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Abstract. Geological heterogeneity enhances spreading of
solutes and causes transport to be anomalous (i.e., non-
Fickian), with much less mixing than suggested by disper-
sion. This implies that modeling transport requires adopt-
ing either stochastic approaches that model heterogeneity ex-
plicitly or effective transport formulations that acknowledge
the effects of heterogeneity. A number of such formulations
have been developed and tested as upscaled representations
of enhanced spreading. However, their ability to represent
mixing has not been formally tested, which is required for
proper reproduction of chemical reactions and which moti-
vates our work. We propose that, for an effective transport
formulation to be considered a valid representation of trans-
port through heterogeneous porous media (HPM), it should
honor mean advection, mixing and spreading. It should also
be flexible enough to be applicable to real problems. We test
the capacity of the multi-rate mass transfer (MRMT) model
to reproduce mixing observed in HPM, as represented by the
classical multi-Gaussian log-permeability field with a Gaus-
sian correlation pattern. Non-dispersive mixing comes from
heterogeneity structures in the concentration fields that are
not captured by macrodispersion. These fine structures limit
mixing initially, but eventually enhance it. Numerical results
show that, relative to HPM, MRMT models display a much
stronger memory of initial conditions on mixing than on
dispersion because of the sensitivity of the mixing state to
the actual values of concentration. Because MRMT does not
restitute the local concentration structures, it induces smaller
non-dispersive mixing than HPM. However long-lived trap-
ping in the immobile zones may sustain the deviation from
dispersive mixing over much longer times. While spread-

ing can be well captured by MRMT models, in general non-
dispersive mixing cannot.

1 Introduction

Transport is anomalous in heterogeneous porous media.
Anomalous transport observations include tailing in concen-
tration breakthrough curves and plumes, or the strong in-
crease in the rate of spreading of plumes. Several frameworks
have been developed to generalize the advection—dispersion
equation (ADE) and overcome its limitations (Frippiat and
Holeyman, 2008). All these alternative frameworks share the
goal to model complex permeability, velocity and concentra-
tion patterns in unified parsimonious effective equations. The
limited number of parameters makes them efficient for the
limited quantity of data usually available. In fact, they can be
parameterized from breakthrough curves. They comply with
the broad residence time distributions and non-local trans-
port processes observed in reality (Gjetvaj et al., 2015; Le
Borgne and Gouze, 2008; Willmann et al., 2008). They rep-
resent the consequences of complex concentration patterns,
of simultaneous concentration trapping and fast progress on
residence times while averaging out all the fine concentration
structures in the upscaling process. These anomalous trans-
port frameworks have proven to be highly effective for resi-
dence times, transport time distribution and effective spread-
ing, both phenomenologically and practically (Berkowitz et
al., 2006; Neuman and Tartakovsky, 2009). However, their
ability to reproduce mixing, which is required for properly
reproducing chemical reactions, has not been tested.
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We argue that an effective transport formulation should
honor not only the mean advection, and spreading observed
in heterogeneous porous media (HPM), but also the evolu-
tion of mixing. This should not be understood as limiting
anomalous transport frameworks but as extending them to
handle broader ranges of physical and chemical processes,
and at further promoting the approach of effective equations
that upscale out the fine-scale structures to retain only their
main consequences in terms of transport, reactivity and reac-
tive transport couplings.

Here, we investigate the relevance of multi-rate mass
transfer (MRMT) framework to model not only spreading but
also mixing. MRMT is taken as a typical anomalous trans-
port framework. Its advantage lies in providing local con-
centrations, which can be straightforwardly used to evaluate
concentration variance, mixing and mixing-induced reactiv-
ity (Babey et al., 2014; Carrera et al., 1998; de Dreuzy et
al., 2013; Haggerty and Gorelick, 1995), as well as the ap-
parent reduction in the rate of kinetic reactions (Dentz et al.,
2011). The question is whether its validity as a representa-
tion of transport through HPM can be extended to reproduce
the effects of the evolution of mixing rates resulting from
the stretching and folding associated with complex velocity
structures (de Anna et al., 2014b; Jimenez-Martinez et al.,
2015; Le Borgne et al., 2015).

This comparison is especially appropriate as anoma-
lous transport processes are currently extended to simu-
late reactive transport processes (Cirpka and Valocchi, 2007;
Clement, 2001; de Barros et al., 2012; Donado et al., 2009;
Hochstetler et al., 2013; Luo et al., 2008; Luo and Cirpka,
2011; Orgogozo et al., 2013; Schneider et al., 2013). They
deal with chemical reactivity either in a stochastic manner,
representing reactivity with molecular analogies, or in clas-
sical approaches by means of concentrations (Bolster et al.,
2010; Cirpka et al., 2012; Ding et al., 2013; Hayek et al.,
2012; Knutson et al., 2007; Zhang et al., 2013). Extensions
are both required for application purposes and attractive for
capturing the consequences of anomalous transport to po-
tential “anomalous” and enhanced reactivity (Battiato et al.,
2009; Sadhukhan et al., 2014; Scheibe et al., 2015; Tar-
takovsky et al., 2009).

Some assessment of MRMT to model reactivity in HPM
has been made in former works (Willmann et al., 2010).
Equivalent reactivity has been evaluated at some well-
defined travel distances on MRMT calibrated on residence
time distributions. Here, we follow a different approach by
analyzing the temporal development of spreading and mix-
ing. We extend the integrated assessment of mixing-induced
reactivity at given travel distances to its temporal develop-
ment.

Our contribution concerns the comparison of different
models much more than the HPM and MRMT models them-
selves. For the sake of completeness, we recall model equa-
tions and simulation methods in Sect. 2 (models and meth-
ods) and measures of spreading and mixing in Sect. 3. We
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use these measures to propose the conditions that should
be met by effective (upscaled) transport formulations to be
considered valid representations of transport through HPM
(Sect. 4). We then test whether MRMT formulations meet
the proposed conditions (Sect. 5). While this last section de-
pends on the specific choice of the MRMT framework as an
equivalent transport model, the comparison methodology is
independent of it and can be used to assess transport equa-
tions respecting both spreading and mixing.

2 Model and methods

We present the MRMT and HPM models sequentially. As
they are both well known, we present only the main equations
and highlight the critical assumptions of importance in this
study.

2.1 Multi-rate mass transfer model (MRMT)

MRMT models express anomalous transport by the interac-
tion between transport in a mobile zone and a series of im-
mobile zones (Carrera et al., 1998; Haggerty and Gorelick,
1995). Transport in the mobile zone is advective and dis-
persive with a mean solute velocity v (water flux ¢ divided
by mobile porosity, ¢) and a dispersion coefficient d. Each
immobile zone i is parameterized by a characteristic rate «;
(inverse of a characteristic exchange time) and an immobile
porosity ¢;. The concentrations ¢ and ¢; (i =1...N) in the
mobile and immaobile zones, respectively, are determined by
the following set of equations:

e 05; ac 92c

o¢ — = g — +d—s, 1
¢3t+;¢l TR TR @
8 .

%:ai(c—ci) fori=1,...,N. 2

The ratio of immobile to mobile water volumes is rated by the
total capacity ratio 8 = > ¢; /<p. The term capacity derives
from the fact that MRMT formulations were originally de-
vised to represent trapping by sorption in hard-to-reach sorp-
tion sites, which were characterized by capacity (including
both dissolved and sorbed solute mass) (see, e.g., Haggerty
and Gorelick, 1995). We use here an equivalent MRMT for-
mulation for non-sorbing solutes, so as to facilitate compari-
son with HPM.

Initial and boundary conditions will be described later
for both MRMT and HPM models. MRMT models differ
by the distributions of characteristic rates «; and immobile
porosities ¢;. Among the available models (Cvetkovic, 2012;
Haggerty et al., 2000), we choose a uniform distribution for
characteristic times (1/«;) bounded by the two extreme rates
a1 =1/t and ay = 1/ty (11 <ty) and a power-law distribu-
tion for ¢;:

o ~ a3, ®3)
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The power-law distribution is consistent with observed
breakthrough curves in HPM, which often display long tails
that appear linear in log(c) versus log(z) (Gouze et al., 2008;
Haggerty et al., 2004; Li et al., 2011; Silva et al., 2009; Will-
mann et al., 2008). This tailing is well modeled by a power
law, such that the breakthrough concentration ¢ evolves as
¢~ t~™, Haggerty et al. (2000) showed that the slope m re-
lates to the exponent of the power-law distribution of the
MRMT rates (Eq. 3). m is generally found to be in the in-
terval [1.5, 2.5] but little is known about its relationship to
the geological heterogeneity. Willmann et al. (2008) found
some correlation between the degree of connectivity and the
slope. The more connected the field, the smaller the slope.
In this context, fracture—matrix exchanges in fractured me-
dia represent the lowest bound (:m = 1.5), which is controlled
by diffusion into immobile regions (Haggerty and Gorelick,
1995). On the contrary, a slope m of 2.5 may represent a
heterogeneous but poorly connected hydraulic conductivity
field, where late time arrival is controlled by slow advection.

We simulate MRMT models with a standard time- and
space-adaptative method that preserves mass (de Dreuzy et
al., 2013) and always complies with the CFL conditions
(Daus et al., 1985). The advective and the diffusive processes
in the mobile zone, as well as the exchange with the immo-
bile zones, are treated with a sequential non-iterative cou-
pling method. These methods lead to efficient simulations
of large spatial domains and extended times with initial re-
fined resolutions. We have successfully compared them with
a more classical fixed-time Galerkin finite element method,
integrated with the fourth order Runge—Kutta method (ode45
function of Matlab) and found relative differences less than
103 %. Simulations have been performed over the time re-
quired for transport to reach its asymptotic regime.

2.2 Heterogeneous porous media (HPM)

For reference purposes, we restrict the analysis to hetero-
geneity of hydraulic conductivity (K) as represented by
the classical 2-D Gaussian correlated multi-Gaussian logK
fields. These are characterized by their isotropic correlation
function:

C(r)=oexp (— (%)2) 4

with r the distance, A the correlation length which is used
to scale distances, and a§ the variance of the logarithm of
Y =logK. We use simulation results performed in previous
studies (de Dreuzy et al., 2012) obtained on 2-D domains
of sizes L; and L7 in parallel and orthogonal directions,
respectively, to the mean flux. Ly is large enough to avoid
any finite-size effects (from 10% to 102 correlation lengths
A). Boundary conditions for flow and transport are periodic
in the transverse direction to minimize boundary effects. Ly
is of the order of 100 times A to ensure initially ergodic trans-
port conditions. Under such uniform extended injection con-
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ditions, transport in HPM can be considered ergodic and can
be fundamentally compared with a 1-D MRMT model. The
immobile zones of MRMT can be viewed as representing the
low velocity zones of HPM, so that the mobile zone may rep-
resent the high-velocity channels.

Flow is solved with a finite volume scheme with
permeameter-like boundary conditions under a unit head gra-
dient. Transport is simulated using the ADE, with heteroge-
neous advection and homogeneous diffusion. Therefore, it is
characterized by the Peclet number Pe, equal to the mean
velocity multiplied by the correlation length, divided by the
diffusion coefficient. Transport is simulated with a random
walk Lagrangian method. Numerical methods are exhaus-
tively described in several previous papers (Beaudoin et al.,
2006, 2007, 2011).

2.3 Injection and boundary conditions

The same type of injection and boundary conditions are used
for both models. Flow has a major flow direction imposed
in HPM by a head gradient in the longitudinal direction and
periodic boundary direction in the transverse direction. For
transport, reflecting and absorbing boundary conditions are
used upstream and downstream, respectively (Beaudoin and
de Dreuzy, 2013). Injection is performed downstream to the
inlet boundary to minimize boundary effects.

Extended injection conditions are used for the HPM and
MRMT models. Concentrations are homogeneous orthogo-
nally to the main flow direction within a square wave of lon-
gitudinal and transverse widths ALy and ATy, respectively.
In the HPM case, concentration is a sole function of the co-
ordinate x; along the flow direction:

c(x,t=0)=co(xz), ©)

with ¢g given by:

ifxo<x<xp+ALg

mo
co(x) = { eroToALo (6)

otherwise

o7 is the total porosity. To ensure that the same mass my is
injected in the HPM and MRMT cases, we adapt the initial
state of the MRMT model to:

c(x,t=0)=c¢;(x,r=0)=co(x) fori =1...N. )

Spreading becomes independent of the injection length when
the longitudinal plume size becomes significantly larger than
A Lg. Mixing depends on the injection conditions more crit-
ically than spreading, as the initial concentration value de-
pends on the injection width AL (Eq. 6).
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Figure 1. Concentration fields normalized by their maximal value c(x,r) / max(c(x,t)) and their related Gaussian profile concentrations
ep(x,t) / max(c(x,t)) in the bar over them at the four evolving times indicated in Fig. 2. In this case, the time at which the non-dispersive
mixing reaches its maximum #, max is of the same order as the advection time.

3 Measures of spreading and mixing
3.1 Spreading

For an extended plume, spreading is generally measured by
the square root of the second centered moment of the spatial
distribution of concentration o :

oL (1) =mP @) —mP @), ®)

where mL) (1) is the kth order moment of the concentration
distribution

m(Lk) (t):/xllfc(x,t)ddx//c(x,t)ddx, 9)
Q Q

with x; the coordinate of x in the direction parallel to the
main flow direction (longitudinal direction) and €2 the flow
domain. With this definition, o can be viewed as the lon-
gitudinal extent of the plume (i.e., how far it spreads). Dis-
persion is the rate of spreading (i.e., time derivative of oE),
usually characterized by the longitudinal dispersivity o :

1 dO’E
2v dt ’
where v is the plume velocity equal to the time derivative of
the mean position plume mL) (t). ar, increases until it con-
verges to an asymptotic value o a, thus defining in turn the
asymptotic regime (Dagan, 1990; Gelhar, 1993).

In MRMT, spreading comes from the exchanges to the mo-
bile zone. That is, spreading results from trapping. Solutes
are slowed down and dispersed by the exchanges with the im-
mobile zones. The resulting dispersivity is a monotonously
increasing function of the residence times in immobile zones

oy = (10)
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(both their mean (tmrmT) and range (ry — 1)). The disper-
sivity induced by the dispersive and diffusive processes in the
mobile zone is comparatively negligible and could be disre-
garded.

In HPM, spreading comes both from diffusive exchanges
with low velocity zones and from spatial fluctuations of the
velocity field (de Dreuzy et al., 2007; Salandin and Fiorotto,
1998). The asymptotic dispersivity increases both with the

correlation length A and with the logK variance a,?:

aLa (HPM) = 2 g (aﬁ) h (03, Pe) , (11)

where g is either a linear function for small values of 03
(a)% <1) or a quadratic function at larger values (de Dreuzy
et al., 2007).

(oy, Pe) is a correction factor accounting for diffusion
(Beaudoin et al., 2010). Local diffusion reduces the effective
dispersivity in the high-heterogeneity cases by releasing so-
lutes from the low velocity zone and truncating the trapping
times induced by slow advection.

Any concentration plume can be approximated by a Gaus-
sian concentration profile cp(x,t), defined by the two first
moments, m(l)(t) as the mean and o () as variance. It is
the smoothest equivalent profile. Both MRMT and HPM
converge asymptotically to this profile. However, it is far
away from the full concentration profile c(x,r) at any time,
as shown by the comparison of Fig. 1. At early times (left
snapshots in Fig. 1), the concentration profile remains het-
erogeneous especially in the transverse direction with both
higher and lower concentrations. Around the advection time,
defined as the correlation length A divided by the plume ve-
locity v, the deviation reaches its maximum. At this point,
the Gaussian concentration profile has become much more
diluted than the real concentration field (second from the
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left snapshot of Fig. 1). Concentration inhomogeneities de-
crease very slowly and remain over very long periods of
time even though the range of concentration values decreases
(two right-most snapshots of Fig. 1) (de Anna et al., 2014a;
Jimenez-Martinez et al., 2015; Le Borgne et al., 2011).

In summary, in HPM, dispersivity comes primarily form
the velocity structure, which drives the generation of gradi-
ents in concentration, and thus, mixing. Instead, in MRMT,
effective dispersivity is controlled by mobile—-immobile ex-
changes and delays the actual mixing between the immobile
and mobile solute concentrations.

3.2 Mixing

The Gaussian profile only gives a crude approximation of the
concentration field with a strong deviation on the distribution
of concentration values, especially at early times when diffu-
sion has not homogenized the concentration field in the trans-
verse direction (Fig. 1). Actual concentrations remain much
higher and closer to the initial concentration value than in
the Gaussian profile prediction. That is, the initial concentra-
tions are much less diluted (i.e., mixed) than in the maximum
entropy Gaussian distribution. The Gaussian profile cp(x,)
thus sets a lower bound to the effective concentration vari-
ability. Therefore, it is most natural to compare the actual dis-
tribution of concentration values to that of the Gaussian pro-
file in order to describe the mixing state. Notice that, contrary
to spreading, we are not concerned here with the spatial dis-
tribution, but only with the values of concentration and their
time evolution, which are most simply characterized by the
second moment. We quantified the deviation from the Gaus-
sian mixing regime as the ratio of the actual concentration
second moment M (¢) to the second moment Mp(r) of the
Gaussian profile concentration cp(x,t) minus 1 (de Dreuzy
etal., 2012):

M (1)
= -1, 12
y (1) Mo ©) (12)
with
M(t) = / 2d¥x (13)
Q

and the second moment of the reference Gaussian concentra-
tion:
2

Mp ()= ——0 (14)
DAY= ZﬁATOO'L.

Mp is directly the square of the injected mass m% divided
by an effective area occupied by the plume 2./ ATyoL. As
M(¢) is always larger than Mp(t), y is always positive. y
is initially and asymptotically very close to 0. It is however
significantly positive while the concentration distribution is
far from the Gaussian profile. M (z), introduced here as a
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measure of global concentration variability, is widely used
because its derivative is giving the dissipation rate and de-
termines the physical constrains of chemical reactivity (de
Simoni et al., 2005; Le Borgne et al., 2010). The dissipation
is also closely related to the dilution index, which is another
measure of mixing (Kitanidis, 1994; Rolle et al., 2009). It
should be finally noticed that y and Mp fully characterize
the mixing state given by M:

M=Mp (1+y). (15)

In HPM models, resistance to dispersive mixing, as we can
also call y, is enhanced by heterogeneity and reduced by
large diffusion rates (smaller Peclet number) (de Dreuzy et
al., 2012). y sharply increases at initial times to a maximum
value ymax, at a time #,max close to the advection time, and
slowly decreases back to 0 (Fig. 2). The time range, over
which y is significantly non-zero, can be characterized by
r1y, Which is the ratio of the upper and lower times at which
y is equal to a quarter of its maximal value ymax. While the
amplitude of y depends on the variability of the velocities
and on the rate of advection to diffusion, the shape of the
function y remains unchanged by the K field heterogeneity
(a,?), the ratio of advection to diffusion (Pe) and the width of
the initial conditions (A Lg). The time range r;,, over which
y is non-negligible, also remains constant (Fig. 2). There-
fore, 1, max can be used for scaling time, so that y can be
written as:

Y () = Ymax f (t ;) : (16)
Y

where f is the characteristic scaling function (Fig. 2, insert).
A similar constant shape behavior has been noted for viscous
fingering in heterogeneous velocity fields (Jha et al., 2011a,
b).

4 Conditions for effective formalisms of transport
through HPM

We propose four conditions for any effective transport for-
mulation to be considered as a valid representation of trans-
port through heterogeneous media. In essence, an effective
transport equation should yield the same mean advection,
spreading and mixing as the HPM and be sufficiently flexi-
ble to represent real problems. Evaluation of these conditions
can be done as follows:

1. Mean advection simply requires mean water velocity
(i.e., mean plume velocity for non-reactive solutes) to
equal v = g /7. This condition can be met by all pub-
lished upscaled transport equations, by imposing some
simple constraints on their parameters. In MRMT, it is
sufficient to impose o7 =9+ > ¢; = ¢ (1 + B).

2. Spreading is characterized by dispersivity, which mea-
sures the rate of growth of plume size (Eg. 10). In cases

Hydrol. Earth Syst. Sci., 20, 1319-1330, 2016



1324 J.-R. de Dreuzy and J. Carrera: Effective transport equations

M/M_-1

y:

Figure 2. Time evolution of the deviation from dispersive mixing y (¢) defined by Eq. (12) in HPM for evolving logK variances, a}%, under a
small-width injection window (A Lg/aa = 0.075), flux-weighted injection conditions and Pe = 100 (adapted from de Dreuzy et al., 2012).
The similarity of function shapes is highlighted in the insert by the scaling function f of Eq. (16) where the thick black line is the average
of the displayed functions. Note that the time of maximum deviation, #, max, is hardly affected by 0)2, and falls around the characteristic
advection time A/v. The four dashed lines indicate the times displayed in Fig. 1.

where asymptotic dispersion is reached, this condition 3. Mixing is required for properly reproducing fast reac-

implies that dispersivity of the effective equation should
tend to the asymptotic dispersivity of the HPM. Other-
wise, dispersion (or directly, spread, as measured by o)
can be compared to a spatial scale comparable to the
problem dimension (e.qg., size of the aquifer or distance
covered by the plume).

In addition, the time required to reach the above disper-
sion value should also be honored by the effective for-
mulation to ensure that the rate of growth of the plume is
reproduced. In our case, where asymptotic dispersion is
reached, we propose to define this criterion in terms of
rq, the mean distance covered by the plume at the time
ta /2 Where dispersivity reaches half of its asymptotic
value normalized by the asymptotic dispersivity o a:

17
ro = A2 (17)
OLA

where 14, , /2 is implicitly defined by

o
o (taLA/z) = %. (18)

rq can also be interpreted as the ratio of advective and
dispersive scales like in the definition of the Peclet num-
ber.
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tions (slow reactions should be properly reproduced if
the resident time distribution is honored, which is as-
sured if mean advection and dispersion are reproduced).
As discussed above, mixing is essentially dispersive and
well characterized by Mp (Eq. 14) for late times. There-
fore, assuming dispersion to be well reproduced, an ef-
fective transport formulation only needs to reproduce
the deviation from dispersive mixing, characterized by
y (EqQ. 12). In the first stage, the comparison can be re-
stricted to the amplitude of the deviation ymax and the
time range over which it extends r;,. In a more ad-
vanced stage, the characteristic shape of the y function,
f, can be used for comparison.

To compare the timings of spreading and mixing, we
define the additional criterion ry1 as the ratio of the
characteristic spreading time z, , /> to the characteristic
mixing time 7, max

(19)

rvt Of the development of the resistance to mixing and
rates the lag between the timing of mixing and spread-

ing.

. Most of the work on effective transport is of a theo-

retical nature, but the ultimate goal should be applica-
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tion to real problems. This implies that a valid trans-
port formulation should be able to accommodate differ-
ent types of boundary conditions and flow regimes (i.e.,
transient flow) and dimensions. Most importantly, it
should accommodate characterization. Dispersion usu-
ally includes the effects of heterogeneity and uncer-
tainty. Whereas the latter is reduced by aquifer char-
acterization, the former is not. Specifically, hydrolo-
gists use geology, hydraulics, geophysics, hydrochem-
istry and isotopes to figure out, among other things, the
patterns of spatial variability of hydraulic conductivity.
The resulting models display variability not only in the
mean logK but also on their correlation distance and
variance. An effective transport formulation should be
able to honor this variability.

5 Results and discussion

We consider it well established that MRMT, and other non-
local in-time formulations, can reproduce mean advection
and spreading, as discussed in the introduction. Mean ad-
vection in the MRMT approach is equivalent to that of the
HPM provided that flux and total porosity are equivalent.
Additionally, the distribution of residence times in immo-
bile zones can be adapted so that the asymptotic dispersivity
of the MRMT model be equal to that of the HPM model in
Eq. (11). It is always possible, as dispersivity is an increas-
ing function of the residence times. This imposes a condi-
tion on the temporal range of 1, ty or equivalently on their
mean residence time (tpmrmT)- AS trapping in the immobile
zones is the main dispersive mechanism, the mean residence
time is logically adapted to calibrate the asymptotic disper-
sivity. With the total flow imposed to be set by the HPM,
the characteristic spatial scale is the typical plume position
at (tmrmT)- As the characteristic spatial and temporal scales
are interrelated to ensure consistent asymptotic behaviors,
comparison of results can be performed on dimensionless
terms and should ensure consistent preasymptotic regimes. In
fact, MRMT models are calibrated on tracer tests and break-
through information, but this does not ensure a good repro-
duction of mixing (Luo and Cirpka, 2011). Therefore, we
restrict our comparison to mixing criteria and sensitivity to
initial conditions.

5.1 Comparison of mixing in HPM and MRMT

In HPM, the temporal extension of the deviation from the
dispersive mixing regime r;, does not depend significantly
on the permeability heterogeneity, as also expressed by the
constancy of the shape of y (Fig. 2). We thus compare the
shape of y obtained for the HPM with 03 =9 (f function of
Eg. 16) to shapes of y obtained for various MRMT models
obtained under consistent injection conditions (Egs. 6 and 7).
For MRMT, extreme values have been investigated to get the
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possible range of behaviors. For slopes m, we adopted the
range observed in nature, as discussed in Sect. 2.1, with m
varying between m = 1.5 (typical fracture—matrix case) and
m = 2.5. The single rate mass transfer (SRMT) is also shown
for comparison. The porosity ratio 8 does not have an upper
bound. In fact, ideally, the mobile porosity could be 0. We
adopted B =150 as a large upper value. Larger upper val-
ues would not affect results and might cause numerical dif-
ficulties. The same can be said for ¢y/r1, for which we took
ty/t1 = 102 as the upper bound. The analysis presented here-
after has been made for different combinations of parameters
within these bounds. As all models lead to consistent conclu-
sions, we only present the most characteristic results.

All MRMT models capture the sharp rise of y at times
smaller than f,max (Fig. 3). The sharp rise comes from a
strong initial divergence from the equivalent Gaussian con-
centration profile. Initial behavior is dominated by the con-
trast of the quickly progressing concentrations in the mobile
zones and trailing concentrations in the low-flow or immo-
bile zones. On one hand, dispersion induces a sharp decrease
of Mp, which is inversely proportional to o (Eg. 14). On
the other hand, trapping maintains high concentrations in the
immobile zone and high values for the second moment of
the concentration distribution M. Divergence of M from Mp
increases until it reaches its maximum at £, max.

At larger times, progressive release of solute mass from
the immobile zone and equilibration with the concentration
values in the mobile zone allow f to decrease. The insert of
Fig. 3 highlights, in a lin—lin graph, the differences of the de-
crease stage. The MRMT model that best matches the scaling
function f is obtained for m = 2.25. For power-law slopes m
larger than 2, the decrease of f is qualitatively similar to that
of the single-rate mass transfer model. For m values closer to
2, the deviation is more sustained but displays the same de-
creasing trend. The behavior changes significantly when m
becomes smaller than 2, with a very slow decrease of f com-
ing directly from the effect of the slow drainage of the immo-
bile zones with the smallest rates (long exchange times). At
least in MRMT models with m lower than 2, trapping dis-
plays a much longer memory effect in MRMT than in HPM.

While they are similar to HPM for the extension of the
non-dispersive mixing regime, MRMT models with slopes
m larger than 2 converge to less anomalous single rate
mass transfer. In terms of mixing, this translates in small
amplitudes in y (small ymax values). For m =2.25 and
ALg/apa = 0.075, we have computed ymax for a large vari-
ety of ry/t1 and B values, the only two remaining parameters
of the MRMT model. ymax first increases with #y/t; and B8
and quickly saturates to a maximal value of 2.85 (Table 1).
Ymax Varies between 0.57 and 2.85 by a maximum factor of
5. In the HPM case, however, ymax is always larger than 3,
reaches values of 15 for a Peclet number Pe of 100, scales
like the square root of Pe and is thus not limited in ampli-
tude.
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Figure 3. Comparison of y shapes (f-scaling functions defined in Eq. 16) for HPM and MRMT simulations with slopes of the power-law
distributions of MRMT transfer rates, m, between 1.575 and 2.5. HPM is represented by the broad black curve obtained from the insert of

Fig. 2. The insert displays the same curves in arithmetic scale.

Table 1. Values of the maximum deviation to the dispersive mixing
regime ymax for MRMT models with a power-law exponent of the
rate distribution m =2.25 and ALq / oo = 0.075.

iy /=100 | B =100
B Ymax | IN/f1 Ymax
1 0.57 1 1.47

10 1.96 10 2.72
100 2.84 100 2.84
300 2.85 694 2.74

MRMT models cannot match both the amplitude and the
timing of y. For MRMT models with m-slopes larger than
2, mixing is far more dispersive in MRMT than in HPM
(smaller deviation values y in the MRMT models). MRMT
models with m-slopes smaller than 2 induce larger but much
too sustainable deviations. As a result, MRMT models have
a stronger memory of trapping or display less non-dispersive
mixing, without excluding to display both differences simul-
taneously. The difficulties of MRMT models to capture mix-
ing might be linked to the existence of the structure of con-
centrations in lamellas where stretching and folding extends
the concentration forward and enhances the eventual mixing

Hydrol. Earth Syst. Sci., 20, 1319-1330, 2016

by diffusion (Fig. 1) (de Anna et al., 2014b; Le Borgne et al.,
2015).

Concerning the non-dispersive mixing shapes of the scaled
function f, MRMT models display a much broader range
of shapes than HPM. The invariant shape property of HPM
is not recovered in MRMT. On the contrary, MRMT shapes
depend strongly on the distribution of transfer rates. This is
an advantage to match a wider range of cases issuing possibly
different y functions. However, it is a drawback to fit just one
case, as it restricts the MRMT models that can match HPM
simulations with broad ranges of Pe and 03 values.

5.2 Influence of initial injection size

To qualify the memory effect in MRMT and HPM, we an-
alyze their sensitivity to the initial injection width ALg.
Spreading, as defined by the characteristic longitudinal
plume extension (Egs. 8, 9 and 10), does not depend on the
initial concentration cg (Eq. 6). oL is initially of the order
of AL and quickly becomes larger. Spreading quickly loses
any memory of the initial conditions. We note that this is
the case because sampling effects do not intervene as the
transverse injection scale is assumed large enough to ensure
ergodic sampling by itself. Like spreading, the second mo-
ment of the reference Gaussian concentration Mp(z) does
not depend on the initial concentration but only on the in-
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Figure 4. Dependence of the deviation from dispersive function y
Insert shows the dependence of ymax on ALgla .

jected mass divided by the characteristic area occupied by
the plume (ATyor) (Eq. 14).

The concentration second moment M (¢) (Eg. 13), how-
ever, depends critically on the injection width through the
relation between injected mass and concentration (Eg. 6).
At initial times, the concentration second moment is pro-
portional to the injected concentration value. At later times,
the concentration second moment has lost the memory of the
initial concentration and is only the function of the injected
mass mg. As a result, we expect that the concentration sec-

www.hydrol-earth-syst-sci.net/20/1319/2016/
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ond moment and the deviation towards the dispersive mix-
ing regime y depends on the injection conditions, here rep-
resented by the injection width A Lg. On the basis of numeri-
cal simulations, we compare the evolution of y with ALg for
HPM and MRMT models.

Results of the y function for both MRMT and HPM mod-
els are displayed in Fig. 4a and b, respectively, for different
injection sizes. We have performed simulations for compa-
rable ranges of ALg/apa values (0.005-0.1 for HPM and
0.02-0.4 for MRMT). We have checked numerically that the
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results for the two specific MRMT and HPM cases display
generic tendencies. In both models, injection width has a crit-
ical influence on y (Fig. 4). Smaller injection windows let
the initial concentration increase and enhance the deviation
towards the dispersive mixing regime. We use the maximum
deviation ymax to characterize the overall influence of ALy.
In the MRMT and HPM maodels, maximum deviations ymax
have different scaling (Fig. 4a and b, inserts):

Ymax ~ (ALg)~* for MRMT, 20
Ymax ~ (ALg) % for HPM. (20)
For MRMT, ymax evolves like the initial concentration level
(Egs. 6 and 7). For HPM, ymax has the same scaling for the
initial conditions ymax ~ 1/«/AL0 and for the diffusion co-
efficient as ymax ~ +/Pe (de Dreuzy et al., 2012). Doubling
the injection width has a comparable effect to doubling the
diffusion coefficient. Initial dilution over ALy and dilution
induced by diffusive—dispersive processes reduce the overall
deviation to the dispersive mixing regime y in the same pro-
portion. The reduction of concentration in HPM comes from
the diffusive—dispersive processes while, in MRMT, it comes
from the progressive release of solutes with high concentra-
tions close to ¢g trapped in the immobile zone. Due to their
differing signatures, both processes cannot be compared and
the dispersive-diffusive processes of HPM cannot be mod-
eled as trapping-release mechanisms.

6 Conclusion

We propose conditions to test anomalous transport frame-
works not only on spreading but also on mixing. We de-
fine a minimum set of six essential constraints that should
be respected in order to retain the main transport, reactivity
and reactive transport couplings. These constraints involve
the conservation of (1) the mean advection, (2) dispersivity
amplitude and (3) timing generally imposed. Beyond these
flow and spreading metrics, (4) amplitude and (5) timing of
the deviation towards the dispersive mixing regime should
be respected. The last condition concerns (6) the respective
timings for mixing and spreading. Under ergodic injection
conditions, spreading is characterized by the standard dis-
persivity describing the evolution of the plume size along the
main flow direction. Mixing is characterized by the deviation
from the dispersive mixing regime y, defined as the second
moment of the concentration distribution of a conservative
tracer, divided by the second moment of a Gaussian concen-
tration pattern with the same spread minus 1 (Eq. 12). Zero
initially and asymptotically, y traduces the macroscopic ef-
fect on mixing of the concentration structures within the so-
lute plume.

We use these criteria to evaluate MRMT models by com-
parison to advective—diffusive transport simulations through
HPM, represented by the classical isotropic 2-D Gaussian
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correlated multi-Gaussian log-permeability fields, character-
ized by variances between 1 and 9. A broad range of MRMT
models are considered. We conclude that MRMT models
cannot match both the amplitude and the timing of y. MRMT
models can reproduce observed spreading rates and some
non-dispersive mixing. However, they tend to induce larger
and too sustained deviations from dispersive mixing. As a re-
sult, MRMT models display a longer memory but less non-
dispersive mixing than HPM. We attribute this divergence
to the fact that MRMT represents non-dispersive mixing
through trapping mechanisms, whereas non-dispersive mix-
ing is controlled by stretching and folding in HPM. Diver-
gent sensitivities to initial conditions confirm that dispersive—
diffusive induced mixing in HPM cannot be modeled by
mobile—-immobile models.

Our study does not preclude, however, the existence of
effective transport equations consistent with spreading and
mixing of HPM. Nonetheless, we argue that the proposed
criteria and existing results of HPM should be used as guide-
lines to set up effective transport equations that respect
spreading, mixing and eventually reactive transport.
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