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Abstract. Geological heterogeneity enhances spreading of

solutes and causes transport to be anomalous (i.e., non-

Fickian), with much less mixing than suggested by disper-

sion. This implies that modeling transport requires adopt-

ing either stochastic approaches that model heterogeneity ex-

plicitly or effective transport formulations that acknowledge

the effects of heterogeneity. A number of such formulations

have been developed and tested as upscaled representations

of enhanced spreading. However, their ability to represent

mixing has not been formally tested, which is required for

proper reproduction of chemical reactions and which moti-

vates our work. We propose that, for an effective transport

formulation to be considered a valid representation of trans-

port through heterogeneous porous media (HPM), it should

honor mean advection, mixing and spreading. It should also

be flexible enough to be applicable to real problems. We test

the capacity of the multi-rate mass transfer (MRMT) model

to reproduce mixing observed in HPM, as represented by the

classical multi-Gaussian log-permeability field with a Gaus-

sian correlation pattern. Non-dispersive mixing comes from

heterogeneity structures in the concentration fields that are

not captured by macrodispersion. These fine structures limit

mixing initially, but eventually enhance it. Numerical results

show that, relative to HPM, MRMT models display a much

stronger memory of initial conditions on mixing than on

dispersion because of the sensitivity of the mixing state to

the actual values of concentration. Because MRMT does not

restitute the local concentration structures, it induces smaller

non-dispersive mixing than HPM. However long-lived trap-

ping in the immobile zones may sustain the deviation from

dispersive mixing over much longer times. While spread-

ing can be well captured by MRMT models, in general non-

dispersive mixing cannot.

1 Introduction

Transport is anomalous in heterogeneous porous media.

Anomalous transport observations include tailing in concen-

tration breakthrough curves and plumes, or the strong in-

crease in the rate of spreading of plumes. Several frameworks

have been developed to generalize the advection–dispersion

equation (ADE) and overcome its limitations (Frippiat and

Holeyman, 2008). All these alternative frameworks share the

goal to model complex permeability, velocity and concentra-

tion patterns in unified parsimonious effective equations. The

limited number of parameters makes them efficient for the

limited quantity of data usually available. In fact, they can be

parameterized from breakthrough curves. They comply with

the broad residence time distributions and non-local trans-

port processes observed in reality (Gjetvaj et al., 2015; Le

Borgne and Gouze, 2008; Willmann et al., 2008). They rep-

resent the consequences of complex concentration patterns,

of simultaneous concentration trapping and fast progress on

residence times while averaging out all the fine concentration

structures in the upscaling process. These anomalous trans-

port frameworks have proven to be highly effective for resi-

dence times, transport time distribution and effective spread-

ing, both phenomenologically and practically (Berkowitz et

al., 2006; Neuman and Tartakovsky, 2009). However, their

ability to reproduce mixing, which is required for properly

reproducing chemical reactions, has not been tested.
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We argue that an effective transport formulation should

honor not only the mean advection, and spreading observed

in heterogeneous porous media (HPM), but also the evolu-

tion of mixing. This should not be understood as limiting

anomalous transport frameworks but as extending them to

handle broader ranges of physical and chemical processes,

and at further promoting the approach of effective equations

that upscale out the fine-scale structures to retain only their

main consequences in terms of transport, reactivity and reac-

tive transport couplings.

Here, we investigate the relevance of multi-rate mass

transfer (MRMT) framework to model not only spreading but

also mixing. MRMT is taken as a typical anomalous trans-

port framework. Its advantage lies in providing local con-

centrations, which can be straightforwardly used to evaluate

concentration variance, mixing and mixing-induced reactiv-

ity (Babey et al., 2014; Carrera et al., 1998; de Dreuzy et

al., 2013; Haggerty and Gorelick, 1995), as well as the ap-

parent reduction in the rate of kinetic reactions (Dentz et al.,

2011). The question is whether its validity as a representa-

tion of transport through HPM can be extended to reproduce

the effects of the evolution of mixing rates resulting from

the stretching and folding associated with complex velocity

structures (de Anna et al., 2014b; Jimenez-Martinez et al.,

2015; Le Borgne et al., 2015).

This comparison is especially appropriate as anoma-

lous transport processes are currently extended to simu-

late reactive transport processes (Cirpka and Valocchi, 2007;

Clement, 2001; de Barros et al., 2012; Donado et al., 2009;

Hochstetler et al., 2013; Luo et al., 2008; Luo and Cirpka,

2011; Orgogozo et al., 2013; Schneider et al., 2013). They

deal with chemical reactivity either in a stochastic manner,

representing reactivity with molecular analogies, or in clas-

sical approaches by means of concentrations (Bolster et al.,

2010; Cirpka et al., 2012; Ding et al., 2013; Hayek et al.,

2012; Knutson et al., 2007; Zhang et al., 2013). Extensions

are both required for application purposes and attractive for

capturing the consequences of anomalous transport to po-

tential “anomalous” and enhanced reactivity (Battiato et al.,

2009; Sadhukhan et al., 2014; Scheibe et al., 2015; Tar-

takovsky et al., 2009).

Some assessment of MRMT to model reactivity in HPM

has been made in former works (Willmann et al., 2010).

Equivalent reactivity has been evaluated at some well-

defined travel distances on MRMT calibrated on residence

time distributions. Here, we follow a different approach by

analyzing the temporal development of spreading and mix-

ing. We extend the integrated assessment of mixing-induced

reactivity at given travel distances to its temporal develop-

ment.

Our contribution concerns the comparison of different

models much more than the HPM and MRMT models them-

selves. For the sake of completeness, we recall model equa-

tions and simulation methods in Sect. 2 (models and meth-

ods) and measures of spreading and mixing in Sect. 3. We

use these measures to propose the conditions that should

be met by effective (upscaled) transport formulations to be

considered valid representations of transport through HPM

(Sect. 4). We then test whether MRMT formulations meet

the proposed conditions (Sect. 5). While this last section de-

pends on the specific choice of the MRMT framework as an

equivalent transport model, the comparison methodology is

independent of it and can be used to assess transport equa-

tions respecting both spreading and mixing.

2 Model and methods

We present the MRMT and HPM models sequentially. As

they are both well known, we present only the main equations

and highlight the critical assumptions of importance in this

study.

2.1 Multi-rate mass transfer model (MRMT)

MRMT models express anomalous transport by the interac-

tion between transport in a mobile zone and a series of im-

mobile zones (Carrera et al., 1998; Haggerty and Gorelick,

1995). Transport in the mobile zone is advective and dis-

persive with a mean solute velocity v (water flux q divided

by mobile porosity, ϕ) and a dispersion coefficient d. Each

immobile zone i is parameterized by a characteristic rate αi
(inverse of a characteristic exchange time) and an immobile

porosity ϕi . The concentrations c and ci (i = 1. . .N ) in the

mobile and immobile zones, respectively, are determined by

the following set of equations:

ϕ
∂c

∂t
+

N∑
i=1

ϕi
∂si

∂t
=−q

∂c

∂x
+ d

∂2c

∂x2
, (1)

∂ci

∂t
= αi (c− ci) for i = 1, . . .,N. (2)

The ratio of immobile to mobile water volumes is rated by the

total capacity ratio β =
∑
ϕi
/
ϕ . The term capacity derives

from the fact that MRMT formulations were originally de-

vised to represent trapping by sorption in hard-to-reach sorp-

tion sites, which were characterized by capacity (including

both dissolved and sorbed solute mass) (see, e.g., Haggerty

and Gorelick, 1995). We use here an equivalent MRMT for-

mulation for non-sorbing solutes, so as to facilitate compari-

son with HPM.

Initial and boundary conditions will be described later

for both MRMT and HPM models. MRMT models differ

by the distributions of characteristic rates αi and immobile

porosities ϕi . Among the available models (Cvetkovic, 2012;

Haggerty et al., 2000), we choose a uniform distribution for

characteristic times (1/αi) bounded by the two extreme rates

α1 = 1/t1 and αN = 1/tN (t1 < tN ) and a power-law distribu-

tion for ϕi :

ϕi ∼ α
m−3
i . (3)
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The power-law distribution is consistent with observed

breakthrough curves in HPM, which often display long tails

that appear linear in log(c) versus log(t) (Gouze et al., 2008;

Haggerty et al., 2004; Li et al., 2011; Silva et al., 2009; Will-

mann et al., 2008). This tailing is well modeled by a power

law, such that the breakthrough concentration c evolves as

c∼ t−m. Haggerty et al. (2000) showed that the slope m re-

lates to the exponent of the power-law distribution of the

MRMT rates (Eq. 3). m is generally found to be in the in-

terval [1.5, 2.5] but little is known about its relationship to

the geological heterogeneity. Willmann et al. (2008) found

some correlation between the degree of connectivity and the

slope. The more connected the field, the smaller the slope.

In this context, fracture–matrix exchanges in fractured me-

dia represent the lowest bound (m= 1.5), which is controlled

by diffusion into immobile regions (Haggerty and Gorelick,

1995). On the contrary, a slope m of 2.5 may represent a

heterogeneous but poorly connected hydraulic conductivity

field, where late time arrival is controlled by slow advection.

We simulate MRMT models with a standard time- and

space-adaptative method that preserves mass (de Dreuzy et

al., 2013) and always complies with the CFL conditions

(Daus et al., 1985). The advective and the diffusive processes

in the mobile zone, as well as the exchange with the immo-

bile zones, are treated with a sequential non-iterative cou-

pling method. These methods lead to efficient simulations

of large spatial domains and extended times with initial re-

fined resolutions. We have successfully compared them with

a more classical fixed-time Galerkin finite element method,

integrated with the fourth order Runge–Kutta method (ode45

function of Matlab) and found relative differences less than

10−3 %. Simulations have been performed over the time re-

quired for transport to reach its asymptotic regime.

2.2 Heterogeneous porous media (HPM)

For reference purposes, we restrict the analysis to hetero-

geneity of hydraulic conductivity (K) as represented by

the classical 2-D Gaussian correlated multi-Gaussian logK

fields. These are characterized by their isotropic correlation

function:

C (r)= σ 2
Y exp

(
−

( r
λ

)2
)
, (4)

with r the distance, λ the correlation length which is used

to scale distances, and σ 2
Y the variance of the logarithm of

Y = logK . We use simulation results performed in previous

studies (de Dreuzy et al., 2012) obtained on 2-D domains

of sizes LL and LT in parallel and orthogonal directions,

respectively, to the mean flux. LL is large enough to avoid

any finite-size effects (from 102 to 103 correlation lengths

λ). Boundary conditions for flow and transport are periodic

in the transverse direction to minimize boundary effects. LT
is of the order of 100 times λ to ensure initially ergodic trans-

port conditions. Under such uniform extended injection con-

ditions, transport in HPM can be considered ergodic and can

be fundamentally compared with a 1-D MRMT model. The

immobile zones of MRMT can be viewed as representing the

low velocity zones of HPM, so that the mobile zone may rep-

resent the high-velocity channels.

Flow is solved with a finite volume scheme with

permeameter-like boundary conditions under a unit head gra-

dient. Transport is simulated using the ADE, with heteroge-

neous advection and homogeneous diffusion. Therefore, it is

characterized by the Peclet number Pe, equal to the mean

velocity multiplied by the correlation length, divided by the

diffusion coefficient. Transport is simulated with a random

walk Lagrangian method. Numerical methods are exhaus-

tively described in several previous papers (Beaudoin et al.,

2006, 2007, 2011).

2.3 Injection and boundary conditions

The same type of injection and boundary conditions are used

for both models. Flow has a major flow direction imposed

in HPM by a head gradient in the longitudinal direction and

periodic boundary direction in the transverse direction. For

transport, reflecting and absorbing boundary conditions are

used upstream and downstream, respectively (Beaudoin and

de Dreuzy, 2013). Injection is performed downstream to the

inlet boundary to minimize boundary effects.

Extended injection conditions are used for the HPM and

MRMT models. Concentrations are homogeneous orthogo-

nally to the main flow direction within a square wave of lon-

gitudinal and transverse widths 1L0 and 1T0, respectively.

In the HPM case, concentration is a sole function of the co-

ordinate xL along the flow direction:

c (x, t = 0)= c0 (xL) , (5)

with c0 given by:

c0 (x)=

{ m0

ϕT1T01L0

if x0 < x < x0+1L0

0 otherwise
. (6)

ϕT is the total porosity. To ensure that the same mass m0 is

injected in the HPM and MRMT cases, we adapt the initial

state of the MRMT model to:

c (x, t = 0)= ci (x, t = 0)= c0 (x) for i = 1. . .N. (7)

Spreading becomes independent of the injection length when

the longitudinal plume size becomes significantly larger than

1L0. Mixing depends on the injection conditions more crit-

ically than spreading, as the initial concentration value de-

pends on the injection width 1L0 (Eq. 6).
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t1/tgmax=0.3 t2/tgmax=1 t3/tgmax=3 t4/tgmax=18

Figure 1. Concentration fields normalized by their maximal value c(x,t) /max(c(x,t)) and their related Gaussian profile concentrations

cD(x,t) /max(c(x,t)) in the bar over them at the four evolving times indicated in Fig. 2. In this case, the time at which the non-dispersive

mixing reaches its maximum tγmax is of the same order as the advection time.

3 Measures of spreading and mixing

3.1 Spreading

For an extended plume, spreading is generally measured by

the square root of the second centered moment of the spatial

distribution of concentration σL:

σL (t)=

√
m
(2)
L (t)−m

(1)
L (t), (8)

where m
(k)
L (t) is the kth order moment of the concentration

distribution

m
(k)
L (t)=

∫
�

xkL c (x, t)d
dx

/∫
�

c (x, t)ddx , (9)

with xL the coordinate of x in the direction parallel to the

main flow direction (longitudinal direction) and � the flow

domain. With this definition, σL can be viewed as the lon-

gitudinal extent of the plume (i.e., how far it spreads). Dis-

persion is the rate of spreading (i.e., time derivative of σ 2
L),

usually characterized by the longitudinal dispersivity αL:

αL =
1

2v

dσ 2
L

dt
, (10)

where v is the plume velocity equal to the time derivative of

the mean position plume m
(1)
L (t). αL increases until it con-

verges to an asymptotic value αLA, thus defining in turn the

asymptotic regime (Dagan, 1990; Gelhar, 1993).

In MRMT, spreading comes from the exchanges to the mo-

bile zone. That is, spreading results from trapping. Solutes

are slowed down and dispersed by the exchanges with the im-

mobile zones. The resulting dispersivity is a monotonously

increasing function of the residence times in immobile zones

(both their mean 〈τMRMT〉 and range (tN − t1)). The disper-

sivity induced by the dispersive and diffusive processes in the

mobile zone is comparatively negligible and could be disre-

garded.

In HPM, spreading comes both from diffusive exchanges

with low velocity zones and from spatial fluctuations of the

velocity field (de Dreuzy et al., 2007; Salandin and Fiorotto,

1998). The asymptotic dispersivity increases both with the

correlation length λ and with the logK variance σ 2
Y :

αLA (HPM)= λ g
(
σ 2
Y

)
h
(
σ 2
Y ,Pe

)
, (11)

where g is either a linear function for small values of σ 2
Y

(σ 2
Y < 1) or a quadratic function at larger values (de Dreuzy

et al., 2007).

h
(
σ 2
Y ,Pe

)
is a correction factor accounting for diffusion

(Beaudoin et al., 2010). Local diffusion reduces the effective

dispersivity in the high-heterogeneity cases by releasing so-

lutes from the low velocity zone and truncating the trapping

times induced by slow advection.

Any concentration plume can be approximated by a Gaus-

sian concentration profile cD(x,t), defined by the two first

moments, m
(1)
L (t) as the mean and σ 2

L(t) as variance. It is

the smoothest equivalent profile. Both MRMT and HPM

converge asymptotically to this profile. However, it is far

away from the full concentration profile c(x,t) at any time,

as shown by the comparison of Fig. 1. At early times (left

snapshots in Fig. 1), the concentration profile remains het-

erogeneous especially in the transverse direction with both

higher and lower concentrations. Around the advection time,

defined as the correlation length λ divided by the plume ve-

locity v, the deviation reaches its maximum. At this point,

the Gaussian concentration profile has become much more

diluted than the real concentration field (second from the

Hydrol. Earth Syst. Sci., 20, 1319–1330, 2016 www.hydrol-earth-syst-sci.net/20/1319/2016/
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left snapshot of Fig. 1). Concentration inhomogeneities de-

crease very slowly and remain over very long periods of

time even though the range of concentration values decreases

(two right-most snapshots of Fig. 1) (de Anna et al., 2014a;

Jimenez-Martinez et al., 2015; Le Borgne et al., 2011).

In summary, in HPM, dispersivity comes primarily form

the velocity structure, which drives the generation of gradi-

ents in concentration, and thus, mixing. Instead, in MRMT,

effective dispersivity is controlled by mobile–immobile ex-

changes and delays the actual mixing between the immobile

and mobile solute concentrations.

3.2 Mixing

The Gaussian profile only gives a crude approximation of the

concentration field with a strong deviation on the distribution

of concentration values, especially at early times when diffu-

sion has not homogenized the concentration field in the trans-

verse direction (Fig. 1). Actual concentrations remain much

higher and closer to the initial concentration value than in

the Gaussian profile prediction. That is, the initial concentra-

tions are much less diluted (i.e., mixed) than in the maximum

entropy Gaussian distribution. The Gaussian profile cD(x,t)

thus sets a lower bound to the effective concentration vari-

ability. Therefore, it is most natural to compare the actual dis-

tribution of concentration values to that of the Gaussian pro-

file in order to describe the mixing state. Notice that, contrary

to spreading, we are not concerned here with the spatial dis-

tribution, but only with the values of concentration and their

time evolution, which are most simply characterized by the

second moment. We quantified the deviation from the Gaus-

sian mixing regime as the ratio of the actual concentration

second moment M(t) to the second moment MD(t) of the

Gaussian profile concentration cD(x,t) minus 1 (de Dreuzy

et al., 2012):

γ (t)=
M(t)

MD (t)
− 1, (12)

with

M(t)=

∫
�

c2ddx (13)

and the second moment of the reference Gaussian concentra-

tion:

MD (t)=
m2

0

2
√
π1T0σL

. (14)

MD is directly the square of the injected mass m2
0, divided

by an effective area occupied by the plume 2
√
π1T0σL. As

M(t) is always larger than MD(t), γ is always positive. γ

is initially and asymptotically very close to 0. It is however

significantly positive while the concentration distribution is

far from the Gaussian profile. M(t), introduced here as a

measure of global concentration variability, is widely used

because its derivative is giving the dissipation rate and de-

termines the physical constrains of chemical reactivity (de

Simoni et al., 2005; Le Borgne et al., 2010). The dissipation

is also closely related to the dilution index, which is another

measure of mixing (Kitanidis, 1994; Rolle et al., 2009). It

should be finally noticed that γ and MD fully characterize

the mixing state given by M:

M =MD (1+ γ ). (15)

In HPM models, resistance to dispersive mixing, as we can

also call γ , is enhanced by heterogeneity and reduced by

large diffusion rates (smaller Peclet number) (de Dreuzy et

al., 2012). γ sharply increases at initial times to a maximum

value γmax, at a time tγmax close to the advection time, and

slowly decreases back to 0 (Fig. 2). The time range, over

which γ is significantly non-zero, can be characterized by

rtγ , which is the ratio of the upper and lower times at which

γ is equal to a quarter of its maximal value γmax. While the

amplitude of γ depends on the variability of the velocities

and on the rate of advection to diffusion, the shape of the

function γ remains unchanged by the K field heterogeneity

(σ 2
Y ), the ratio of advection to diffusion (Pe) and the width of

the initial conditions (1L0). The time range rtγ , over which

γ is non-negligible, also remains constant (Fig. 2). There-

fore, tγmax can be used for scaling time, so that γ can be

written as:

γ (t)= γmax f

(
t

tγmax

)
, (16)

where f is the characteristic scaling function (Fig. 2, insert).

A similar constant shape behavior has been noted for viscous

fingering in heterogeneous velocity fields (Jha et al., 2011a,

b).

4 Conditions for effective formalisms of transport

through HPM

We propose four conditions for any effective transport for-

mulation to be considered as a valid representation of trans-

port through heterogeneous media. In essence, an effective

transport equation should yield the same mean advection,

spreading and mixing as the HPM and be sufficiently flexi-

ble to represent real problems. Evaluation of these conditions

can be done as follows:

1. Mean advection simply requires mean water velocity

(i.e., mean plume velocity for non-reactive solutes) to

equal v = q/ϕT . This condition can be met by all pub-

lished upscaled transport equations, by imposing some

simple constraints on their parameters. In MRMT, it is

sufficient to impose ϕT = ϕ+
∑
ϕi = ϕ (1+β).

2. Spreading is characterized by dispersivity, which mea-

sures the rate of growth of plume size (Eq. 10). In cases

www.hydrol-earth-syst-sci.net/20/1319/2016/ Hydrol. Earth Syst. Sci., 20, 1319–1330, 2016
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Figure 2. Time evolution of the deviation from dispersive mixing γ (t) defined by Eq. (12) in HPM for evolving logK variances, σ 2
Y

, under a

small-width injection window (1L0 /αLA = 0.075), flux-weighted injection conditions and Pe= 100 (adapted from de Dreuzy et al., 2012).

The similarity of function shapes is highlighted in the insert by the scaling function f of Eq. (16) where the thick black line is the average

of the displayed functions. Note that the time of maximum deviation, tγmax, is hardly affected by σ 2
Y

and falls around the characteristic

advection time λ/v. The four dashed lines indicate the times displayed in Fig. 1.

where asymptotic dispersion is reached, this condition

implies that dispersivity of the effective equation should

tend to the asymptotic dispersivity of the HPM. Other-

wise, dispersion (or directly, spread, as measured by σL)

can be compared to a spatial scale comparable to the

problem dimension (e.g., size of the aquifer or distance

covered by the plume).

In addition, the time required to reach the above disper-

sion value should also be honored by the effective for-

mulation to ensure that the rate of growth of the plume is

reproduced. In our case, where asymptotic dispersion is

reached, we propose to define this criterion in terms of

rα , the mean distance covered by the plume at the time

tαLA/2 where dispersivity reaches half of its asymptotic

value normalized by the asymptotic dispersivity αLA:

rα =
v tαLA/2

αLA

, (17)

where tαLA/2 is implicitly defined by

α
(
tαLA/2

)
=
αLA

2
. (18)

rα can also be interpreted as the ratio of advective and

dispersive scales like in the definition of the Peclet num-

ber.

3. Mixing is required for properly reproducing fast reac-

tions (slow reactions should be properly reproduced if

the resident time distribution is honored, which is as-

sured if mean advection and dispersion are reproduced).

As discussed above, mixing is essentially dispersive and

well characterized byMD (Eq. 14) for late times. There-

fore, assuming dispersion to be well reproduced, an ef-

fective transport formulation only needs to reproduce

the deviation from dispersive mixing, characterized by

γ (Eq. 12). In the first stage, the comparison can be re-

stricted to the amplitude of the deviation γmax and the

time range over which it extends rtγ . In a more ad-

vanced stage, the characteristic shape of the γ function,

f , can be used for comparison.

To compare the timings of spreading and mixing, we

define the additional criterion rMT as the ratio of the

characteristic spreading time tαLA/2 to the characteristic

mixing time tγmax

rMT =
tγmax

tαLA/2

. (19)

rMT of the development of the resistance to mixing and

rates the lag between the timing of mixing and spread-

ing.

4. Most of the work on effective transport is of a theo-

retical nature, but the ultimate goal should be applica-
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tion to real problems. This implies that a valid trans-

port formulation should be able to accommodate differ-

ent types of boundary conditions and flow regimes (i.e.,

transient flow) and dimensions. Most importantly, it

should accommodate characterization. Dispersion usu-

ally includes the effects of heterogeneity and uncer-

tainty. Whereas the latter is reduced by aquifer char-

acterization, the former is not. Specifically, hydrolo-

gists use geology, hydraulics, geophysics, hydrochem-

istry and isotopes to figure out, among other things, the

patterns of spatial variability of hydraulic conductivity.

The resulting models display variability not only in the

mean logK but also on their correlation distance and

variance. An effective transport formulation should be

able to honor this variability.

5 Results and discussion

We consider it well established that MRMT, and other non-

local in-time formulations, can reproduce mean advection

and spreading, as discussed in the introduction. Mean ad-

vection in the MRMT approach is equivalent to that of the

HPM provided that flux and total porosity are equivalent.

Additionally, the distribution of residence times in immo-

bile zones can be adapted so that the asymptotic dispersivity

of the MRMT model be equal to that of the HPM model in

Eq. (11). It is always possible, as dispersivity is an increas-

ing function of the residence times. This imposes a condi-

tion on the temporal range of t1, tN or equivalently on their

mean residence time 〈τMRMT〉. As trapping in the immobile

zones is the main dispersive mechanism, the mean residence

time is logically adapted to calibrate the asymptotic disper-

sivity. With the total flow imposed to be set by the HPM,

the characteristic spatial scale is the typical plume position

at 〈τMRMT〉. As the characteristic spatial and temporal scales

are interrelated to ensure consistent asymptotic behaviors,

comparison of results can be performed on dimensionless

terms and should ensure consistent preasymptotic regimes. In

fact, MRMT models are calibrated on tracer tests and break-

through information, but this does not ensure a good repro-

duction of mixing (Luo and Cirpka, 2011). Therefore, we

restrict our comparison to mixing criteria and sensitivity to

initial conditions.

5.1 Comparison of mixing in HPM and MRMT

In HPM, the temporal extension of the deviation from the

dispersive mixing regime rtγ does not depend significantly

on the permeability heterogeneity, as also expressed by the

constancy of the shape of γ (Fig. 2). We thus compare the

shape of γ obtained for the HPM with σ 2
Y = 9 (f function of

Eq. 16) to shapes of γ obtained for various MRMT models

obtained under consistent injection conditions (Eqs. 6 and 7).

For MRMT, extreme values have been investigated to get the

possible range of behaviors. For slopes m, we adopted the

range observed in nature, as discussed in Sect. 2.1, with m

varying between m= 1.5 (typical fracture–matrix case) and

m= 2.5. The single rate mass transfer (SRMT) is also shown

for comparison. The porosity ratio β does not have an upper

bound. In fact, ideally, the mobile porosity could be 0. We

adopted β = 150 as a large upper value. Larger upper val-

ues would not affect results and might cause numerical dif-

ficulties. The same can be said for tN /t1, for which we took

tN /t1 = 103 as the upper bound. The analysis presented here-

after has been made for different combinations of parameters

within these bounds. As all models lead to consistent conclu-

sions, we only present the most characteristic results.

All MRMT models capture the sharp rise of γ at times

smaller than tγmax (Fig. 3). The sharp rise comes from a

strong initial divergence from the equivalent Gaussian con-

centration profile. Initial behavior is dominated by the con-

trast of the quickly progressing concentrations in the mobile

zones and trailing concentrations in the low-flow or immo-

bile zones. On one hand, dispersion induces a sharp decrease

of MD, which is inversely proportional to σL (Eq. 14). On

the other hand, trapping maintains high concentrations in the

immobile zone and high values for the second moment of

the concentration distributionM . Divergence ofM fromMD

increases until it reaches its maximum at tγmax.

At larger times, progressive release of solute mass from

the immobile zone and equilibration with the concentration

values in the mobile zone allow f to decrease. The insert of

Fig. 3 highlights, in a lin–lin graph, the differences of the de-

crease stage. The MRMT model that best matches the scaling

function f is obtained form= 2.25. For power-law slopesm

larger than 2, the decrease of f is qualitatively similar to that

of the single-rate mass transfer model. Form values closer to

2, the deviation is more sustained but displays the same de-

creasing trend. The behavior changes significantly when m

becomes smaller than 2, with a very slow decrease of f com-

ing directly from the effect of the slow drainage of the immo-

bile zones with the smallest rates (long exchange times). At

least in MRMT models with m lower than 2, trapping dis-

plays a much longer memory effect in MRMT than in HPM.

While they are similar to HPM for the extension of the

non-dispersive mixing regime, MRMT models with slopes

m larger than 2 converge to less anomalous single rate

mass transfer. In terms of mixing, this translates in small

amplitudes in γ (small γmax values). For m= 2.25 and

1L0 /αLA = 0.075, we have computed γmax for a large vari-

ety of tN /t1 and β values, the only two remaining parameters

of the MRMT model. γmax first increases with tN /t1 and β

and quickly saturates to a maximal value of 2.85 (Table 1).

γmax varies between 0.57 and 2.85 by a maximum factor of

5. In the HPM case, however, γmax is always larger than 3,

reaches values of 15 for a Peclet number Pe of 100, scales

like the square root of Pe and is thus not limited in ampli-

tude.
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Figure 3. Comparison of γ shapes (f -scaling functions defined in Eq. 16) for HPM and MRMT simulations with slopes of the power-law

distributions of MRMT transfer rates, m, between 1.575 and 2.5. HPM is represented by the broad black curve obtained from the insert of

Fig. 2. The insert displays the same curves in arithmetic scale.

Table 1. Values of the maximum deviation to the dispersive mixing

regime γmax for MRMT models with a power-law exponent of the

rate distribution m= 2.25 and 1L0 / αLA = 0.075.

tN / t1 = 100 β = 100

β γmax tN /t1 γmax

1 0.57 1 1.47

10 1.96 10 2.72

100 2.84 100 2.84

300 2.85 694 2.74

MRMT models cannot match both the amplitude and the

timing of γ . For MRMT models with m-slopes larger than

2, mixing is far more dispersive in MRMT than in HPM

(smaller deviation values γ in the MRMT models). MRMT

models with m-slopes smaller than 2 induce larger but much

too sustainable deviations. As a result, MRMT models have

a stronger memory of trapping or display less non-dispersive

mixing, without excluding to display both differences simul-

taneously. The difficulties of MRMT models to capture mix-

ing might be linked to the existence of the structure of con-

centrations in lamellas where stretching and folding extends

the concentration forward and enhances the eventual mixing

by diffusion (Fig. 1) (de Anna et al., 2014b; Le Borgne et al.,

2015).

Concerning the non-dispersive mixing shapes of the scaled

function f , MRMT models display a much broader range

of shapes than HPM. The invariant shape property of HPM

is not recovered in MRMT. On the contrary, MRMT shapes

depend strongly on the distribution of transfer rates. This is

an advantage to match a wider range of cases issuing possibly

different γ functions. However, it is a drawback to fit just one

case, as it restricts the MRMT models that can match HPM

simulations with broad ranges of Pe and σ 2
Y values.

5.2 Influence of initial injection size

To qualify the memory effect in MRMT and HPM, we an-

alyze their sensitivity to the initial injection width 1L0.

Spreading, as defined by the characteristic longitudinal

plume extension (Eqs. 8, 9 and 10), does not depend on the

initial concentration c0 (Eq. 6). σL is initially of the order

of 1L0 and quickly becomes larger. Spreading quickly loses

any memory of the initial conditions. We note that this is

the case because sampling effects do not intervene as the

transverse injection scale is assumed large enough to ensure

ergodic sampling by itself. Like spreading, the second mo-

ment of the reference Gaussian concentration MD(t) does

not depend on the initial concentration but only on the in-
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Figure 4. Dependence of the deviation from dispersive function γ on the injection width 1L0/αLA for (a) MRMT and (b) HPM models.

Insert shows the dependence of γmax on 1L0/αLA.

jected mass divided by the characteristic area occupied by

the plume (1T0σL) (Eq. 14).

The concentration second moment M(t) (Eq. 13), how-

ever, depends critically on the injection width through the

relation between injected mass and concentration (Eq. 6).

At initial times, the concentration second moment is pro-

portional to the injected concentration value. At later times,

the concentration second moment has lost the memory of the

initial concentration and is only the function of the injected

mass m0. As a result, we expect that the concentration sec-

ond moment and the deviation towards the dispersive mix-

ing regime γ depends on the injection conditions, here rep-

resented by the injection width1L0. On the basis of numeri-

cal simulations, we compare the evolution of γ with1L0 for

HPM and MRMT models.

Results of the γ function for both MRMT and HPM mod-

els are displayed in Fig. 4a and b, respectively, for different

injection sizes. We have performed simulations for compa-

rable ranges of 1L0 / αLA values (0.005–0.1 for HPM and

0.02–0.4 for MRMT). We have checked numerically that the

www.hydrol-earth-syst-sci.net/20/1319/2016/ Hydrol. Earth Syst. Sci., 20, 1319–1330, 2016
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results for the two specific MRMT and HPM cases display

generic tendencies. In both models, injection width has a crit-

ical influence on γ (Fig. 4). Smaller injection windows let

the initial concentration increase and enhance the deviation

towards the dispersive mixing regime. We use the maximum

deviation γmax to characterize the overall influence of 1L0.

In the MRMT and HPM models, maximum deviations γmax

have different scaling (Fig. 4a and b, inserts):

γmax ∼ (1L0)
−1 for MRMT,

γmax ∼ (1L0)
−0.5 for HPM.

(20)

For MRMT, γmax evolves like the initial concentration level

(Eqs. 6 and 7). For HPM, γmax has the same scaling for the

initial conditions γmax ∼ 1
/√

1L0 and for the diffusion co-

efficient as γmax ∼
√

Pe (de Dreuzy et al., 2012). Doubling

the injection width has a comparable effect to doubling the

diffusion coefficient. Initial dilution over 1L0 and dilution

induced by diffusive–dispersive processes reduce the overall

deviation to the dispersive mixing regime γ in the same pro-

portion. The reduction of concentration in HPM comes from

the diffusive–dispersive processes while, in MRMT, it comes

from the progressive release of solutes with high concentra-

tions close to c0 trapped in the immobile zone. Due to their

differing signatures, both processes cannot be compared and

the dispersive–diffusive processes of HPM cannot be mod-

eled as trapping–release mechanisms.

6 Conclusion

We propose conditions to test anomalous transport frame-

works not only on spreading but also on mixing. We de-

fine a minimum set of six essential constraints that should

be respected in order to retain the main transport, reactivity

and reactive transport couplings. These constraints involve

the conservation of (1) the mean advection, (2) dispersivity

amplitude and (3) timing generally imposed. Beyond these

flow and spreading metrics, (4) amplitude and (5) timing of

the deviation towards the dispersive mixing regime should

be respected. The last condition concerns (6) the respective

timings for mixing and spreading. Under ergodic injection

conditions, spreading is characterized by the standard dis-

persivity describing the evolution of the plume size along the

main flow direction. Mixing is characterized by the deviation

from the dispersive mixing regime γ , defined as the second

moment of the concentration distribution of a conservative

tracer, divided by the second moment of a Gaussian concen-

tration pattern with the same spread minus 1 (Eq. 12). Zero

initially and asymptotically, γ traduces the macroscopic ef-

fect on mixing of the concentration structures within the so-

lute plume.

We use these criteria to evaluate MRMT models by com-

parison to advective–diffusive transport simulations through

HPM, represented by the classical isotropic 2-D Gaussian

correlated multi-Gaussian log-permeability fields, character-

ized by variances between 1 and 9. A broad range of MRMT

models are considered. We conclude that MRMT models

cannot match both the amplitude and the timing of γ . MRMT

models can reproduce observed spreading rates and some

non-dispersive mixing. However, they tend to induce larger

and too sustained deviations from dispersive mixing. As a re-

sult, MRMT models display a longer memory but less non-

dispersive mixing than HPM. We attribute this divergence

to the fact that MRMT represents non-dispersive mixing

through trapping mechanisms, whereas non-dispersive mix-

ing is controlled by stretching and folding in HPM. Diver-

gent sensitivities to initial conditions confirm that dispersive–

diffusive induced mixing in HPM cannot be modeled by

mobile–immobile models.

Our study does not preclude, however, the existence of

effective transport equations consistent with spreading and

mixing of HPM. Nonetheless, we argue that the proposed

criteria and existing results of HPM should be used as guide-

lines to set up effective transport equations that respect

spreading, mixing and eventually reactive transport.
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