



## Supplement of

## High-end climate change impact on European runoff and low flows – exploring the effects of forcing biases

Lamprini V. Papadimitriou et al.

Correspondence to: Ioannis K. Tsanis (tsanis@hydromech.gr)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

## **Electronic Supplementary Material**

Table S1. Results of linear regression applied to basin aggregated annual average runoff production for raw and bias adjusted Euro-CORDEX data.

|            | Basin's Annual Average Runoff Production [mm/year] |          |           |        |          |                     |      |         |                |           |        |          |                     |      |  |
|------------|----------------------------------------------------|----------|-----------|--------|----------|---------------------|------|---------|----------------|-----------|--------|----------|---------------------|------|--|
|            | Raw                                                |          |           |        |          |                     |      |         | Bias Corrected |           |        |          |                     |      |  |
| e          |                                                    | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.32 |         | Coeff.         | St. Error | tStat  | P-value  | r                   | 0.19 |  |
| Danuk      | Interc.                                            | 829.12   | 127.91    | 6.48   | 1.82E-09 | R <sup>2</sup>      | 0.10 | Interc. | 451.47         | 104.08    | 4.34   | 2.91E-05 | R <sup>2</sup>      | 0.04 |  |
|            | Х                                                  | -0.24    | 0.06      | -3.77  | 2.45E-04 | Adj. R <sup>2</sup> | 0.09 | Х       | -0.11          | 0.05      | -2.19  | 3.02E-02 | Adj. R <sup>2</sup> | 0.03 |  |
| Rhine      |                                                    | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.10 |         | Coeff.         | St. Error | tStat  | P-value  | r                   | 0.08 |  |
|            | Interc.                                            | 950.24   | 228.55    | 4.16   | 5.87E-05 | R <sup>2</sup>      | 0.01 | Interc. | 640.82         | 204.57    | 3.13   | 2.15E-03 | R <sup>2</sup>      | 0.01 |  |
|            | Х                                                  | -0.13    | 0.11      | -1.14  | 2.58E-01 | Adj. R <sup>2</sup> | 0.00 | Х       | -0.09          | 0.10      | -0.93  | 3.56E-01 | Adj. R <sup>2</sup> | 0.00 |  |
| Elbe       |                                                    | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.10 |         | Coeff.         | St. Error | tStat  | P-value  | r                   | 0.26 |  |
|            | Interc.                                            | 112.23   | 155.05    | 0.72   | 4.70E-01 | R <sup>2</sup>      | 0.01 | Interc. | -171.71        | 119.48    | -1.44  | 1.53E-01 | R <sup>2</sup>      | 0.07 |  |
|            | Х                                                  | 0.09     | 0.08      | 1.18   | 2.39E-01 | Adj. R <sup>2</sup> | 0.00 | Х       | 0.18           | 0.06      | 2.99   | 3.38E-03 | Adj. R <sup>2</sup> | 0.06 |  |
|            |                                                    | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.54 |         | Coeff.         | St. Error | tStat  | P-value  | r                   | 0.49 |  |
| Guac       | Interc.                                            | 794.88   | 98.58     | 8.06   | 4.76E-13 | R <sup>2</sup>      | 0.29 | Interc. | 713.59         | 100.97    | 7.07   | 9.31E-11 | R <sup>2</sup>      | 0.24 |  |
|            | Х                                                  | -0.35    | 0.05      | -7.21  | 4.46E-11 | Adj. R <sup>2</sup> | 0.28 | Х       | -0.31          | 0.05      | -6.28  | 4.87E-09 | Adj. R <sup>2</sup> | 0.23 |  |
| emio<br>ki |                                                    | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.80 |         | Coeff.         | St. Error | tStat  | P-value  | r                   | 0.86 |  |
|            | Interc.                                            | -2257.94 | 186.45    | -12.11 | 6.46E-23 | R <sup>2</sup>      | 0.63 | Interc. | -2717.09       | 159.07    | -17.08 | 1.06E-34 | R <sup>2</sup>      | 0.74 |  |
| ž          | Х                                                  | 1.36     | 0.09      | 14.83  | 1.72E-29 | Adj. R <sup>2</sup> | 0.63 | Х       | 1.50           | 0.08      | 19.16  | 2.81E-39 | Adj. R <sup>2</sup> | 0.74 |  |

1

|              | Basin's Annual 10 <sup>th</sup> percentile Runoff Production [mm/year] |          |           |        |          |                     |      |                |         |           |        |          |                     |      |
|--------------|------------------------------------------------------------------------|----------|-----------|--------|----------|---------------------|------|----------------|---------|-----------|--------|----------|---------------------|------|
|              | Raw                                                                    |          |           |        |          |                     |      | Bias Corrected |         |           |        |          |                     |      |
| Danub<br>e   |                                                                        | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.78 |                | Coeff.  | St. Error | tStat  | P-value  | r                   | 0.75 |
|              | Interc.                                                                | 817.99   | 53.05     | 15.42  | 6.94E-31 | R <sup>2</sup>      | 0.61 | Interc.        | 442.02  | 32.50     | 13.60  | 1.49E-26 | R <sup>2</sup>      | 0.56 |
|              | Х                                                                      | -0.36    | 0.03      | -13.96 | 2.09E-27 | Adj. R <sup>2</sup> | 0.60 | Х              | -0.20   | 0.02      | -12.80 | 1.29E-24 | Adj. R <sup>2</sup> | 0.56 |
| Rhine        |                                                                        | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.72 |                | Coeff.  | St. Error | tStat  | P-value  | r                   | 0.69 |
|              | Interc.                                                                | 1665.80  | 127.58    | 13.06  | 3.13E-25 | R <sup>2</sup>      | 0.52 | Interc.        | 1102.30 | 94.45     | 11.67  | 7.82E-22 | R <sup>2</sup>      | 0.48 |
|              | Х                                                                      | -0.74    | 0.06      | -11.76 | 4.59E-22 | Adj. R <sup>2</sup> | 0.52 | Х              | -0.50   | 0.05      | -10.78 | 1.21E-19 | Adj. R <sup>2</sup> | 0.47 |
| Elbe         |                                                                        | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.46 |                | Coeff.  | St. Error | tStat  | P-value  | r                   | 0.39 |
|              | Interc.                                                                | 530.57   | 79.89     | 6.64   | 8.18E-10 | R <sup>2</sup>      | 0.21 | Interc.        | 139.24  | 26.24     | 5.31   | 4.84E-07 | R <sup>2</sup>      | 0.15 |
|              | Х                                                                      | -0.23    | 0.04      | -5.84  | 4.19E-08 | Adj. R <sup>2</sup> | 0.21 | Х              | -0.06   | 0.01      | -4.75  | 5.40E-06 | Adj. R <sup>2</sup> | 0.14 |
| Guadi<br>ana |                                                                        | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.60 |                | Coeff.  | St. Error | tStat  | P-value  | r                   | 0.54 |
|              | Interc.                                                                | 4.70     | 0.55      | 8.61   | 2.35E-14 | R <sup>2</sup>      | 0.36 | Interc.        | 0.02    | 0.00      | 7.63   | 4.97E-12 | R <sup>2</sup>      | 0.29 |
|              | Х                                                                      | 0.00     | 0.00      | -8.47  | 5.23E-14 | Adj. R <sup>2</sup> | 0.36 | Х              | 0.00    | 0.00      | -7.15  | 6.16E-11 | Adj. R <sup>2</sup> | 0.28 |
| Kemij<br>oki |                                                                        | Coeff.   | St. Error | tStat  | P-value  | r                   | 0.91 |                | Coeff.  | St. Error | tStat  | P-value  | r                   | 0.80 |
|              | Interc.                                                                | -1048.22 | 43.96     | -23.85 | 9.80E-49 | R <sup>2</sup>      | 0.82 | Interc.        | -247.59 | 16.93     | -14.62 | 5.35E-29 | R <sup>2</sup>      | 0.64 |
|              | Х                                                                      | 0.53     | 0.02      | 24.41  | 8.67E-50 | Adj. R <sup>2</sup> | 0.82 | Х              | 0.13    | 0.01      | 15.18  | 2.62E-30 | Adj. R <sup>2</sup> | 0.64 |

Table S2. Results of linear regression applied to basin aggregated annual 10th percentile runoff production for raw and bias adjusted Euro-CORDEX data.



Figure S1. Absolute differences between Euro-CORDEX data bias adjusted against the WFDEI dataset and raw Euro-CORDEX data, for the variables of precipitation (right block) and temperature (left block). Differences are calculated from the historical (1976-2005), +2 SWL and +4 SWL time-slice averages, for all dynamical downscaled GCMs and their ensemble mean. Bottom block: Coefficient of variation between the ensemble members, for raw and bias corrected against the WFDEI dataset precipitation and temperature forcing variables, for the historical, +2 SWL and +4 SWL time-slices. The average value for the pan-European area is shown in each sub-figure.



Figure S2. Absolute differences between Euro-CORDEX data bias adjusted against the E-OBS dataset and raw Euro-CORDEX data, for the variables of precipitation (right block) and temperature (left block). Differences are calculated from the historical (1976-2005), +2 SWL and +4 SWL time-slice averages, for all dynamical downscaled GCMs and their ensemble mean. Bottom block: Coefficient of variation between the ensemble members, for raw and bias corrected against the E-OBS dataset precipitation and temperature forcing variables, for the historical, +2 SWL and +4 SWL time-slices. The average value for the pan-European area is shown in each sub-figure.

| <-15%<br>-15%5%<br>-5% - 5%<br>5% - 15%<br>>15% | Bias Corrected<br>with WFDEI |                 |                           | Bias Correcte<br>with E-OBS | d<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |                         |  |
|-------------------------------------------------|------------------------------|-----------------|---------------------------|-----------------------------|--------------------------------------------------------------------------------------------------|-------------------------|--|
|                                                 | Bias C                       | orrected with W | Bias Corrected with E-OBS |                             |                                                                                                  |                         |  |
|                                                 | Drier<br>output              | Wetter output   | Insignificant<br>change   | Drier<br>output             | Wetter output                                                                                    | Insignificant<br>change |  |
| Percent of pan-<br>European land area           | 70.40%                       | 26.01%          | 3.59%                     | 83.62%                      | 14.67%                                                                                           | 1.70%                   |  |
| Average<br>percent change                       | -44.15%                      | 148.77%         | -0.53%                    | -56.10%                     | 215.33%                                                                                          | -0.87%                  |  |
| Average                                         | 1                            |                 |                           |                             |                                                                                                  |                         |  |

Figure S3. The effect of bias correction on the ensemble mean of average runoff production for the baseline period (1976-2005). Figures: Relative difference between the ensemble means of bias corrected (left:with WFDEI, right:with E-OBS) and raw forcing data. Differences between -5% and 5% are classified as insignificant, differences <-5% as drier output and differences >5% as wetter output after bias correction. Table: percent of land area that falls into each category of change and average of the changes.



Figure S4. Ensemble mean of average runoff production from Euro-CORDEX data bias adjusted against the E-OBS dataset. Top row: Runoff production averaged over the baseline period (1976-2005) (top row), absolute (middle row) and percent change (bottom row) in ensemble mean runoff in the +4 SWL projected time-slice. Bottom row: coefficient of variation of the ensemble members for the baseline period (left column), coefficient of variation of the projected absolute changes in the +4 SWL projected time-slice (middle column) and model agreement towards a wetter change in the +4 SWL projected time-slice



Figure S5. Ensemble mean of 10<sup>th</sup> percentile runoff production from Euro-CORDEX data bias adjusted against the WFDEI dataset. Top row: 10<sup>th</sup> percentile runoff production derived on an annual basis averaged over the baseline period (1976-2005) (top row), absolute (middle row) and percent change (bottom row) in ensemble mean runoff in the +4 SWL projected time-slice. Bottom row: coefficient of variation of the ensemble members for the baseline period (left column), coefficient of variation of the projected absolute changes in the +4 SWL projected time-slice (middle column) and model agreement towards a wetter change in the +4 SWL projected time-slice.



Figure S6. Comparison between the simulations of raw Euro-CORDEX data and bias adjusted against two different datasets (WFDEI and E-OBS) for five study basins. Bars show the ensemble means and error bars the minimum and maximum ensemble member values. (Top row) Annual  $10^{th}$  percentile runoff production for the period 1976 to 2005.OBS values are derived from GRDC discharge measurements converted to basin averages at the annual time-scale. (Middle row) Percent change in annual  $10^{th}$  percentile runoff production at the +2 SWL and (bottom row) at the +4 SWL.