual investigation it is often unclear how, at what cost, and to

what extent modeling can be improved by adding geophysi-

cal data. This paper presents a newly developed platform that

allows for such an application- and method-specific exami-

nation of the potential value of using geophysical data and

models to develop a groundwater model and improve its pre-

dictive power. We call the platform HYdrogeophysical TEst-

Bench (HYTEB). HYTEB allows for treatment of hydrologic

and geophysical data and inversion approaches. It can be

used to examine the combined use of hydrologic and geo-

physical data, including model parameterization, inversion,

and the use of multiple geophysical or other data types. It

can also be used to discover potential errors that can be in-

troduced through petrophysical models used to correlate geo-

physical and hydrologic parameters. We use HYTEB to work

with rather complex, fairly realistic but synthetic systems.

In this work we strive at (and recommend) balancing com-

plexity with the advantage of knowing the “true” system or

condition to assess model/data performance, and at avoiding

to overextend the likely value of data or models beyond the

tested conditions.

Our recommended way of using HYTEB is demonstrated

by synthesizing a hydrogeological environment that is typical

to parts of northern Europe and North America, consisting of

various types of glacial deposits covering low-permeability

(in practice impermeable) bedrock of Tertiary clay, which has

a surface with the form of a plateau with a deep valley buried

by the glacial deposits. HYTEB is used to investigate to what

extent groundwater model calibration and, often more impor-

tantly, model predictions can be improved for this kind of

setting by including in the calibration process electrical re-

sistivity estimates obtained from TEM data in two different

ways: by using either sequential hydrogeophysical inversion

(SHI) or joint hydrogeophysical inversion (JHI). For simplic-

ity we assumed that the resistivity correlates with hydraulic

conductivity and that the relationship is constant and known.

The results are compared to those obtained by a groundwater

model calibrated by purely hydrologic inversion (HI).

The calibrated groundwater models are parameterized by

many pilot points that should allow a reasonable resolution

of the hydraulic and geophysical property fields at depths

where the properties are resolved by the data. Using PEST

(Doherty, 2010), Tikhonov or geophysical regularization is

used to stabilize the HI, SHI, and JHI inversion problems. In

this case, JHI tends to produce the best fit to the data, while

SHI and HI produce comparable fits.

For HI, the estimated hydraulic conductivity field turns

out to be very smooth in the top layers and almost homo-

geneous in the deeper layers, which is expected for this type

of (Tikhonov) regularization. For SHI and JHI, the estimated

hydraulic conductivity field resolves much of the true struc-

tures in the shallow layers, while less or, in the deeper part,

no structure is resolved inside the buried valley. However,

the estimated hydraulic conductivities are orders of magni-

tude wrong in some parts of the model. This occurs because

the resistivities estimated for the geophysical models either

in the first step of the SHI scheme or during the JHI scheme

can turn out to be very erroneous when the sensitivity of

the TEM data with respect to resistivity is low. Such uncer-

tain, potentially very erroneous, resistivity estimates should

be discarded (or filtered out) from the SHI or JHI. By not do-

ing this, we showed that resistivities estimated by SHI or JHI

must be used with caution as estimators of hydraulic conduc-

tivity or as regularization means for subsequent hydrological

inversion; the use of the absolute relationship between hy-

draulic conductivity and electrical resistivity led to an over-

reliance on the use of inferred resistivities to populate the

model’s hydraulic conductivity field.

With respect to reducing model prediction error, it depends

on the type of prediction whether it has value to include geo-

physics in the model calibration. It was found that all models

are good predictors of hydraulic head. However, head predic-

tion errors tend to be reduced for models calibrated by SHI

or JHI as compared to models calibrated by HI.

When the stress situation is changed from that of the hy-

drologic calibration data, then all models make biased pre-

dictions of head change. Use of geophysical data or models

(with JHI or SHI) reduces error and bias of head prediction

at shallow depth but not in the deep part of the buried val-

ley near the pumping well (where the stress field changes

the most). Analyzing the prediction results by the method

described by Doherty and Christensen (2011) indicates that

geophysics helps to reduce parameter null space as well as

parameter surrogacy for parameters determining the shallow

part of the hydraulic conductivity field. In hindsight, this is

obvious since the TEM method better resolves the shallow

variations in glacial deposits’ resistivity than the variations

inside the deep buried valley.

For model prediction of change in discharge to the stream,

there is no improvement in using geophysics. HI-based pre-

diction results are comparable to SHI- and JHI-based results.

All models are very poor predictors of the pumping well’s

recharge area and groundwater age. The reason for this is

that distributed recharge is here estimated during the model

calibration together with distributed hydraulic conductivity.

Recharge is parameterized by assuming a linear log–log rela-

tionship between recharge and hydraulic conductivity of the

upper model layer; two shape factors of the relationship are

treated as parameters that are calibrated together with the pi-

lot point parameters for hydraulic conductivity and (for JHI)

resistivity. It was assumed that the shape factors could be es-

timated because stream discharge data were included in the

calibration data set. All models fit these data, but the esti-

mated areal recharge turned out to be two-thirds or less of

the actual areal recharge. The predicted recharge area of the

pumping well and the predicted age of the pumped water
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therefore turn out to be much too large. So another impor-

tant insight from this study is that recharge should be param-

eterized and estimated in a different way than was done in

the demonstration example. Alternatively HYTEB could be

used to consider adding other types of data to better constrain

recharge rates.
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