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Abstract. Fluctuant and complicated hydrological processes

can result in the uncertainty of runoff forecasting. Thus, it

is necessary to apply the multi-method integrated modeling

approaches to simulate runoff. Integrating the ensemble em-

pirical mode decomposition (EEMD), the back-propagation

artificial neural network (BPANN) and the nonlinear regres-

sion equation, we put forward a hybrid model to simulate the

annual runoff (AR) of the Kaidu River in northwest China.

We also validate the simulated effects by using the coeffi-

cient of determination (R2) and the Akaike information cri-

terion (AIC) based on the observed data from 1960 to 2012

at the Dashankou hydrological station. The average abso-

lute and relative errors show the high simulation accuracy

of the hybrid model. R2 and AIC both illustrate that the hy-

brid model has a much better performance than the single

BPANN. The hybrid model and integrated approach elicited

by this study can be applied to simulate the annual runoff of

similar rivers in northwest China.

1 Introduction

The description of hydrological processes is the basis of

hydrological modeling and simulation. Many models have

been developed for describing hydrological processes over

the past decades. From different perspectives, these hydro-

logic models can be classified as stochastic and determinis-

tic models according to their mathematical property, classi-

fied as conceptual and physically based models according to

the physical processes involved in modeling, or classified as

lump and distributed models according to the spatial descrip-

tion of the watershed process (Refsgaard, 1996; Moglen and

Beighley, 2002).

Among the hydrologic models, distributed hydrological

models are widely used. The Soil, Water, Atmosphere and

Plant (SWAP) model has been intensively validated during

the past 2 decades (van Dam et al., 1997; Gusev and Na-

sonova, 2003; Kroes et al., 2000; Gusev et al., 2011; Ma et

al., 2011). Different versions of SWAP are validated against

various observed hydrothermal characteristics. The valida-

tions are performed both for “point” experimental sites and

for catchments and river basins with different areas (from

10−1 to 105 km2) on a long-term basis and under different

environmental conditions (Nasonova and Gusev, 2007). The

Soil and Water Assessment Tool (SWAT) model is a contin-

uation of almost 30 years of modeling efforts conducted by

the USDA Agricultural Research Service and is widely used

around the world. A number of scientists have used SWAT

model for simulating streamflow and related hydrologic anal-

yses (Gan and Luo, 2013; Levesque et al., 2008; Liu et al.,

2008, 2014; Luo et al., 2012; Shope et al., 2014; Lin et al.,

2015; Yang and Musiake, 2003). According to the investi-

gation by Gassman et al. (2007), there have been hundreds

of published articles including SWAT applications, reviews

of SWAT components, or other studies of SWAT in the past

decades.

However, the application prerequisite of the distributed hy-

drological model is to successfully obtain a large number of

parameters (such as temperature, precipitation, evapotranspi-

ration, topography, land use, soil moisture, and vegetation
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coverage) at each grid cell (Yang et al., 2015). But for a large

river basin with sparse meteorological and hydrological sites

as well as lacking of observed data, it is difficult to obtain the

large number of parameters mentioned above at each grid

cell. Therefore, more studies are required to explore the hy-

drological processes from different perspectives by means of

different methods.

In fact, hydrologists have used many methods for under-

standing the variation pattern of streamflow in the last 2

decades. Various methods such as the grey model (Yu et

al., 2001; Trivedi and Singh, 2005), functional-coefficient

time series model (Shao et al., 2009), wavelet analysis (La-

bat et al., 2000a, b; Lane, 2007; Sang, 2012), genetic algo-

rithm (Seibert, 2000), and artificial neural network (Hsu et

al., 1995; Hu et al., 2008; Tokar and Johnson, 1999; Modar-

res, 2009) have been widely used for hydrologic analysis and

streamflow simulation. Hybrid models have been paid spe-

cial attention (Nourani et al., 2009; Zhao et al., 2009; Sahay

and Srivastava, 2014; Xu et al., 2014; Yarar, 2014).

The water resource in northwest China which can be uti-

lized is mainly from the streamflow of inland rivers. Hence

the runoff variation of inland rivers has aroused more and

more attention (Chen et al., 2009; Li et al., 2008; Wang et al.,

2010; Xu et al., 2011). However, the runoff variation pattern

of inland rivers in northwest China has not been clearly com-

prehended because of the complexity of the hydrological pro-

cess (Xu et al., 2009, 2010). To understand the runoff vari-

ation pattern of inland rivers in northwest China, this study

selected the Kaidu River as a typical case of an inland river in

northwest China and integrated the ensemble empirical mode

decomposition (EEMD), the back-propagation artificial neu-

ral network (BPANN) and nonlinear regression equation to

conduct a hybrid model for simulating annual runoff (AR).

2 Study basins and data

2.1 Study area

The Kaidu River is situated at the north fringe of Yanqi Basin

on the south slope of the Tianshan Mountains in Xinjiang

and is enclosed within latitudes 42◦14′–43◦21′ N and lon-

gitudes 82◦58′–86◦05′ E (Fig. 1). The river starts from the

Hargat Valley and the Jacsta Valley in Sarming Mountain

with a maximum altitude of 5000 m (the middle part of the

Tianshan Mountain) and ends in Bosten Lake, which is lo-

cated in the Bohu County of Xinjiang. This lake is the largest

lake in Xinjiang (also once the largest interior fresh water

lake in China) and immediately starts another river known as

the Kongque River. The catchment area of the Kaidu River

above Dashankou is 18 827 km2, with an average elevation

of 3100 m (Chen et al., 2013).

Bayinbuluke wetland, which is in the Kaidu River basin,

is the largest wetland of the Tianshan Mountain area. The

large areas of grassland and marshes in Bayinbuluke wetland

Figure 1. Location of the Kaidu River, northwest China.

have provided favorable conditions for swan survival and re-

production. For this reason, it has become the China’s sole

state-level swan nature reserve. The annual average tempera-

ture is only −4.6 ◦C, and the extreme minimum temperature

is−48.1 ◦C. The snow cover days are as many as 139.3 days,

and the largest average snow depth is 12 cm. As a unique

high alpine cold climate with unique topography, it culti-

vates various alpine grassland and meadow ecosystems, hav-

ing abundant aquatic plants and animals and good grassland

resources. It is the birthplace and water-saving place of the

Kaidu River and plays a crucial role in regulating and pre-

serving water and maintaining water balance. It also plays

an utmost important role in protecting the Bosten Lake, its

surrounding wetlands, and the ecological environment and

green corridor of the lower reaches of the Tarim River.

2.2 Data

The purpose of this study is to well understand the inter-

nal variation pattern by simulation method, so we used the

AR time series data from 1960 to 2012, which were ob-

served at the Dashankou hydrological station. To analyze

the correlation between the AR and regional climate change,

the data of precipitation and temperature in the same pe-

riod at the Bayinbuluke meteorological station were used.

The two stations are located in the mountainous area (the

source area of the river) where human activities are relatively

rare. Therefore, it was assumed that the observed data reflect

natural conditions (Chen et al., 2013). In order to compare

the hydrological cycle of the Kaidu River and the El Niño

meteorological phenomena, we also used the NINO3.4 in-

dex from NOAA Earth System Research Laboratory (http:

//www.esrl.noaa.gov/psd/data/climateindices/list/#Nina34).

3 Methods

To simulate the AR, we made a hybrid model by integrat-

ing EEMD, BPANN and regression equation. We firstly used
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the EEMD method to decompose the AR into four intrinsic

mode functions (i.e., IMF1, IMF2, IMF3 and IMF4) and a

trend (RES). Then we simulated IMFs by the BPANN, and

simulated RES (trend) by a nonlinear regression equation.

Finally, the simulated values for AR are obtained from the

summation of the simulated results of the trend (RES) and

IMFs. The framework of the hybrid model is shown in Fig. 2.

3.1 EEMD method

The EEMD is a new noise-assisted data analysis method

based on the empirical mode decomposition (EMD), which

defines the true IMF components as the mean of an ensemble

of trials, each consisting of a signal plus white noise of finite

amplitude (Wu and Huang, 2004, 2009).

The EMD has been developed for nonlinear and nonsta-

tionary signal analysis, though only empirically. The EMD

decomposes a signal into several IMFs; then the frequencies

of the IMFs are arranged in decreasing order (high to low),

where the lowest frequency of the IMF components repre-

sents the overall trend of the original signal or the average

of the time series data (Huang et al., 1998, 1999). Most im-

portantly, each of these IMFs must satisfy two conditions:

(1) the number of extrema and the number of zero crossings

must be equal or differ at most by one; (2) at any point, the

mean value of the envelope defined by the local maxima and

local minima must be zero.

The EMD processing is as follows.

For the original signal x(t), first we find all the local max-

ima and minima, and then use the cubic spline interpolation

method to form the upper envelope u1(t) and the lower enve-

lope u2(t); the local mean envelope m1(t) can be expressed

as

m1(t)=
1

2
(u1(t)+ u2(t)) . (1)

The first component h1(t) can be obtained by subtracting the

local mean envelopem1(t) from the original signal x(t), with

the mathematical expression as follows:

h1(t)= x(t)−m1(t). (2)

If h1(t) does not satisfy the IMF conditions, regard it as the

new x(t), and repeat the steps in Eqs. (1) and (2) k times until

h1k(t) is obtained as an IMF.

h1k(t)= h1(k−1)(t)−m1k(t) (3)

Designate C1=h1k , and select a stoppage criterion defined

as follows:

SD=

T∑
t=0

[(
h1(k−1)(t)−h1k(t)

)
h1(k−1)(t)

]2

. (4)

Here, the standard deviation (SD) is smaller than a prede-

termined value. If the above process is repeated too many
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Figure 2. The framework of the hybrid model to simulate AR.

times, the IMF will become a pure frequency modulation sig-

nal with constant amplitude in the actual operation, possibly

resulting in loss of its actual meaning.

Once the first IMF component is determined, the

residue r1(t) can also be obtained by separating C1 from the

rest of the data, i.e.,

r1(t)= x(t)−C1. (5)

By taking the residue r1(t) as new data and repeating steps

(Eqs. 1–5), a series of IMFs – namely, C2, C3, . . . , Cn – can

be obtained.

The sifting process finally stops when the residue, rn(t),

becomes a monotonic function or a function with only one

extremum from which no more IMFs can be extracted. Fi-

nally, the original signal x(t) can be reconstructed by n IMFs

(i.e., Ci(t)) and a residue rn(t) as follows:

x(t)=

n∑
i=1

Ci(t)+ rn(t). (6)

Although EMD has many merits, there is a shortcoming of

mode mixing in EMD. To overcome the mode mixing prob-

lem, the EEMD has been developed for nonlinear and non-

stationary signal analysis (Wu and Huang, 2009).

The principle of EEMD is that adding white noise to

the data, which distributes uniformly in the whole time–

frequency space, the bits of signals of different scales can be

automatically designed onto proper scales of reference estab-

lished by the white noise.

The EEMD algorithm is straightforward and can be de-

scribed as follows: first, add a white noise series to the origi-

nal signal

xi(t)= x(t)+ ni(t), (7)
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Figure 3. The back-propagation artificial neural network.

where xi(t) is the new signal after adding ith white noise

to the original signal data x(t); ni(t) is the white noise.

Then, decompose the signal with added white noise into

IMFs using EMD according to the steps of Eqs. (1)–(5);

the corresponding IMF components Cij (t) and residue com-

ponent ri(t) of the decompositions were obtained. Finally,

adopt the means of the ensemble corresponding to the IMFs

of the decompositions as the final result, namely

Cj (t)=
1

N

N∑
i=1

Cij (t), (8)

whereCj (t) is the final j th IMF component,N is the number

of white noise series, and Cij (t) denotes the j th IMF from

the added white noise trial.

Wu and Huang (2009) noted that the amplitude size of the

added noise exerts little influence on the decomposition re-

sults on the condition that it is limited, is not vanishingly

small or very large, and can include all possibilities. There-

fore, the application of the EEMD method does not rely

on subjective involvement; it is an adaptive data analysis

method.

The significance test in EEMD can be carried out by means

of white noise ensemble disturbance, to get each IMF credi-

bility (Wu and Huang, 2009; Huang and Shen, 2005).

In addition, to solve the overshooting and undershooting

phenomenon of the impact of the boundary on the decom-

position process, mirror-symmetric extension (Huang and

Shen, 2005; Xue et al., 2013) was used to address the EEMD

decomposition boundary problem.

The residue of EEMD is a monotonic function that intrin-

sically presents the overall trend of a time series (Wu et al.,

2007, 2009, 2011). Thus, the reconstruction of signal x(t)

based on EEMD can be obtained as follows:

x(t)= IMF1+ IMF2+ . . .+ IMFn+RES(trend), (9)

where RES is the residue of EEMD, i.e., the trend of sig-

nal x(t).

In this study, we decomposed the AR time series to a

trend (RES) and four IMFs.

The MATLAB programs for EEMD are provided by

RCADA, National Central University, which can be down-
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loaded at the website (http://rcada.ncu.edu.tw/research1_

clip_ex.htm).

3.2 BPANN

In the BPANN, a number of smaller processing ele-

ments (PEs) are arranged in layers: an input layer, one

or more hidden layers, and an output layer (Hsu et al.,

1995). The input from each PE in the previous layer (xi)

is multiplied by a connection weight (wji). These connec-

tion weights are adjustable and may be likened to the coef-

ficients in statistical models. At each PE, the weighted input

signals are summed and a threshold value (θj ) is added. This

combined input (Ij ) is then passed through a transfer func-

tion (f (·)) to produce the output of the PE (yj ). The output

of one PE provides the input to the PEs in the next layer. This

process is summarized (Maier and Dandy, 1998) in Eqs. (13)

and (14) and illustrated in Fig. 3.

Ij =
∑

wjixi + θj (10)

yi = f
(
Ij
)

(11)

The error function of network at the t th moment is defined as

follows:

E(t)=
1

2

q∑
j=1

[
yj (t)− dj (t)

]2
, (12)

where yi(t) is the actual output and di(t) is the desired out-

put, respectively corresponding to ith neuron at t th moment.

When E(t)≤ ε (ε is a given error in advance), the network

will stop training, and the network model at this time is just

what we need.

We used the BPANN with a four-tier structure to simulate

IMF1, IMF2, IMF3 and IMF4 of the AR based on the results

from the EEMD. The four-tier structure of the BPANN for

each IMF is as follows (Fig. 4): an input layer with three

variables, i.e., (t − 1)th, (t − 2)th and (t − 3)th value of the

IMF; two hidden layers, in which the first layer contains three

neurons and the second layer contains four neurons; and an

output layer with a variable, i.e., t th value of the IMF.

The transfer function from the input layer to two hid-

den layers is tansig, i.e., the hyperbolic tangent sigmoid
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transfer function (http://www.mathworks.com/help/nnet/ref/

tansig.html). The transfer function from the hidden layers

to the output layer is purelin, i.e., the linear function (http:

//www.mathworks.com/help/nnet/ref/purelin.html).

The purpose of our BPANN is to capture the relationship

between a historical set of inputs and corresponding out-

puts. As mentioned above, this is achieved by repeatedly

presenting examples of the input/output relationship to the

model and adjusting the model coefficients (i.e., the connec-

tion weights) in an attempt to minimize an error function

between the historical outputs and the outputs predicted by

the model. This calibration process is generally referred to

as “training”. The aim of the training procedure is to adjust

the connection weights until the global minimum in the er-

ror surface has been reached. The network training process

(Moghadassi et al., 2009) is summarized in Fig. 5.

The back-propagation process is commenced by present-

ing the first example of the desired relationship to the net-

work. The input signal flows through the network, producing

an output signal, which is a function of the values of the con-

nection weights, the transfer function and the network ge-

ometry. The output signal produced is then compared with

the desired (historical) output signal with the aid of an error

(cost) function.

Because it can train any network as long as its weight, net

input, and transfer functions have derivative functions (Ker-

mani et al., 2005), we selected the Levenberg–Marquardt

optimization, i.e., trainlm (http://www.mathworks.com/help/

nnet/ref/trainlm.html), as a network training function in the

computing environment of MATLAB.

3.3 Nonlinear regression

In order to simulate the trend of AR, we fitted a quadratic

polynomial by using the nonlinear regression based on the

results from the EEMD. We conducted the quadratic polyno-

mial regression equation as follows:

y = at2+ bt + c, (13)

where the independent variable (t) is the time variable, and

the dependent variable (y) represents the trend of AR, which

is the RES obtained from the EEMD. The coefficients (a, b

and c) are obtained by the method of least squares (Lancaster

and Šalkauskas, 1986).

3.4 Simulated effect test

In order to identify the uncertainty of the simulated results,

the coefficient of determination was calculated as follows:

R2
= 1−

RSS

TSS
= 1−

n∑
i=1

(
yi − ŷi

)2
n∑
i=1

(yi − y)
2

, (14)
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Figure 5. Back-propagation training process.

where R2 is the coefficient of determination; ŷi and yi are

the simulated value and actual data of AR, respectively; y is

the mean of yi(i= 1, 2, . . . , n); RSS=
n∑
i=1

(yi − ŷi)
2 is the

residual sum of squares; and TSS=
n∑
i=1

(yi − y)
2 is the total

sum of squares. The coefficient of determination is a mea-

sure of how well the simulated results represent the actual

data. A bigger coefficient of determination indicates a higher

certainty and lower uncertainty of the estimates (Xu, 2002).

To compare the goodness of fit between our hybrid model

and single BPANN, we also used the measure of the Akaike

information criterion (AIC) (Anderson et al., 2000). The for-

mula of AIC is as follows:

AIC= 2k+ n ln(RSS/n), (15)

where k is the number of parameters estimated in the model;

n is the number of samples; and RSS is the same as in

Eq. (14). A smaller AIC indicates a better model (Burnham

and Anderson, 2002).

4 Results and discussion

4.1 Decomposition for AR

Figure 6 reveals anomaly fluctuations of the AR time series

in the Kaidu River during 1960–2012. It is clear that the AR

shows a strong nonlinear and nonstationary variation. Be-

cause of the nonlinear and nonstationary characteristics, it

is difficult to show the change law of the AR time series.

To discover intrinsic modes in the signal of AR, we de-

composed the AR time series by the EEMD method. For de-
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Figure 6. The anomaly time series of AR in the Kaidu River during

1960–2012.

composing the AR time series, the ensemble number is 100,

and the added noise has an amplitude that is 0.2 times the

standard deviation of the corresponding data, and four IMF

components (IMF1–4) and a trend component (RES) were

obtained. The decomposed results are showed in Fig. 7.

The significance test showed that IMF2, IMF3 and IMF4

reaches above the 95 % confidence level, while IMF1 reach

above 90 % confidence level. The variance contribution rate

of IMF1, IMF2, IMF3, IMF4 and RES (trend) is 28.29,

19.61, 10.11, 8.58 and 33.41 %, respectively. The summa-

tion of IMF1, IMF2, IMF3, IMF4 and RES represent the re-

construction for AR time series, which is very highly cor-

relative with its original data series. It can be seen that the

reconstruction for AR series with the original data series is

almost exactly the same (Fig. 8). This result illustrates that

the decomposition of the AR time series by EEMD had a

good prospective effect.

Each IMF component in Fig. 7 has its own physical mean-

ing, which reflects the inherent oscillation at a characteristic

scale. The four IMF components (IMF1–4) reflect the fluc-

tuation characteristics from high frequency to low frequency.

IMF1 presents the highest-frequency fluctuation, and IMF4

shows the lowest-frequency fluctuation. The fluctuation fre-

quency of IMF2 is higher than that of IMF3 but lower than

that of IMF1, and the fluctuation frequency of IMF3 is higher

than that of IMF4 but lower than that of IMF2. The resid-

ual (RES) of EEMD is a monotonic function that presents

the overall trend of the AR time series.

The multi-scale oscillations of runoff in the Kaidu River

reflect not only the periodic changes of the climatic system

under external forcing but also the nonlinear feedback of

the climatic system. To compare the hydrological cycle of

the Kaidu River and the El Niño meteorological phenomena,

we also decomposed the NINO3.4 index data series in the

same period by using the EEMD method. The results show

that the four IMF components (IMF1–4) of the NINO3.4

index data series respectively display quasi-3-year, quasi-

6-year, quasi-11-year and quasi-28-year periodic fluctuation

(Fig. 9), whereas the four IMF components (IMF1–4) of the

AR series in the Kaidu River respectively show quasi-3-year,

quasi-6-year, quasi-11-year and quasi-27-year cyclic varia-

Figure 7. The EEMD results for the time series of AR in the Kaidu

River.
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Figure 8. The correlation between the reconstruction of AR time

series based on EEMD and its original data.

tion (Fig. 7). Although the two cycles are not completely the

same, they show some comparability. A study showed that

there was a possible variability in droughts and wet spells

over China on the multi-year or decadal scale when one

strong El Niño event happened, but it does not mean that

each El Niño event must cause a wet–dry change (Su and

Wang, 2007). Similarly, the larger fluctuations of runoff in

the Kaidu River on the multi-year or decadal scale possibly

relate to strong El Niño events, but it does not mean that a big

change of runoff certainly corresponds to a strong El Niño

event. The possible reason is that the influencing factors in-

clude not only an El Niño event but also other factors.
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Figure 9. The EEMD results for the NINO3.4 index data series dur-

ing 1960–2012.

In fact, there are many other factors affecting the runoff,

such as the varied topography, vegetation cover and construc-

tion of a water conservancy project (Chen et al., 2013). Our

previous study showed that the runoff process of the Kaidu

River is closely related to the regional climate change (Xu

et al., 2014; Bai et al., 2015). To compare the cycles be-

tween the runoff in the Kaidu River and the regional climatic

factors in the study period, we used the EEMD method to

decompose the data series of annual precipitation (AP) and

annual average temperature (AAT) into four IMF compo-

nents (IMF1–4) and a trend. The results are similar to that of

the AR: the AP and AAT on the whole show an upward trend;

meanwhile (a) the AP presents quasi-3-year, quasi-6-year,

quasi-11-year and quasi-27-year cycles, and (b) the AAT

displays quasi-3-year, quasi-6-year, quasi-13-year and quasi-

27-year cycles. To further analyze the correlation between

runoff and precipitation and temperature, we reconstructed

interannual and interdecadal precipitation and temperature

variations, in which the interannual precipitation/temperature

was obtained by IMF1 and IMF2, while the interdecadal

precipitation/temperature was obtained by IMF3 and IMF4.

The results of multi-scale correlation analysis among annual

runoff, annual precipitation and annual average temperature

are shown in Table 1. Evidently – although there are differ-

ences in the length and strength of the periods among the pre-

cipitation, temperature and runoff changes – the positive cor-

relations between runoff, precipitation and temperature are

still significant except for interannual precipitation vs. inter-

Table 1. Correlations between runoff and climate factors.

Timescale Precipitation Temperature

vs. runoff vs. runoff

Interannual scale 0.666∗∗ 0.416∗∗

Interannual vs. interdecadal scale 0.205 0.441∗∗

Interdecadal vs. interannual scale 0.279∗ 0.438∗∗

Interdecadal scale 0.822∗∗ 0.617∗∗

Note: ∗∗ correlation is significant at the 0.01 level (two-tailed); ∗ correlation is

significant at the 0.05 level (two-tailed).

Table 2. R2 and AIC value of simulation models for the IMFs and

trend of AR.

IMFS R2 AIC

IMF1 0.9107 0.5789

IMF2 0.9619 −54.9342

IMF3 0.9859 −105.9041

IMF4 0.9980 −204.2977

Trend 0.9999 −405.1425

decadal runoff, suggesting that the precipitation and temper-

ature are two main causes of runoff variation. Furthermore,

the higher correlation between runoff and climate factors is

precipitation, followed by temperature at both the interannual

and interdecadal scales.

4.2 Simulation for IMFs

In order to capture the relationship between the historical

data and real-time output, we constructed the BPANN with a

four-tier structure to simulate IMF1, IMF2, IMF3 and IMF4

of the AR based on the results from the EEMD. Using

MATLAB software (http://www.mathworks.com/products/

matlab/), we selected the transfer function for the input layer

to the hidden layer and the hidden layer to the output layer

as the tangent sigmoid function (tansig) and the linear func-

tion (purelin), respectively, and chose “trainlm” as a training

function to train the network. We set the learning rate as 0.01

and the training error accuracy as 0.01, and randomly ex-

tracted 70, 15, and 15 % of the data in the time series of each

IMF as the training, testing, and validation samples, respec-

tively. We finally obtained the optimized network for each

IMF after thousands of training processes. Using the opti-

mized networks, we obtained the simulated results for IMF1,

IMF2, IMF3 and IMF4 (Fig. 10).

Table 2 presents the R2 and AIC value of the simulation

model (the optimized networks) for each IMF. The big co-

efficient of determination (R2) indicates that the simulated

accuracy for each IMF is very high. The smaller AIC value

means the better simulation effect, which indicates that the

simulated effect of IMF4 is the best, then followed by IMF3,

IMF2, and IMF1.
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Figure 10. Simulation for the IMFS of AR by BPANN.

4.3 Simulation for the trend

As mentioned above, the residue (RES) of EEMD presents

the overall trend of the AR time series. Because it is a mono-

tonic function, we can simulate the trend by a regression

equation. Based on the data of RES from EEMD, we ob-

tained the regression equation by using the method of least

squares as the following quadratic polynomial:

y = 0.002t2− 7.7975t + 7632.6, (16)

where t is the time, which is measured by year, and y is the

simulated value for the trend of the AR time series.

The coefficient of determination of Eq. (16) is as high

as 0.9999. It is evident that the simulated effect of the RES

(trend) is even better than that of IMF1, IMF2, IMF3 and

IMF4 (also see Table 2). The simulated results for the trend

of AR time series calculated by Eq. (16) are shown as Fig. 11.

4.4 Simulation for AR

Based on the idea and framework of the hybrid model men-

tioned previously in the Methods section of this study, we

can calculate the simulated value of AR for each year by

summing the simulated value of IMF1, IMF2, IMF3, IMF4

and RES. By summing the simulated value of IMF1, IMF2,

30

36

42

1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012

Year

T
re

nd
(1

0 8 m
 3 )

Trend Simulation for trend

 

Figure 11. Simulation for the trend of AR by nonlinear regression

equation.

Figure 12. Comparisons between the observed data of AR and its

simulated values for calibration period (1960–1989) and validation

period (1990–2012).

IMF3, IMF4 and RES for each year, we calculated the simu-

lated value of AR for each year.

For calibration and validation purposes, we divided the

whole data series into two periods: the calibration period,

i.e., 1960–1989, and the validation period, i.e., 1990–2012.

The calibration period is used for parameter estimation for

the EEMD, BPANN and nonlinear regression equation. The

validation period is used for validating the effectiveness of

the hybrid model. The simulation results show the excellent

performances of the model for both the calibration (1960–

1989) and validation (1990–2012) periods with R2 and AIC

value (Fig. 12), which is highly acceptable. Figure 12 shows

the observed data of AR and its simulated values by the hy-

brid model.

In order to compare and validate the simulated results from

the hybrid model, we also simulated the AR series by using a

single BPANN. Table 3 shows the simulated effect compar-

isons between the hybrid model and the single BPANN. It

can be seen that the coefficient of determination (R2) of the

hybrid model is as high as 0.9747, whereas that of the sin-

gle BPANN is only 0.4037. Moreover, the AIC value of the

hybrid model (3.1820) is far smaller than that of the single

BPANN (171.7801). It is clear that both R2 and AIC value

indicate that the simulated effect of the hybrid model is much

better than that of the single BPANN. Furthermore, the av-
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Table 3. Comparison of simulated effect between the hybrid model

and the single BPANN.

Hybrid Single

model BPANN

R2 0.9747 0.4037

AIC 3.1820 171.7801

Average absolute error (108 m3) 0.9970 3.5477

Average relative error (%) 2.9107 10.1079

erage absolute and relative error show the high simulation

accuracy of the the hybrid model.

All the indices illustrate that the hybrid model is much bet-

ter than the single BPANN. The reason is that the hybrid

model concentrated on the advantages of both EEMD and

BPANN, where the EEMD precisely decomposed the non-

linear and nonstationary signal of AR into IMFs, and the

BPANN well recognized and accurately simulated the IMFs.

Because the nonlinear and nonstationary AR signal contains

many components and each component has its own intrin-

sic mode, a single BPANN can not accurately recognize and

simulate all change patterns in AR series. For this reason,

this study used an integrated approach to conduct the hybrid

model. In order to identify the pattern of each component in

the nonlinear and nonstationary AR signal, we firstly used

the EEMD to decompose the AR series into four intrinsic

mode functions (i.e., IMF1, IMF2, IMF3 and IMF4) and a

trend (RES). Then we used the BPANN to accurately rec-

ognize the pattern of each IMF by net learning and training,

while using the nonlinear regression to exactly simulate the

pattern of the trend (RES). The above-simulated results have

already proved that our hybrid model is effective.

5 Conclusions

Integrating the ensemble empirical mode decomposition, the

back-propagation artificial neural network and the nonlinear

regression equation, we conducted a hybrid model to simu-

late the annual runoff of the Kaidu River in northwest China.

The main conclusions of this study are as follows:

1. The comparison between simulated values of annual

runoff and its original data shows the high simulation

accuracy of the hybrid model. Both of the small aver-

age absolute and relative errors illustrate the high sim-

ulation accuracy of the hybrid model. The big R2 and

small AIC both indicate that the simulated effect of the

hybrid model is much better than that of the single back-

propagation artificial neural network.

2. This study elicited an integrated approach to simulate

annul runoff of inland rivers, and the framework of the

hybrid model conducted by this study can be applied to

other inland rivers in northwest China.
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