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Abstract. Globally, water resources management faces sig-
nificant challenges from changing climate and growing pop-
ulations. At local scales, the information provided by climate
models is insufficient to support the water sector in mak-
ing future adaptation decisions. Furthermore, projections of
change in local water resources are wrought with uncertain-
ties surrounding natural variability, future greenhouse gas
emissions, model structure, population growth, and water
consumption habits. To analyse the magnitude of these un-
certainties, and their implications for local-scale water re-
source planning, we present a top-down approach for test-
ing climate change adaptation options using probabilistic cli-
mate scenarios and demand projections. An integrated mod-
elling framework is developed which implements a new,
gridded spatial weather generator, coupled with a rainfall-
runoff model and water resource management simulation
model. We use this to provide projections of the number of
days and associated uncertainty that will require implemen-
tation of demand saving measures such as hose pipe bans
and drought orders. Results, which are demonstrated for the
Thames Basin, UK, indicate existing water supplies are sen-
sitive to a changing climate and an increasing population,
and that the frequency of severe demand saving measures
are projected to increase. Considering both climate projec-
tions and population growth, the median number of drought
order occurrences may increase 5-fold by the 2050s. The ef-
fectiveness of a range of demand management and supply
options have been tested and shown to provide significant
benefits in terms of reducing the number of demand saving
days. A decrease in per capita demand of 3.75 % reduces the
median frequency of drought order measures by 50 % by the

2020s. We found that increased supply arising from various
adaptation options may compensate for increasingly variable
flows; however, without reductions in overall demand for wa-
ter resources such options will be insufficient on their own to
adapt to uncertainties in the projected changes in climate and
population. For example, a 30 % reduction in overall demand
by 2050 has a greater impact on reducing the frequency of
drought orders than any of the individual or combinations of
supply options; hence, a portfolio of measures is required.

1 Introduction

Climate change projections point to longer or more frequent
(or both) meteorological droughts in some regions by 2100
but there remain substantial uncertainties as to how rainfall
and soil moisture deficits might translate into prolonged pe-
riods of reduced streamflow and groundwater levels (IPCC,
2014). This and other pressures affect and will continue to
affect UK water availability into the future. Climate change
could cause a decline in the amount of water available for
supply, particularly in summer months if lower average rain-
fall coincides with increased temperatures (e.g. Murphy et
al., 2009). Water demand may also be sensitive to climate
variability, although few studies have examined this aspect
(e.g. Parker and Wilby, 2013). Population growth, along-
side a greater number of single-occupancy households will
greatly affect water demand, and this stresses the need for
greater water efficiency. Water resources may therefore in-
creasingly need to be enhanced and managed through new
supply or demand management options. Supply options may
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include storage reservoirs, inter-basin transfers, desalination
plants, effluent reuse, and groundwater and river abstractions
whilst demand management options may include water me-
ters, water saving devices, efficient appliances, rainwater col-
lection systems, and grey water recycling.

A number of studies have investigated the impact of cli-
mate change on water resources, addressing the associated
uncertainties, using both deterministic and probabilistic pro-
jections of climate change. For example, in the UK these
include Wilby and Harris (2006), New et al. (2007), Des-
sai and Hulme (2007), Christensen and Lettenmaier (2007),
Vidal and Wade (2009), Manning et al. (2009), and Lopez
et al. (2009). Burke and Brown (2010) indicated that an
11 member HadRM3 perturbed physics ensemble showed
uncertainty as to whether drought occurrence will decrease
or increase across the UK by the end of the 21st century
(consistent with earlier results from a multi-model ensem-
ble; Blenkinsop and Fowler, 2007) although they identify a
predominant tendency to the latter. Burke and Brown (2010)
demonstrate similar results, with relatively little spatial vari-
ation across the UK. Such studies show the sensitivity of pro-
jections to climate model structure and parameterization and
suggest that methods to downscale climate information can
result in large sources of uncertainty in future river flows.
However, a “cascade” of uncertainties arise when consider-
ing climate change impact assessments for decision making
(Jones, 2000). Wilby (2005) showed that uncertainties asso-
ciated with impact studies arise from model structure, choice
of model calibration period, choice of parameter sets, as well
as climate scenarios and downscaling methods.

In this study, we use the UK Climate Projections
(UKCPO09) which provides an ensemble of climate model
outputs that capture a number of important uncertainties in
climate model parameterization and structure (Murphy et al.,
2009). The UKCPQ9 outputs have been used to consider:
flood risk (Cloke et al., 2013; Kay and Jones, 2012), changes
in precipitation and potential evapotranspiration (PET) in up-
land river catchments (Thompson, 2012), sediment yield in
catchments (Coulthard et al., 2012), urban heat island ef-
fects (Lee and Levermore, 2013), and overheating in build-
ings (Patidar et al., 2014; Jenkins et al., 2014). Their release
and availability has also enabled better assessment of uncer-
tainties in projections of water availability in a changing cli-
mate (e.g. Christierson et al., 2012; Harris et al., 2013; War-
ren and Holman, 2012). Using the UKCPQ9 projections, Har-
ris et al. (2013) found that for the North Staffordshire Water
Resource Zone uncertainty in climate model parameteriza-
tion causes a greater proportion of uncertainty in estimates
for the 2080s of change in overall flow and water shortage per
year than emission scenario choice. Whitehead et al. (2006),
Wilby and Harris (2006), Dessai and Hulme (2007), and New
et al. (2007) have all conducted end-to-end assessments of
propagation of uncertainties in adaptation assessments. Un-
derstanding the range of uncertainties when assessing future
water shortages in the face of climate change will enable
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policies and strategies to be designed that are robust to the
full range of plausible futures. Methods such as robust deci-
sion making (RDM) provide a quantitative approach to facil-
itate decision-making under a range of assumptions and un-
certainties. RDM has been used to develop long-range water
management plans in the US (Groves et al., 2008; Lempert
and Groves, 2010). Matrosov et al. (2013) applied both RDM
and info-gap decision theory to consider uncertainties to pro-
posed water supply portfolios for the Thames Basin. Bor-
gomeo et al. (2014) demonstrated a methodology based on
UKCPOQ9 that used non-stationary probabilistic climate sce-
narios to aid risk-based water resource management. More
recently the decision-scaling method (Brown et al., 2012)
or climate stress testing (Brown and Wilby, 2012) has been
applied to water resources systems. Multiple sources of cli-
mate information, climate projections, and stochastic assess-
ments are used to evaluate risks (Brown et al., 2012) and sub-
sequently applied to determine robust adaptation strategies
(e.g. Whateley et al., 2014; Steinschneider et al., 2015).

This paper builds on and extends this previous research to
assess current and future water resources risk by developing
and integrating:

— simulation models of precipitation, catchment hydrol-
ogy, and water resource systems within an uncertainty
analysis framework;

— a new spatial weather generator, that unlike previous
work in this area, e.g. Borgomeo et al. (2014), cap-
tures the spatial variability of rainfall in large catch-
ments to produce high-resolution catchment-wide pre-
cipitation simulations for the Thames Basin in the UK;

— consideration of climate uncertainties as a driver of wa-
ter resource availability, as in e.g. Harris et al. (2013),
but also evaluating other uncertainties such as changes
in future demand;

— analysis and testing of the effectiveness of a number of
adaptation options to manage both the demand and sup-
ply of water resources; and,

— provision of end-user relevant water resource indicators
increasingly referred to as “climate services” (Hewitt
et al., 2012) such as the frequency of triggering reser-
voir storage control levels, or triggering of demand sav-
ing measures, that are used by water companies (e.g.
Thames Water, 2014) and promoted by the UK Govern-
ment (Defra, 2008) and the Environment Agency.

Figure 1 outlines the methodological approach taken and
the associated sequence of models used to simulate the
Thames Valley water resource system. Starting from the cli-
mate model outputs provided by UKCP09, spatially con-
sistent downscaled rainfall scenarios are generated using a
spatial rainfall model of the Thames and Lee river basins.
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Figure 1. Methodological approach for the study of current and fu-
ture water resources for the Thames.

These, alongside corresponding downscaled PET data pro-
duced with a weather generator, are used to drive catch-
ment rainfall-runoff models, which output corresponding
river flows. These, in turn, are input to a model of the water
resource system which enables a range of supply and demand
management options to be tested which incorporate projec-
tions of demographic change.

2 Methodology
2.1 Case study: Thames Basin, UK

The Thames Basin (Fig. 2) is 10 000 km? in area, mainly un-
derlain by permeable chalk, the basin is predominantly ru-
ral, yet densely urbanized downstream. The south-east of
England is the most water-scarce region in the UK, hav-
ing lower than average rainfall and a very large water de-
mand (Environment Agency, 2007a), i.e. “seriously” water
stressed. The basin receives an average of 690 mm of rain-
fall each year (250 mm only is effective rainfall; Environ-
ment Agency, 2014) compared to a national average for Eng-
land and Wales of 897 mm. The River Thames and River Lee
supply most of the water for London and south-east Eng-
land, with 70 % of all water being taken from upstream of
Teddington Weir; the remainder is abstracted from aquifers
(GLA, 2011). Per capita, Londoners consume more water per
day (167 L) than the UK average (146 L). Much of the wa-
ter resource system’s infrastructure is more than 150 years
old and leakage is a major issue which is currently being ad-
dressed. The GLA (2011) expect London’s population to rise
from 7.56 million at present to between 8.79 and 9.11 mil-
lion by 2031. UKCPQ9 probabilistic projections (Murphy et
al., 2009) identify potential future climatic pressures in this
region (50th percentile figures), suggesting that average sum-
mer temperatures could increase by 2.7 °C and winter tem-
peratures by 2.2°C. Average summer rainfall is projected
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to decrease by 18 % and winter rainfall to increase by 15%
(GLA, 2011).

2.2 Probabilistic climate scenarios

Uncertainties in projections of future climate originate from
a number of sources, including modelling uncertainty. It is
not meaningful to use only one model realization in climate
change assessments. UKCPQ9 provides a perturbed physics
ensemble (PPE) of simulations, downscaled using the re-
gional climate model (RCM) HadRM3 at a resolution of
25km where each ensemble member uses different param-
eter values within expert-specified bounds. UKCPQ9 also in-
corporates projections from 12 other climate models possess-
ing different structures, allowing the sampling of structural
modelling errors from a multi-model ensemble. These two
ensembles are combined within a Bayesian statistical frame-
work to produce the UKCP09 probabilistic projections (Mur-
phy et al., 2009). Additional downscaling onto a 5km grid
through a combined change factor (CF) and weather genera-
tor approach, provides a spatial resolution more appropriate
for considering catchment response.

Here, we use an extended version of UKCPO9 stochas-
tic weather generator (Jones et al., 2009) (referred to here-
after as UKCP09-WG), which provides simulations of daily
and hourly weather variables for both a baseline (1961-
1990) and a selected future climate (emissions scenario and
time horizon) for each member of a probabilistic projection.
Projections for two 30-year periods centred on the 2020s
(SCN20) and 2050s (SCN50) were identified as most rele-
vant to stakeholders which expressed the greatest need for
near- to medium-term future scenarios (Hallett, 2013). The
analysis was restricted to the A1B (medium) emissions sce-
nario, although a complete consideration of future uncertain-
ties would need to examine alternative scenarios. These fu-
ture projections were assessed against the 1961-1990 base-
line (BSL) which also served to provide information on cur-
rent hazard.

The standard UKCP09-WG framework is extended here
by replacing the single-site rainfall model with a spatial rain-
fall model, the stochastic spatial-temporal Neyman-Scott
rectangular pulses model (STNSRP; Cowpertwait, 1995;
Burton et al., 2008). This models spatial rainfall variabil-
ity and thus helps to capture non-linear impacts of climate
change on water resources — in particular, correlated weather
events between sub-basins. Whilst this is not necessary for
small catchments (e.g. Harris et al., 2013, use a simple scal-
ing relationship), such an approach is required here due to
the larger scale of the Thames Basin. The spatially continu-
ous nature of the STNSRP process is therefore advantageous
as it may be sampled at any location (Burton et al., 2010a)
or even on a regular grid (e.g. Blanc et al., 2012; Burton et
al., 2013). Here, we present one of the first published appli-
cations to generate and assess the impact of future climate
gridded rainfall data sets using the STNSRP model.
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Figure 2. Map of the Thames Basin showing the gauging stations at the outlet of the three sub-basins: Upper Thames, Lower Thames, and
Lee. The grid cells correspond to the 5 km spatially correlated gridded rainfall; the black grid cell indicates the catchment’s centroid cell for

which PET was generated.

Ten 100-year-long gridded daily rainfall simulations were
generated using the BSL climatology (Perry and Hollis,
20053, b). Following the UKCPQ9 approach (Jones et al.,
2009) 100 sets of monthly change factors for each time
slice for the A1B emissions scenario were randomly sam-
pled and applied to the observed daily rainfall statistics. The
rainfall model was refitted to these perturbed statistics and
used to generate 100-year gridded daily simulations for each
of the randomly sampled 100 sets of CFs for both SCN20
and SCN50. Batch processing of these scenarios was facil-
itated through the use of the efficient STNSRP simulation
scheme described in Burton et al. (2010a). The CRU daily
weather generator was used to generate long time series of
synthetic daily weather variables, conditioned by the syn-
thetic daily rainfall generated with the NSRP process (Kilshy
et al., 2007). For simulation, input rainfall series were de-
rived for each sub-catchment from the weather generator out-
put by averaging simulated point rainfall records generated
over the 5km grid cells covering the sub-catchments. Here,
only the PET output variable was required as input to the
rainfall-runoff model. Since the region under study concerns
only 10000 km?, with a maximum elevation of 330 m, PET
is not very variable, so a single PET record has been used
for all catchments, representative of the point rainfall record
generated at the centroid of the whole Thames Basin. It is
recognized that within each of the catchments the variety of
land cover uses would in turn affect moisture losses. How-
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ever, given the similarity of the catchments in terms of ele-
vation and heterogeneity of land cover, and that the rainfall-
runoff model is lumped, a single PET record generated at the
centroid of the whole Thames Basin was used; the represen-
tative 5km grid cell is highlighted in Fig. 2. A forthcoming
paper will present the application of a spatial weather gener-
ator which will feed a physically based, spatially distributed
hydrological model which will allow better representation of
both the climatological and land cover heterogeneity of the
catchment. Furthermore, it will enable changes in land cover,
i.e. increasing urban areas to be considered.

Supplementary resources present further details about the
validation of the UKCP09-WG and presents a brief assess-
ment of the robustness of the random sample of CFs used in
this study.

2.3 Catchment models

Flow time series were generated using the CATCHMOD
rainfall-runoff model, which is a water balance model used
for water resource planning by the UK Environment Agency,
and has been described in detail elsewhere (Wilby et al.,
1994; Davis, 2001). CATCHMOD is a lumped parameter
conceptual model, which allows for the subdivision of the
catchment into a number of zones, according to its geolog-
ical and surface runoff characteristics. Input to the model
is in the form of time series of daily rainfall and potential
evapotranspiration representative of the entire catchment and
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Figure 3. Validation of CATCHMOD reproduction of observed flows. The calibration period against historical flows was 1 January 1961—
31 December 1978 for Teddington and Days Weir, and 1 January 1961-31 December 1975 for Feildes Weir. The validation period for all

catchments was 1 January 1979-31 December 2002.

the output is a time series of the daily flow at the catch-
ment output. Three parameterizations of this model were
used to produce flow series for each of the three input sub-
catchments locations of the water resource model. Each of
these involves three zones, representing clay, limestone, and
urban regions. Parameters were chosen by optimization of
the Nash—Sutcliffe efficiency in reproducing historically ob-
served flow, and validated by comparison with flows in a dif-
ferent historical period (see Manning et al., 2009, and Fig. 3).
The following Nash—Sutcliffe efficiencies were achieved for
each catchment: at Teddington Weir, a calibration of 0.88 and
validation of 0.86; at Feildes Weir, a calibration of 0.68 and
validation of 0.69; and at Days Weir, a calibration of 0.86 and
validation of 0.90.

The ensemble of 100 future 100-year scenarios of rainfall
and PET generated by UKCP09-WG for both the SCN20 and
SCN50, alongside the 10 BSL scenarios were used to drive
CATCHMOD to produce synthetic river flow data for use as
input into the water resource model.

2.4 Water resource modelling

To enable assessment of London’s Water Resource Zone sce-
narios. a rule-based water resource management simulation
program was developed for this study in the MatLab® pro-
gramming language. This was parameterized with the same
operational rules, flow, demand, and capacity data as the En-
vironment Agency’s implementation of the AQUATOR soft-
ware (Oxford Scientific Software Ltd., 2004) for the Thames
Basin but is orders of magnitude faster and able to simu-
late 100 years’ conditions in ~1s. The London Area Rapid
Water Resource Model (LARaWaRM) is a network model
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comprising nodes and links representing various water re-
source components and interactions. Nodes can represent di-
versions, natural lakes, reservoirs, aquifers, wetlands, gauge
sites with a defined time-series flow, and demand consump-
tion sites. At each (daily) time step, water is moved according
to the input data, with rules defining the behaviour of each
node and link, and connectivity between components.

Figure 4 presents a schematic of LARaWaRM which was
used to investigate the potential impacts of climate change,
socioeconomic change and supply/demand options on the re-
source system. Synthetic river flows generated by CATCH-
MOD were input into LARaWaRM to evaluate the impacts of
the downscaled climate change UKCPQ9 probabilistic pro-
jections.

Drought risk is estimated by the frequency, in terms of
the number of days, that a demand saving (DS) measure is
imposed. In water resources planning, demand saving mea-
sures or levels of service describe the average frequency that
a company will apply restrictions on water use, triggered by
reservoir control curves. In robust analysis of water resource
systems, failure to meet a particular level of service can act as
a suitable metric of risk and one against which the effective-
ness of interventions to a system can be judged (Hall et al.,
2012; Groves and Lempert, 2007). Table 1 describes these
levels of service, restrictions and their target frequencies for
the Thames Basin.

To explore the impact of population growth on drought
risk, population and employment growth estimates were also
used to scale current demand. Population estimates were
taken from the Greater London Authority’s strategic plan for
London (GLA, 2011) for up to 2031 and then extrapolated

Hydrol. Earth Syst. Sci., 20, 1869-1884, 2016
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Figure 4. A schematic of LARaWaRM indicating the various water resource system components and interactions. (NB: groundwater is
included as an aggregate inflow of 467.4 ML day—1 to meet London’s demand. A proportion of the inflow to the water treatment works is
leakage; this is equivalent to 12 % of demand and is returned back to the river and modelled as a contribution to the minimum environmental
flow.)

Table 1. Levels of service: restrictions and frequency of restrictions (Source: GLA, 2011; Thames Water, 2014). See Table S1 in the Supple-
ment for reservoir total storage capacity trigger levels for the different levels of restrictions.

Level of service  Restrictions Frequency of restrictions
(Thames Water, 2014)
Ds1 Media campaigns, additional water efficiency activities, en- 1 in 5 years on average
hanced activity, and restrictions to reduce risk to water supply
DSs2 Enhanced media campaign, customer choice/voluntary con- 1 in 10 years on average
straint, sprinkler ban.
DS3 Temporary Use Ban (formerly hosepipe ban), Drought Direc- 1 in 20 years on average

tion 2011 (formerly non-essential use bans) requiring the grant-
ing of an Ordinary Drought Order.

Ds4 Severe water rationing, e.g. rota cuts, stand pipes, i.e. Emer-  Never
gency Drought Order.

at the same average annual growth rate of 51000 to provide — Demand reduction: sensitivity analysis considering re-
an estimate of population for 2050. Employment growth es- duction in per capita demand between 0 and 35 %, at
timates were calculated using the Tyndall Centre for Climate 5% intervals which represent a range of behavioural
Change’s methodology derived for the Urban Integrated As- and technical efficiencies;

sessment Facility (see Hall et al., 2009; Walsh et al., 2011).
In addition, demand per capita was altered to reflect tech-
nological advances, such as improved water efficiency mea-

— Desalination plant: capacity providing 150 ML day—?,
which represents the Thames Water site at Beckton;

sures. By altering the properties of existing links and nodes — Leakage reduction: in 2010/11, Thames Water reported

or introducing new links and nodes into the model domain, a leakage losses of 26 %: the UK water company average

number of supply adaptation options were also investigated. is 18.5% (GLA, 2011), a linear reduction in leakage to
Adaptation options considered included: 18.5% by 2050 is applied:
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Figure 5. Percentage change in precipitation for (a) SCN20 and (b) SCN50. The bars denote the median change from the 100-member
ensemble; the upper and lower horizontal lines indicate the ensemble 90th and 10th monthly percentiles, respectively.

— New reservoir: storage capacity of 100 millionm?3
added to the 2050 runs, as realistically such infrastruc-
ture is planned over a 30-year timeframe;

— Combinations of the above: the model’s computational
efficiency enables a range of different combinations of
adaptation options to be tested.

3 Results

3.1 Changes in rainfall and potential
evapotranspiration

For each sub-catchment, mean monthly precipitation was
calculated for each of the 100 simulated series for SCN20
and SCN50 and changes were examined relative to the me-
dian monthly precipitation derived from the 10 BSL sim-
ulations. There is relative uniformity across the three sub-
catchments with a greater range in projections in summer
months — the median estimate of change indicates a pattern
of wetter winters and drier summers. For SCN20, projected
changes in mean precipitation are relatively small, < +10%
in winter and > —10% in summer. However, these increase
in magnitude to ~+15 to +20% in winter and ~—10 to
—30% in summer for SCN50 (see Fig. 5). The ensemble
of rainfall variation shows that there could be substantially
greater pressure on water resources — the 10th percentile in-
dicating decreases projected for all seasons; for SCN50 this
represents a typical decrease of ~ 45 % during summer with
a small (< ~ —5%) decrease in winter. However, the 90th
percentile suggests less stress with an increase in precipi-
tation throughout the year. Mean seasonal precipitation was
also calculated for each season and expressed as an anomaly
from the long-term mean to determine the longest sequence
of negative seasonal anomaly. This suggested the potential
lengthening of periods with below-average rainfall — for BSL
the longest sequence was 10, whereas for SCN50 it was 18.
However, we note that a limitation of applying change fac-
tors through a weather generator to assess future projections
in rainfall is that it does not readily produce the longer se-
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quences of dry periods (Wilby et al., 2004) that may produce
multi-seasonal droughts and hence stress the water supply
system.

The projected change in occurrence of precipitation was
also assessed through the examination of dry day probabili-
ties (PDD). Figure 6a demonstrates that for SCN20 the cen-
tral estimate shows relatively little change in PDD relative to
the BSL during winter and spring but that PDD is projected
to increase in summer. For SCN50 (Fig. 6b) there remains
little change in PDD during winter but there is a further in-
crease between May and October with the median estimate
of up to ~ 0.8 in August.

Mean daily PET is projected to increase throughout
the year (Fig. 6¢c and d). For SCN20, the largest in-
crease occurs in summer, the central estimate indicating
an absolute increase of ~+0.3mmd~! relative to a BSL
value of ~3.0mmd~1. For winter, the change is smaller,
~40.1mmd~! relative to a BSL value of ~0.4mmd~.
However, these figures represent a larger relative increase
in PET in winter. For SCN50, the increase in summer
is ~+0.6mmd~1 with an additional increase in winter
~+40.1mmd~1. These combined changes demonstrate po-
tential future pressure on water resources arising from cli-
mate change which is investigated further through the ap-
plication of these ensemble projections to a rainfall-runoff
model and water resource model for the Thames.

3.2 Changes in river flows

Precipitation and PET series for the two 100-member future
scenario ensembles are used to generate river flows for the
three sub-catchments using the CATCHMOD rainfall-runoff
model. Figure 7 shows the percentage change in monthly
and seasonal flows for each sub-catchment for SCN20 and
SCN50 compared to the 10 BSL simulations. The bars show
the median changes in flows, with the upper and lower hori-
zontal bars showing the 10th and 90th percentiles, indicating
the degree of uncertainty in the climate projections. Gener-
ally there is a large spread in the projections. For SCN20,
from February to June there is a small increase in median
flows for the Upper Thames, and an even smaller increase
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Figure 6. Projected and baseline (BSL) statistics for dry day probability (PDD) and mean daily PET for SCN20 and SCN50 for Thames
catchment. For the ensemble projections the central estimate (p50) and upper and lower estimates represented by the 90th (p90) and 10th

(p10) percentiles are shown.
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Figure 7. Percentage change in Upper Thames, Lower Thames, Lee catchments for monthly river flows for (a) SCN20, monthly flows,
(b) SCN50, monthly flows, (c) SCN20, seasonal flows, (d) SCN50, seasonal flows (standard seasons plus winter half year (WH) and summer
half year (SH)). The bars denote the median change from the 100-member ensemble, the upper and lower horizontal lines indicate the
ensemble 90th and 10th percentiles, respectively.
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Figure 8. Number of demand saving days per 100 years (DS1-DS4) under BSL, SCN20, and SCN50 scenarios for (a) climate change
projections only; (b) population growth projections only; (c) both climate and population projections, in all cases per capita demand remains
constant at present-day value. Box plots indicate the median, 25th, and 75th percentile values; whiskers show the 10th and 90th percentile

values.

in the Lower Thames, with the Lee showing a decrease dur-
ing these months. All other months for each catchment show
decreases in median flows, with substantial decreases from
July to December in SCN50. Plotted seasonally, the great-
est decreases are evident in the autumn months (September,
October, and November). Mean estimates for flow quantiles
(not shown) at Kingston, the outlet of the catchment, when
compared with BSL, indicate a decrease for SCN20 across
the entire flow duration curve, with greater decreases in Q90
and Q95 of 14 and 15 %, respectively. For SCN50, the sim-
ulations also show a decrease in mean flow quantiles across
the entire flow duration curve, with the exception of higher
flows, i.e. Q5 and above. Decreases in lower flows are more
substantial, with mean decreases of 33 and 37 % in Q90 and
Q95, respectively.

3.3 Water resource availability

Initial analysis determined the relative impacts of climate
change and population growth on drought risk, in terms of
change in frequency of demand saving measures derived
from LARaWaRM. Figure 8 presents the number of days that
each of the DS measures are implemented for the baseline,
SCN20, and SCN50 runs for (i) the climate projections only;
(ii) changes in population growth only (where per capita al-
location remains the same); and (iii) climate and population
growth signals combined. Both climate projections (i) and
population growth scenarios (ii) increase the frequency of
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all DS measures. The climate scenarios introduce a greater
degree of variability and uncertainty into the frequency esti-
mations which increases as the severity of the DS measure
worsens. Considering the population signal alone, there is a
smaller increase in SCN20 frequencies compared to the BSL
scenarios. However, there is a greater shift in median values
from SCN20 to SCN50. The relative contribution to drought
risk from population growth is greater than that from the cli-
mate projections. However, these simulations assume that per
capita demand remains the same as present in SCN20 and
SCN50.

Figure 9 demonstrates the effectiveness of reducing de-
mand, i.e. per capita allocation, on the frequency of DS4
measures for BSL, SCN20, and SCN50. Although proba-
bly unrealistic, a reduction in per capita allocation of 35 %
would eliminate the need for drought orders in the 2020s.
Even a small decrease of 3.75% in SCN20 reduces the me-
dian frequency by 50 %. However, by the 2050s the growing
population and intensification of the climate change signal
means that the 35 % reduction in per capita allocation is no
longer effective, suggesting that new supply options may be
required to complement demand management strategies by
the 2050s.

Therefore, we also investigated a number of supply op-
tions to supplement the currently available water. Figure 10
presents the frequency of DS4 days for a number of supply
adaptation options for the 2020s and 2050s: (i) a desalina-
tion plant: capacity of providing 150 ML day—*, which rep-
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Figure 9. Number of DS4 days per 100 years for BSL, SCN20, and SCN50 under climate and population projections, for a range of reductions
in per capita demand. Box plots indicate the median, 25th, and 75th percentile values; whiskers show the 10th and 90th percentile values.

resents the Thames Water site at Beckton; (ii) a linear re-
duction in leakage to 18.5 % by 2050 is applied to the simu-
lations; (iii) reservoir: storage capacity of 100 millionm? is
added to the 2050 runs as realistically such infrastructure is
planned over a 30-year timeframe; (iv) various combinations
of (i), (ii) and (iii). In addition, results are shown for all cases
with no reduction in per capita demand and for a reduction
in per capita demand of 15% by 2020 and 30 % by 2050.
Per capita demand is reduced by 15 % in 2020 to bring this
in line with the UK’s average per capita usage. By 2050 it is
reduced by a further 15 to 30 % to reflect the potential impact
of demand saving measures, e.g. water meters alone can cre-
ate water savings of 10-15% per household (Environment
Agency, 2007Db).

Individually, all options considered have a positive effect
in reducing the frequency of DS4 measures. The availability
of 150 ML day—? from the desalination plant in 2020 reduces
the median frequency value by around 100 %; however, its
effectiveness is diluted by 2050. For SCN50, reducing leak-
age has a greater impact than the desalination plant itself.
Combinations of adaptation options improve the situation
further. To obtain a 100 % reduction in the median number
of DS4 days by 2050, a combined contribution from leak-
age reduction and a new storage reservoir is necessary. An
additional 37.5% improvement can be obtained by adding
the contribution of the desalination plant to this portfolio. A
15 % reduction in overall demand in 2020 and 30 % in 2050
has a greater impact on reducing the frequency of DS4 days
than any of the individual or combined supply options. Intro-
ducing demand reduction also reduces the variability signifi-
cantly.
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4 Discussion

Between 2003 and 2006, England and Wales reported the
third lowest rainfall since 1932-1934; the Thames and the
south-east experienced exceptional regional rainfall deficits.
Of particular importance was the disproportionate concen-
tration of overall rainfall deficit in the winter and spring,
when typically modest evaporation losses allow the bulk of
reservoir replenishment and aquifer recharge (Marsh, 2007).
Drought Severity Index analysis for the Thames catchment,
as for other water resource regions in the south, shows an his-
torical increase in drought intensity and frequency of drought
months in both wet and dry seasons, as well as frequency
of drought events with persistence of at least 3 or 6 months
(Rahiz and New, 2013). In this study, the combined pro-
jection of increased PDD and PET during summer months
and lasting further into autumn, highlight the potential for
increased frequency of such climate-driven water resource
pressures in the future.

The largest decreases in river flows are projected for
September to November; with the greatest effects being de-
creases in low flows. At the outlet of the catchment pro-
jected mean change in Q90 is a 14 % decrease, with a sim-
ilar value, 15% for Q95 (SCN20). However, the changes
are much greater for SCN50 — 33 % for Q90 and 37 % for
Q95. Manning et al. (2009), found mean decreases in Q95
of 45% using the HadRM3H model and 37 % using the
HadRM3P model for the 2080s, using the medium-high sce-
nario for the Thames. In their UK-wide study, Christierson et
al. (2012) highlight that the largest flow decrease was found
in the Thames, Anglian, and Severn river basin regions, with
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a high probability assigned to decline in summer flows. They
also conclude that the dispersion of distributions in projected
monthly flows for the Thames catchment to be larger than the
range of natural variability.

There have been five major water resource droughts in
the Thames catchment over the last 90 years (Thames Wa-
ter, 2014): 1920-1921; 1933-1934; 1943-1944; 1975-1976;
and 2010-2012. Most recently, the 24-month period from
April 2010 to March 2012 was the driest in the 128-year
record for the Thames catchment. During this period, in-
tensive media campaigns highlighted the drought and pro-
moted water efficiency; in 2012 both a Temporary Use Ban
and Non-Essential Use ban were implemented (i.e. Level of
Service 3 restrictions). Our results (see Fig. 8a) clearly show
that existing water supplies are sensitive to changing climate.
In particular, the requirement for DS3 and DS4 measures
is projected to increase by the 2020s and more so by the
2050s. Similarly, Darch et al. (2011) found their central es-
timates of supply—demand deficiency for the London Water
Resource Zone may increase from 51 ML day~! under the
2020s medium emissions scenario to 516 ML day—! under
the 2080s high emissions scenario, albeit with large uncer-
tainties. Although they considered a wider range of climate
projections, they did not consider how such impacts may be
compounded by population growth; resulting in increasing
demand for resources.

Population growth, especially in London and the south-
east will inevitably place increased pressure on already
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limited water resources. By 2031, the GLA (2011) expect
London’s population to increase by 16-21%. Our analysis
demonstrates the potential impacts of both climate change
and population growth on water availability. Population pro-
jections are available up to 2031, beyond which we have
extrapolated the average growth rate to 2050. It could be
argued that this may be a conservative estimate as Lon-
don continues to regenerate, expand, and invest in major in-
frastructure projects to attract increased investment and ag-
glomerations of organizations, and hence ultimately popula-
tion. However, both climate changes and population growth
will occur simultaneously, therefore the starting point for
assessing the benefit of any supply and demand adaptation
measures needs to be based upon the projections shown in
Fig. 8c. When comparing the expected frequency of level
of service/demand saving measures from Thames Water (see
Table 1), results show that targets are increasingly less likely
to be met. For example, currently the target is to never im-
plement DS4 measures, but our analysis indicates that these
may be required once every 2 years by the 2020s and once
every year by the 2050s.

Globally, the greatest demand for water is driven by agri-
culture and industry; however, in the UK, given reduced in-
dustrial and mining demand for water, more emphasis has
been placed on the demand management of potable water
(McDonald, 2007). Supply-side solutions have dominated
water management, with little attention given to long-term
demand forecasting. Parker and Wilby (2013) reviewed ap-
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proaches to water demand estimation and forecasting for
daily—seasonal and yearly—decadal timescales for household
water use. They concluded that little consideration has been
given to UK household water demand estimation and fore-
casting under a changing climate. However, water demand
management is increasingly recognized as a “low regret”
adaptation from both a financial and environmental point of
view, which can be implemented at a range of scales from in-
dividuals and households to communities. Water meters have
been shown to decrease water use by 10-15 % per household
(GLA, 2011), as well as improve energy efficiency, given the
substantial proportion of energy used to heat water within a
household. The GLA have ambitious targets for the instal-
lation of water meters in London properties (all houses and
blocks of flats by 2020 and all individual flats by 2025; GLA,
2011). There are no guarantees on the uptake of demand sav-
ing measures such as water meters, grey water recycling, or
water efficient appliances; however, our analysis (see Fig. 10)
has demonstrated that even small reductions in per capita de-
mand can reduce the median frequency of DS4 measures,
e.g. by 50 % by the 2020s. A 35 % reduction in per capita de-
mand by 2020, which is perhaps unrealistic, would eliminate
the risk of drought orders. The Future Water Strategy (Defra,
2008) suggests a target of reducing per capita usage from 150
to 130 L day—1, a 13 % reduction by 2030. By 2050, even a
35% reduction in per capita demand is no longer effective
and new supply options need to be considered.

The London Water Resource Zone supply—demand deficit
is currently finely balanced and it is recognized that a new
supply resource will be required by the end of the 2020s
(Thames Water, 2014). The UK’s first desalination plant built
in the Thames Gateway became operational in 2010. Our re-
sults show that this new resource increases the reliability of
supply through the 2020s; however, by the 2050s, consistent
with Borgomeo et al. (2014), our analysis shows that fur-
ther new resource may be required. Here, we go further to
consider additional supply options. A new reservoir with a
storage capacity of 100 millionm? is a beneficial new re-
source in the 2050s; however, in addition to the socioeco-
nomic costs of new schemes, climate sensitivity of both sup-
ply and demand reduction options also need to be considered.
For instance leakage reduction and artificial recharge are not
as sensitive to externalities as new storage options which
require adequate precipitation or personal usage reductions
given a warmer climate. In their 2011 study, Darch et al.
found that the cost effectiveness of new reservoir options
for the Thames catchment are sensitive to assumptions about
climate change. Compulsory metering and leakage reduc-
tion schemes were selected under all of the scenarios, with
a new reservoir option becoming plausible by the 2050s un-
der medium emissions scenarios. By the 2080s, it was found
that a strategic transfer, e.g. Severn—Thames would also be
necessary; alternatives such as indirect reuse and further de-
salination capacity were also considered but are much more
expensive and carbon intensive (Darch et al., 2011).
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Results from this study advocate the twin-track approach
of demand reductions and new supply options to minimize
the risk of severe imposed restrictions on water resources.
Considering a plausible representation of future climate, de-
mand scenarios and potential adaptation strategies will aid
water managers’ assessment of where vulnerabilities occur.
Hall and Borgomeo (2013) proposed a framework to test
strategies for adapting to risks that enables testing large num-
bers of synthetic hydrological sequences and allows explo-
ration of different sources of uncertainty including climate,
catchment responses, and demands. In their case study on
Adelaide’s southern water supply system, Beh et al. (20153,
b) and Paton et al. (2014) demonstrate a multi-objective evo-
lutionary algorithm framework to consider the trade-offs be-
tween reducing greenhouse gas emissions while planning
sustainable urban water supply systems. Applied to North
Carolina, Zeff et al. (2014) investigated how more flexible
and adaptable water supply portfolios can be implemented
alongside financial mitigation tools to reduce trade-offs be-
tween fluctuations of revenues and costs of implementing
new solutions. Haasnoot et al. (2014) demonstrate the de-
velopment of adaptation pathways whereby environment and
policy responses are analysed through time to develop an en-
semble of plausible futures to support decision making un-
der uncertainty. Applying the approach and outcomes from
this research in such risk frameworks would be valuable in
considering costs, benefits, and trade-offs of adaptation mea-
sures. This would facilitate adaptive strategies that are able to
evolve as new information becomes available; this is partic-
ularly useful given climate model, demographic, and supply
uncertainty.

This study has advanced understanding of the potential
future water resource risk and possible adaptation options
for managing these risks for the Thames catchment. How-
ever, the study has a number of limitations, in particular one
model chain and hence uncertainties were considered; multi-
ple models and methods would result in further confidence in
the results and interpretations. We used the UKCP09 proba-
bilistic climate scenarios only for the medium emission sce-
nario, for two time periods; although Harris et al. (2013) in-
dicate that for the 2080s the uncertainty in the UKCP09 PPE
is the cause of a greater proportion of uncertainty in flow and
water shortage probability than is caused by the emissions
scenario. We used only one hydrological model, CATCH-
MOD, and one parameter set, although this has been exten-
sively tested for the Thames catchment (e.g. Davis, 2001;
Wilby, 2005; Wilby and Harris, 2006; Manning et al., 2009).
Wilby and Harris (2006) showed how both choice of hydro-
logical model and choice of model parameters can affect the
outcome of the modelling study. We have only considered
the impacts of climate change and demand change on wa-
ter resource availability at defined points in the future, i.e.
2020s and 2050s; however, there is a growing practical inter-
est on how changes play out throughout a planning horizon
such as an Asset Management Plan period. For this a tran-
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sient implementation of the single-site NSRP model and Cli-
matic Research Unit (CRU) weather generator (Burton et al.,
2010b; Blenkinsop et al., 2013) could be implemented (e.g.
Goderniaux et al., 2011).

5 Conclusions

The application of a sequence of models, including an exten-
sion of the UKCPQ9 weather generator that generates down-
scaled, probabilistic projections of rainfall on a grid over the
Thames catchment, indicates that the hazard of inadequate
water supply is expected to increase as a function of both cli-
matic and socioeconomic drivers. Here we show that these
hazards can be managed most effectively through a portfolio
of adaptation measures.

Population growth exhibits a greater contribution to
drought risk than climate projections. An extreme reduction
of 35% in daily per capita allocation would be necessary
to offset application of drought orders by 2020. However,
a relatively small decrease would have a significant impact,
yet moving towards 2050 the need for new supply options
could intensify. We found that increased supply from various
adaptation options may compensate for increasingly variable
flows; however, without reductions in overall demand for wa-
ter resources such options will not be sufficient to adapt to
both climate change projections and a growing population.
For example, a 100% reduction in the median number of
DS4 days by 2050 can be achieved through leakage reduc-
tion and a new storage reservoir. An additional 37.5% im-
provement can be obtained by adding the contribution of the
desalination plant to this portfolio. A 15 % reduction in over-
all demand in 2020 and 30 % in 2050 has a greater impact
on reducing the frequency of DS4 days than any of the in-
dividual or combinations of supply options. Water demand
reductions are clearly important in reducing water resource
deficits; however, given projected population growth these
will need to be significant to offset demand increases along-
side climate change.

Like other cities, London is at risk and needs to adapt to
a range of climate-related hazards, e.g. flooding, urban heat,
and subsidence (Hallett, 2013) that need to be managed syn-
ergistically to avoid any potential conflicts (Dawson, 2007).
Many urban areas have set greenhouse gas emission reduc-
tion targets (Heidrich et al., 2013). Reducing water demand
can reduce energy consumption, as water use in the home ac-
counts for 89 % of all carbon emissions resulting from water
use (Environment Agency, 2008). Conversely, the introduc-
tion of energy intensive adaptation options such as desali-
nation plants or inter-basin transfers may conflict emission
reduction targets.

Given the typical investment timescale to plan, approve,
and implement changes, decisions for water management in-
frastructure development can have consequences over long
timescales (Hallegatte, 2009). When considering any major
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infrastructure investment and development, such as a new
reservoir, a range of environmental, economic, and social
consequences need to be critically analysed. The approach
demonstrated here can be used to assess a range demand and
supply adaptations that can be implemented and be effective
on short and long timescales to make robust decisions about
water resource management.

This study of the Thames catchment and subsequent anal-
ysis has highlighted the following priorities for future re-
search. Firstly, which will be addressed in a forthcoming pa-
per, is an extension of the climate scenarios to include the
2080s time period, coupled with the application of a spatial
weather generator feeding a physically based, spatially dis-
tributed hydrological model which will allow better represen-
tation of both the climatological and land cover heterogeneity
of the catchment. Furthermore, it will enable changes in land
cover, i.e. increasing urban areas to be considered. Secondly,
recognising the importance of groundwater in the Thames
catchment and hence the potential impact that multi-season
droughts may have on the area, further research is needed
to understand how trends in such phenomena may affect or
influence the choice of adaptation options. This, alongside a
third research priority looking more generally about the se-
quencing of implementation of adaptation options over in-
dicative planning horizons taking account of trade-offs with
reducing greenhouse gas emissions or investment portfolios
could make use of more robust decision making frameworks
under uncertainty such as those proposed by for example Beh
et al. (2015b) or Haasnoot et al. (2014).

The Supplement related to this article is available online
at doi:10.5194/hess-20-1869-2016-supplement.
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