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Abstract. Accurate prediction of groundwater table is im-

portant for the efficient management of groundwater re-

sources. Despite being the most widely used tools for de-

picting the hydrological regime, numerical models suffer

from formidable constraints, such as extensive data demand-

ing, high computational cost, and inevitable parameter un-

certainty. Artificial neural networks (ANNs), in contrast, can

make predictions on the basis of more easily accessible vari-

ables, rather than requiring explicit characterization of the

physical systems and prior knowledge of the physical param-

eters. This study applies ANN to predict the groundwater ta-

ble in a freshwater swamp forest of Singapore. The inputs to

the network are solely the surrounding reservoir levels and

rainfall. The results reveal that ANN is able to produce an

accurate forecast with a leading time of 1 day, whereas the

performance decreases when leading time increases to 3 and

7 days.

1 Introduction

Physical-based numerical models are widely used in ground-

water table simulation. Different numerical models have

been developed for different regions with different objec-

tives, such as to describe regional groundwater flow patterns,

and to understand local hydrological processes. (e.g. Matej et

al., 2007; Pool et al., 2011; Yao et al., 2015). Numerical mod-

els solve the deterministic equations to simulate the ground-

water systems based on the knowledge of the system charac-

teristics, initial conditions, system forcings, etc. To develop

a groundwater numerical model, essential data include: to-

pography, geological coverage, soil properties, land use map,

vegetation distribution, evapotranspiration information, hy-

drologic and climatic data, etc. Extensive data demanding

makes numerical models highly data dependent and data sen-

sitive. Fitting a physical model is not possible when data are

not sufficient; the accuracy of the numerical model to a great

extent depends on how accurate the model inputs are. Nu-

merical models are also less competent in forecasting as most

of the system forcings (e.g. evapotranspiration, rainfall) are

less predictable. As a result of aforementioned constraints,

numerical models tend to produce imperfect results in spite

of the perfect knowledge of the governing laws (Sun et al.,

2010).

To combat the deficiencies of the numerical models, ar-

tificial neural networks (ANNs) have emerged as an alter-

native modelling and forecasting approach with a variety of

applications in hydrology research (e.g. French et al., 1992;

Maier and Dandy, 2000). Unlike the traditional physical-

based models, the ANN-based approach does not require ex-

plicit characterization of the physical properties, or accurate

representation of the physical parameters, but rather simply

determines the system patterns based on the relationships be-

tween inputs and outputs mapped in the training process.

ANNs typically use input variables that are more accessi-

ble to make predictions, and therefore circumvent the data

reliance inherent to the numerical models. As compared to

classical regression techniques, e.g. linear regression mod-
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elling, ANNs are capable of simulating the nonlinear dynam-

ics of the hydrological processes and hence result in superior

modelling and forecasting performance.

ANNs in recent years have also been successfully applied

in groundwater table modelling. Yang et al. (1997) utilized

ANN to predict groundwater table variations in subsurface-

drained farmland. Coulibaly et al. (2001) calibrated three

different ANN models using groundwater recordings and

other hydrometeorological data to simulate groundwater ta-

ble fluctuations. Lallahem et al. (2005) showed the feasibility

of using ANN to estimate groundwater level in an uncon-

fined chalky aquifer. Daliakopoulous et al. (2005) examined

the performance of different ANN architectures and train-

ing algorithms in groundwater table forecasting. Taormina

et al. (2012) developed a two-step ANN model to simulate

the groundwater fluctuations in a coastal aquifer using past

observed groundwater levels and external inputs, i.e. evap-

otranspiration and rainfall. Most of above studies, however,

focus on applying ANN in large-scale semiarid or arid wa-

tersheds, where groundwater table is less variable and long-

term groundwater table variation (e.g. monthly, annually) is

of more concern. In addition, these studies use historical

groundwater tables as inputs to the network, requiring con-

tinuously long groundwater table recordings which can be a

luxury for many regions.

This study, for the first time, applies ANN to forecast

the groundwater table in a tropical wetland – the Nee Soon

Swamp Forest (NSSF) in Singapore. Being nourished with

water supply from reservoirs and precipitation, the ground-

water table in the NSSF is close to the ground level and ex-

tremely sensitive to the changes in hydrometeorological con-

ditions. This study selects surrounding reservoir levels and

rainfall as inputs to the network, avoiding the requirement on

continuously long groundwater table recordings. The fore-

cast is made with 3 leading times, i.e. 1 day, 3 days, and 7

days, which provide sufficient reaction time for human inter-

vention to maintain favourable hydrological conditions for

conserving local ecosystems. The methodology, application,

results, and conclusions are elaborated in the following sec-

tions.

2 Methodology

2.1 Overview

As defined by Haykin (1999), artificial neural networks

(ANNs) are massively parallel distributed processors made

up of simple processing units, known as neurons, which have

a natural propensity for storing experiential knowledge and

making it available for use. ANNs are inspired by biological

neural networks to emulate the way in which human brains

function. The fact that neurons can be interconnected in nu-

merous ways results in numerous possible topologies that can

be divided into two basic classes, i.e. feedforward neural net-

works (FNNs) and recurrent neural networks (RNNs; Graves

et al., 2009). In FNNs information flows from inputs to out-

puts in only one direction, whereas in RNNs some of the

information can flow not only in one direction from inputs to

outputs but also in the opposite direction.

There are many algorithms for training neural network

models, most of which employ some form of gradient de-

scent using backpropagation to compute the actual gradients

(Werbos, 1974). The backpropagation algorithm is imple-

mented by taking the derivatives of the cost function with re-

spect to the synaptic weights and then changing the weights

in a gradient-related direction (Sexton and Dorsey, 2000;

Mandischer, 2002).

This study opts for a standard FNN and a quasi-Newton

training algorithm, more specifically a multilayer perceptron

(MLP) trained with the Levenberg–Marquardt (LM) algo-

rithm, attributing to its superior accuracy in groundwater ta-

ble forecasting (Daliakopoulous et al., 2005).

2.2 Multilayer perceptron

Multilayer perceptron (MLP) was developed for pattern clas-

sification by Rosenblatt (1958). The architecture of a typical

MLP consists of an input layer, one hidden layer and an out-

put layer. In mathematical terms, a computational neuron in

the hidden or output layers can be described by following

pair of equations:

u=

n∑
i=1

wixi (1)

and

y = ϕ(u+ b), (2)

where x1, x2, . . . , xn are the input signals to the neuron, w1,

w2, . . . , wn are the synaptic weights, u is the linear combiner

of the input signals, b is the bias, and y is the output signal

of the neuron, whereas φ(·) is the activation function to limit

the amplitude of the output signal and to create a mapping

between the input and output signals.

The universal approximation theorem states that every

continuous function defined on a closed and bounded set can

be approximated arbitrarily closely by an MLP provided that

the number of neurons in the hidden layers is sufficiently

high and that their activation functions belong to a restricted

class of functions with particular properties (Hornik et al.,

1989).

2.3 Levenberg–Marquardt algorithm

The Levenberg–Marquardt (LM) algorithm, independently

developed by Levenberg (1944) and Marquardt (1963), pro-

vides a numerical solution to the problem of minimizing a

nonlinear function. The update rule of the LM algorithm can
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Figure 1. Geographical location of the Nee Soon Swamp Forest in Singapore.

be presented as follows:

wk = wk −
(

JTk Jk +µkI
)−1

Jkek, (3)

where k is the iteration index, J is the Jacobian matrix, µ is

the combination coefficient, I is the identity matrix, and e is

the error vector.

The LM algorithm essentially blends the steepest descent

method and the Gauss–Newton algorithm. The optimization

process is guided by the combination coefficient µ. Around

the error surface with complex curvature, the LM algorithm

switches to the steepest descent algorithm with a bigger

µ, whereas if the local curvature is appropriate to make a

quadratic approximation, µ can be decreased, giving the LM

algorithm a step closer to the Gauss–Newton algorithm. The

LM algorithm is faster, more stable, and less easily trapped

in local minima than other algorithms (Toth et al., 2000).

3 Application

3.1 Study case

Figure 1 shows the geographical location of the study area

– the Nee Soon Swamp Forecast (NSSF) in Singapore. The

NSSF is located in the northern part of the Singapore central

catchment nature reserve bounded by the Upper Seletar, Up-

per Peirce, and Lower Peirce reservoirs. As the only substan-

tial freshwater swamp forest remaining on the main island of

Singapore, the NSSF houses a diversity of flora and fauna,

some of which are found nowhere else in Singapore or the

world (Karunasingha et al., 2013).

With an estimated area of about 750 ha, the NSSF covers

the lower area of shallow valleys with slow-flowing streams

and a few higher grounds with dryland forests. The eleva-

tion of NSSF ranges between 1 and 80 m above mean sea

level (a.m.s.l.). The aquifer depth in the NSSF is 20–40 m,

and the major soil type features silty sand with a hydraulic

conductivity of 4.05× 10−5 m s−1. Figure 1 also depicts the

locations of the 4 piezometers installed for groundwater table

monitoring. The piezometers are deployed near the streams,

where the observed groundwater tables vary 0–1 m below the

ground level.

3.2 ANN setup

The surrounding reservoirs serve as important freshwater

storage for Singapore, with reservoir levels being kept at rel-

atively high levels ranging from 10 to 40 m a.m.s.l. Singapore
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Figure 2. Observed vs. MLR- and ANN-forecasted groundwater tables (P1).

has a typical tropical rainforest climate with abundant rain-

fall; the annual rainfall at the NSSF region can be as high as

3000 mm. Despite being another important influential factor

for the groundwater, observed evapotranspiration is not avail-

able due to the constraints imposed from setting up monitor-

ing stations in the protected forest, and hence it is excluded

in the ANN setup. Reservoir levels and rainfall, as the ma-

jor water source and driving force, are fed to the networks as

inputs, while the output is the observed groundwater tables

with a leading time of 1, 3, and 7 days (i.e. future observed

groundwater tables after 1, 3, and 7 days).

A multiple-input multiple-output (MIMO) network is se-

lected over 4 multiple-input single-output (MISO) ANNs for

two reasons: (1) it is easier to implement; and (2) cross cor-

relation exists in the observed groundwater tables, e.g. the

synchronous response to dry and wet conditions; targeting

the groundwater table measurements at 4 locations simulta-

neously, the cross-correlation impact can be captured in the

synaptic weights of the trained ANN and hence a better per-

formance is expected. The MIMO network is composed of an

input layer with 4 input neurons (including 3 reservoir levels

and one rainfall), a hidden layer with 10 neurons (inspired

by the universal approximation theorem and determined by

trial and error), and an output layer with 4 output neurons

(future observed groundwater tables at the 4 piezometers).

The logistic function and threshold function are respectively

adopted as the activation functions for the hidden layer and

the output layer.

Daily observed data, i.e. reservoir levels, rainfall and

groundwater tables, are available in 2012 and 2013. The data

set is divided into three subsets as follows:

– Training data (January 2012–December 2012)

Training data are used for adjusting the synaptic weights

in the network. An entire year’s data are selected as the

training data, so as to expose the network to a complete

annual cycle for a robust training.

– Cross-validation data (January 2013–June 2013)

Cross-validation data are used for avoiding overfitting.

When the errors between the predicted values and de-

sired values in the cross-validation data begin to in-

crease, the training stops and this is considered to be the

point of best generalization. One half of a year’s data

are selected as the cross-validation data.
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Figure 3. Scatter plots of observed and ANN-forecasted groundwater tables (P1).

– Testing data (July 2013–December 2013)

Testing data are used for evaluating the performance of

the network. Once the network is trained, the weights

are frozen; the testing set is fed into the network and

the network output is then compared with the desired

output. The remaining half of a year’s data are selected

as the testing data.

4 Results and discussion

Figure 2 illustrates examples at P1 of the observed ground-

water tables, the forecasted groundwater tables from a multi-

ple linear regression (MLR) model and the ANN model. Due

to the complicated geological characteristics and hydrolog-

ical processes, the relationship between the input (reservoir

level, rainfall) and the output (groundwater table) is highly

nonlinear. Therefore, the MLR model is not suitable to serve

our study purpose and produces inferior forecasting results,

especially at the extreme values. In contrast, the ANN fore-

cast successfully resolves the rising and falling tendencies

of the groundwater tables, resulting in a rather reasonable

groundwater table forecast. The scatter plots of the observed

groundwater tables and the ANN forecast are presented in

Fig. 3. The response of the groundwater tables to the sys-

tem forcings, for such a confined and wet catchment, is rapid

and sensitive. The correlation fades out between the inputs

and outputs when the leading time progresses; this leads to

the model performance deterioration at 3 and 7 days. The

groundwater tables experience a drastic drop in July and Au-
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Figure 4. Observed vs. ANN-forecasted groundwater tables (P4).

Table 1. Evaluation statistics of the ANN forecast.

P1 P2 P3 P4

RMSE r RMSE r RMSE r RMSE r

(cm) (cm) (cm) (cm)

1 day 5.4 0.88 6.4 0.78 5.2 0.77 12.2 0.69

3 day 8.2 0.76 7.1 0.76 6.6 0.71 13.3 0.68

7 day 9.9 0.64 9.2 0.72 8.6 0.67 15.8 0.65

Average 7.8 0.76 7.6 0.75 6.8 0.72 13.8 0.67

gust 2013, caused by a continuous 2-month drought. As such

an extreme drought condition does not exist in the training

data, the ANN tends to overpredict the groundwater tables

for that period.

Figures 4 and 5, respectively, present the groundwater ta-

ble time series and scatter plots at P4. P4 is located near

the Upper Seletar Reservoir, and the groundwater table is af-

fected by the spillway discharge released from the reservoir.

Failing to include the spillway information makes the ANN

less competent in capturing the groundwater table extreme

values caused by the spillway discharge, and hence results in

the lower forecast accuracy at P4.

Table 1 summarizes the ANN forecast efficiency through

evaluating the root mean square error (RMSE) and the corre-

lation coefficient (r) based on the testing data. The forecast

accuracy decreases slightly when the leading time increases

due to the rapid and sensitive response of the groundwater

tables to the system forcings. The RMSE is generally within

10 cm with the exception at P4 caused by the absence of the

spillway information. Averaged over the 3 leading times, at

P1–P3 the RMSE is less than 8.0 cm with correlation coef-

ficient r higher than 0.7, whereas at P4 the averaged RMSE

and correlation coefficient r are, respectively, 13.8 cm and

0.67.
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Figure 5. Scatter plots of observed and ANN-forecasted groundwater tables (P4).

5 Conclusions

This study, for the first time, applies artificial neural networks

(ANNs) to predict the groundwater table variations in a trop-

ical wetland – the Nee Soon Swamp Forest (NSSF) in Sin-

gapore. The ANN model solely utilizes the easily accessi-

ble surrounding reservoir levels and rainfall as inputs to fore-

cast the groundwater tables, without requiring any other prior

knowledge of the system’s physical properties. The ANN

forecast shows generally promising accuracy, while its per-

formance decreases when the leading time progresses due to

the fading correlation between the network inputs and out-

puts.

In this study, surrounding reservoir levels and rainfall are

selected as ANN inputs. The limited number of inputs elimi-

nates the data-demanding restrictions inherent in the numer-

ical models. However, improvements are expected if more

variables can be involved in the training, cross-validation,

and testing process; such variables, for example, are spill-

way discharge, evapotranspiration, soil properties, and water

level measurements. Less data demanding, lower computa-

tional cost and higher site-specific forecast accuracy are the

advantages of the ANN-based approach over the physical-

based numerical models. Numerical models, however, can be

applied to describe the spatiotemporal variations of the sys-

tem process over the entire model domain provided with suf-

ficient information of the model inputs. Therefore, the ANN

and numerical model can act as natural complements in such

a way that ANN is more suitable for site-specific forecast

while the numerical model provides a better spatial cover-

age.
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