Hydrology and Earth System Sciences, 2(1), /9-30 (1998) © EGS

Hydrology & Earth
System Sciences

(5

Evaluation of a scaling cascade model for temporal rain-

fall disaggregation

Jonas Olsson

Department of Water Resources Engineering, Lund University, Box 118, SE-22100 Lund, Sweden.
Currently at: Department of Civil Engineering, Kyushu University, 6-10~1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

Abstract

The possibility of modelling the temporal structure of rainfall in southern Sweden by a simple cascade model is tested. The cas-
cade model is based on exact conservation of rainfall volume and has a branching number of 2. The weights associated with one
branching are 1 and 0 with probability P(1/0), 0 and 1 with P(0/1), and W,/ and 1 — W,/,, 0 < W,/ < 1, with P(x/x), where
W,/» is associated with a theoretical probability distribution. Furthermore, the probabilities P are assumed to depend on two
characteristics of the rainy time period (wet box) to be branched: rainfall volume and position in the rainfall sequence. In the
first step, analyses of 2 years of 8-min data indicates that the model is applicable between approximately 1 hour and 1 week with
approximately uniformly distributed #,/, values. The probabilities P show a clear dependence on the box characteristics and a
slight seasonal nonstationarity. In the second step, the model is used to disaggregate the time series from 17- to 1-hour resolu-
tion. The model-generated data reproduce well the ratio between rainy and nonrainy periods and the distribution of individual
volumes. Event volumes, event durations, and dry period lengths are fairly well reproduced, but somewhat underestimated, as
was the autocorrelation. From analyses of power spectrum and statistical moments the model preserves the scaling behaviour of
the data. The results demonstrate the potential of scaling-based approaches in hydrological applications involving rainfall dis-

aggregation.

Introduction

Characterising the temporal rainfall process by its scaling,
i.e., scale-invariant, behaviour is an approach that receives
a constantly increasing attention. Scaling refers to a sym-
metry across scales, i.e., absence of characteristic scales,
and recently a large number of analyses have supported the
presence of scaling properties of temporal rainfall (e.g.
Hubert and Carbonnel, 1989; Olsson ez al., 1992, 1993;
Hubert et al., 1993; Tessier er al., 1993, 1996; Olsson,
1995; Burlando and Rosso, 1996; Cirsteanu and Foufoula-
Georgiou, 1996; Harris et al, 1996; Onof er al., 1996;
Svensson et al., 1996; Menabde et al., 1997). Scaling
implies that statistical properties of the process observed
at different scales, i.e., resolutions, are governed by the
same relationship, and an obvious application of rainfall
scaling is for disaggregation or downscaling. In principle,
parameters of the scaling relationship could be obtained
from larger scales and then used to estimate the process
properties at smaller scales.

In this study, the scaling behaviour of (temporal) rain-
fall is modelled by a cascade process, an approach argued
for by, e.g. Schertzer and Lovejoy (1987), Gupta and

Waymire (1990, 1993), and Lovejoy and Schertzer (1990).
This conceptual model was originally used in statistical
turbulence (e.g. Yaglom, 1966; Mandelbrot, 1974). In
principle, a large-scale structure associated with an origi-
nally uniformly distributed mass or volume is decomposed
into successively smaller structures to which the mass is
transferred. As a consequence, the mass becomes concen-
trated in smaller and smaller units of the available space
(e.g. Schertzer and Lovejoy, 1987). For rainfall, cascade
models have mainly been used to describe the spatial
structure (e.g. Lovejoy and Schertzer, 1990; Gupta and
Waymire, 1993; Tessier et al., 1993; Over and Gupta,
1994), but also the temporal structure has been explored
(e.g. Hubert et al., 1993; Olsson, 1995; Menabde ez al.,
1997). To the author’s knowledge, cascade models have up
to now not been used for rainfall disaggregation.

This study is focused on temporal disaggregation of
approximately daily values into finer time steps. Some
work has already been devoted to this, notably by
Hershenhorn and Woolhiser (1987). They developed a
model for simulating the number, depths, durations, and
starting times of events during a day based on the total
rainfall during the day and the preceding and following
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days. The method was somewhat modified by Econopouly
et al. (1990), who also investigated the spatial transferabil-
ity of the model parameters. Bo et 4l (1994) used the
Bartlett-Lewis rectangular pulses, BLRP, model devel-
oped by Rodriguez-Tturbe ez /. (1987, 1988) to, among
other things, disaggregate daily rainfall into hourly values.
Bo ez al. (1994) argued that the successful result was due
to a scaling (power-law) behaviour of the power spectrum.
Another approach was proposed by Glasbey ez al. (1995),
who modified the BLRP model to simulate hourly data
consistent with observed daily totals. For spatial rainfall,
scaling-based disaggregation was performed by Perica and
Foufoula-Georgiou (1996). They developed a disaggrega-
tion model based on the (empirically observed) scaling of
probability distributions of rainfall fluctuations and corre-
lation between the scaling parameters and the convective
available potential energy (CAPE).

The aim of the present study was twofold. Firstly, to
evaluate the applicable scale range of a cascade model
designed to represent the temporal structure of rainfall in
southern Sweden. Secondly, to test the possibility of using
the model for temporal rainfall disaggregation within this
range.

Rainfall data

During 1979-81, a detailed observation programme of
short-term rainfall properties was performed in the city of
Lund, southern Sweden. The rainfall intensity was mea-
sured with a time resolution of 1 min by small tipping-
bucket gauges with an intensity resolution of 0.033
mm/min. The longest continuous measurement period was
2.5 years (January 1979 to July 1981), and the most com-
plete time series was used in the present study. However,
winter periods when the occurrence of snow may have
introduced errors in the measurements were omitted from
the series in the present analysis and, because of this, the
length of the series analysed is 2 years. During this time
there were no missing values. For further details about the
database and observation area see Niemczynowicz (19862,
b). It should be remarked that the tipping-bucket gauge
was used somewhat differently from common practice.
Instead of recording the point of time of each ‘tip’, the
number of ‘tips’ that occurred during each minute was
recorded. By this measurement strategy, constant rainfall
intensities lower than the intensity resolution of the gauge
will in the series be represented by ‘1-tip’ (0.033 mm/min)
rainfall registrations separated by one or more spurious
zero-registrations. To overcome or at least reduce the influ-
ence of this problem, the original 1-min registrations were
aggregated into 8-min values. These aggregated values will,
in general, comprise both the ‘1-tip’ registrations and the
erroneous zero-registrations, i.e., low-intensity rainfall will
be evened out and be represented more accurately.

The final series thus consists of 2 years of 8-min rain-
fall observations, i.e. 131 072 or 217 values. Due to the cas-
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cade structure employed in the present study, the time
scales are expressed in 8-min periods multiplied by pow-
ers of 2. This is the reason for the values of the main time
scale limits employed in the description of the results of
this study below: 1 hour (=23 8-min periods), 17 hours
(=27 8-min periods), and 5.7 days (=210 8-min periods).
General scaling and multifractal properties of the series
were investigated by Olsson (1995).

Cascade model

Fig. 1 shows how a cascade scheme is used in this study
to represent a time series of rainfall volumes at succes-
sively doubled temporal resolution, and will be used for
defining some of the notions introduced below. Cascade
level, I, refers to the time series at a certain resolution. The
transition from one cascade level to the nearest higher
level, corresponding to a doubling of the resolution, will
be called a modulation. A time interval T at an arbitrary
cascade level (i.e. time scale) will be termed a box, and its
associated rainfall volume denoted V. If 7/ = 0 the box is
said to be dry, and wet if V > 0. A break-up of a wet box
T into two equally sized sub-boxes 7 and T3, with vol-
umes V7 and V>, is denoted a branching (i.e. the branching
number is 2 in this study). In one branching, the total vol-
ume J is redistributed according to the two multiplicative
weights W1 (0 < W1 <1)and Wo, QS W L1), W + W =
1,ie., V1= WiV and V, = Wy V. Concerning this redis-
tribution, three principal possibilities exist on the condi-
tion that 77 and 73 are short enough to have a positive
probability of zero rainfall. The first is that all of V'
occurred during 77, i.e. W1 =1 and W, = 0. This possi-
bility is in the following referred to as 1/0-division. The
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Fig. 1. Schematic of a I-dimensional cascade process, as defined in
this study, representing a time series of rainfall volumes at different
resolutions and visualizations of some of the notions introduced in the
text.
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second is the reverse, i.e., Wi = 0 and W = 1 (0/1-
drvision). The third possibility is that one non-zero part of
V occurred during 7; and the other non-zero part during
Ty, ie. 0 < Wiy <1and 0 < W < 1, and this will be
referred to as x/ x-division (see Fig. 1).

In the modulation between two cascade levels, P(1/0),
P(0/1), and P(x/x) are defined, respectively, as the prob-
ability of having an 1/0-, 0/1-, and »/x-division, respec-
tively, in the branching of a wet box. Naturally P(1/0) +
P(0/1) + P(x/x) = 1, and when referring to these proba-
bilities in general they will be jointly denoted P. In case of
x/x-divisions, the corresponding weights W,/ are
assumed to be associated with a theoretical probability dis-
tribution in the following denoted W,,,~distribution. It is
further assumed that the probabilities P and the W,/,-
distribution are scale-invariant, i.e. approximately constant
over a range of cascade levels (i.e. time scales).

The model is thus a random cascade with the generator
(e.g. Gupta and Waymire, 1993)

land 0  with probability P(1/0)
0and 1  with probability P(0/1) (1)
Wy and 1=-Wy/e, 0 < Wy < 1

with probability P(x/x)

W, W=

where W,/ is associated with a theoretical probability dis-
tribution.

A main difference between the present model and most
previously proposed cascade models is the exact conserva-
tion of rainfall volume between successive cascade levels.
This has been termed a microcanonical property as opposed
to canonical cascades where the volume is only on average
conserved (e.g. Mandelbrot, 1974; Schertzer and Lovejoy,
1987). Another consequence of the present cascade struc-
ture is that the weights are not mutually independent, as
is typically assumed, but /%) and W, have a correlation of
—1. However, the pairs of weights associated with different
branchings are assumed to be mutually independent. It
should be mentioned that a similar microcanonical
approach was recently used by Cirsteanu and Foufoula-
Georgiou (1996) to investigate the weights structure in
temporal rainfall. They found a correlation of -0.2
between adjacent pairs of weights in individual rainfall
events. The present model thus differs in some funda-
mental respects from the majority of random cascade mod-
els for rainfall developed and tested to date; the résults of
the present study cannot be compared directly with the
results of previous analyses. However, this model has been
preferred as it has the significant advantage of allowing an
‘exact’ reconstruction of the cascade generator from the
time series (Carsteanu and Foufoula-Georgiou, 1996).
Because of this, the generator properties may be evaluated
in a direct fashion rather than indirectly via derived rela-
tionships.

In this study, a further modification is introduced as
compared to existing random cascade models. Although
existing models preserve the empirically determined scal-

ing behaviour of rainfall, they do not seem, entirely and
convincingly, to reconcile on one hand the presence of
zero-values and on the other hand the clustering of rain-
fall into continuous events or areas. A multifractal field
produced by the log-Lévy model argued for by Lovejoy
and Schertzer (1990) does not contain any zero-values
unless some thresholding is employed. The model by Over
and Gupta (1994) generates zero-values, but from a visual
inspection of the simulated fields (page 1529) the rainfall
areas appear significantly less connected than in the
observed rainfall fields. In these models, it is assumed that
the same generator parameters apply to all (temporal or
spatial) units containing rain (wet boxes) in the modulation
between two successive cascade levels.

One way to improve the model performance in the
above respect could be to use a random cascade model with
a general generator structure (Eqn. 1), but with generator
parameters depending on characteristics of the wet box to
be branched. In the case of temporal rainfall we propose
(1) the rainfall volume of the box and (2) the position of
the box in the rainfall sequence to be relevant characteris-
tics. Concerning the rainfall volume, it may be assumed
that, for a period receiving a large amount of rainfall, the
probability of rain during both the first and the last half of
the period, P(x/x), is higher than for a period receiving a
small amount of rainfall. This assumption requires that
large rainfall volumes be generally produced by long dura-
tions rather than high intensities. This is likely to be the
case in the present region where fairly evenly distributed
rainfall associated with frontal passages constitutes most of
the temporal rainfall occurrence (Angstrﬁm, 1974).
Concerning the position of the rainy period in the rainfall
sequence, it may be assumed that for a period surrounded
by rainy periods, the probability of rain during both the
first and the last half of the period, P(x/x), is higher than
for a period surrounded by dry periods. This assumption
is motivated by the clustering of rainfall that has been
observed at different scales (e.g. Austin and Houze, 1972).
It should be mentioned that differences in cascade para-
meters might also arise due to discretization effects in the
data. For example, since the duration of a rainfall event
generally decreases with increasing resolution, as the start-
ing and stopping time approach their true values, P(0/1)
(P(1/0)) for a period in the beginning (end) of a sequence
may be expected to be significantly higher than P(1/0)
(P(0/1)).

Evaluation

The applicability of the model was evaluated by recon-
structing the cascade generator from the time series. The
range of cascade levels possible to study was 0-17, where
1 = 0 corresponds to 2 years (the length of the series) and
!/ = 17 to 8 min (the temporal resolution). The recon-
struction was performed by aggregating the time series
values two by two starting from / = 17 to successively
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lower cascade levels. To test the hypothesis of a depen-
dence of the generator parameters on box characteristics,
the wet boxes at each cascade level were divided into
classes defined both by the position in the rainfall sequence
and the observed rainfall volume. For the position, four
classes were defined (see Fig. 1): (I) period in the begin-
ning of a sequence, i.e., preceded by a dry period and suc-
ceeded by a rainy period (this class will be referred to as
starting boxes), (I1I) period within a sequence, i.e., preceded
and succeeded by rainy periods (enclosed boxes), (III)
period in the end of a sequence, i.e., preceded by a rainy
period and succeeded by a dry period (ending boxes), and
(IV) isolated period, i.e., preceded and succeeded by dry
periods (isolated boxes). For the volume, each position class
was further sub-divided into two volume classes: above
and below the mean volume of the position class.

Consider the aggregation from level 5 to level ; = j — 1.
For each wet box at level 7, the class was determined and
the weights /#7 and W) were extracted by dividing the
total volume by both its corresponding volumes at level ;.
For a certain class, denote the total number of wet boxes
at level ¢ by N,, and the number of wet boxes associated
with 1/0-, 0/1- and x/x-divisions by N(1/0), N;(0/1),
and N,(x/x). The empirical estimates of P(1/0), P(0/1)
and P(x/x) associated with the modulation from level 7 to
level j for the class may then be obtained as f(1/0) =
N{(1/0)/N;, f(0/1) = N{O/1)/N;, and flx/x) =
Ny(x/x)/ N;. The corresponding W, ,~distribution may be
estimated from a histogram of the weights ¥, /,. When all
cascade levels have been investigated, i.e. the 8-min values
have been aggregated to 2 years, the W, ,~histograms at
different levels may be compared. Also, f may be plotted
as a function of /. This way the scale invariance of the cas-
cade generator properties may be directly evaluated, and
the range where the properties are approximately constant
will be termed the scaling regime. The mean value of fover
a range of cascade levels i~k will be denoted f;_;.

Figure 2 shows W,/,~histograms associated with modu-
lations between the time scales 8 min and 22.8 days (i.e.,
cascade levels 17 and 5) for enclosed boxes below mean
volume, obtained from the time series. Histograms corre-
sponding to lower cascade levels are not shown since the
number of W,,, values, #, was too small to obtain reliable
results. In Fig. 2, »n ranges from 1142 for §-16 min to 32
for 11.4-22.8 days, and the number of histogram intervals,
k, was determined by £ = 1 + 3.3loggn (Haan, 1977). The
histograms are naturally symmetrical since every value of
W,/ between 0 and 0.5 corresponds to a value 1-W,,,
between (.5 and 1. For the three modulations at the small-
est time scales, 8 min—1 hour (Figs. 2a—), the histograms
exhibit a pronounced peak around 0.5 and the shape sug-
gests an approximately normal distribution. For the rest of
the histograms, however, the more or less flat shape sug-
gests a uniform distribution (Figs. 2d-1). Histograms cor-
responding to enclosed boxes above mean volume exhibit
a similar appearance.
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The time scale where the distribution changes from
approximately uniform to approximately normal corre-
sponds to the duration of rainfall events in the series.
Olsson et al. (1992) found that, for the present data, the
mean duration is around 40 min. When studying the suc-
cessive modulations between levels corresponding to time
scales smaller than 40 min, the results to an increasing
degree reflect the internal temporal structure of rainfall
events. In the present region, the rainfall during an event
is generally rather evenly distributed. Thus, for time
periods shorter than the mean duration, it may be expected
that the rainfalls during the first and the last half of the
period often are approximately the same, i.e., both W/,
values are close to (.5. For longer time periods, however,
the first and the last half may well contain different events
associated with different total volumes, e.g., due to differ-
ent durations. Thus, it is reasonable that the W, values
at larger time scales do not cluster around 0.5 but exhibit
a larger spread.

For position classes other than enclosed boxes, the his-
togram shapes were similar although a uniform distribu-
tion was often suggested also for the smallest scales.

Figure 3 shows the empirical probabilities f(1/0),
f(0/1), and f{(x/x) as a function of modulation time scales
between 8 min and 11.4 days for all four position classes
below mean volume, obtained from the time series. At the
largest scale, only the class of enclosed boxes has f values
(Fig. 3b). This is because in the present data zero-values
do not exist at time scales larger than 2.8 days. Thus, for
the present data, the modulation between 5.7 and 2.8 days
constitutes an upper time scale limit for the proposed
modelling approach. Between 1-2.1 hours and 2.8-5.7
days, for all classes, the f values remain fairly constant.
However, at modulations below 1-2.1 hours the f values
deviate, particularly for enclosed and isolated boxes (Figs.
3b and d). In general, f(x/x) increases whereas f(1/0) and
f(0/1) decrease. Similarly as for the histograms, this
behaviour may also be explained by considering the rain-
fall event duration. At time scales smaller than the mean
duration, the wet boxes are to an increasing degree clus-
tered into continuous sequences. Thus it is reasonable to
expect the observed increase of f(x/x).

The empirical probabilities f{1/0), f/(0/1), and f(x/x)
generally differ distinctly within each class, save perhaps
for enclosed boxes (Fig. 3). This justifies a generator with
different probabilities for 1/0-, 0/1-, and x/x-divisions,
respectively. It is also evident that the probabilities differ
between the position classes. This is also true for the vol-
ume classes. For boxes above mean volume the principal
variation of f{1/0), f(0/1), and f(x/x) with scale is similar
to Fig. 3. However, for each position class the values of
the probabilities corresponding to volumes below and
above the mean, respectively, differ distinctly (see Table 1
below for the probability values used in the disaggrega-
tion). This verifies the hypothesis of a dependence of the
cascade generator parameters on box characteristics.
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Fig. 2. Histograms (in percentages) of the Wy, values for modulations ranging from time scales 8~16 min (a) to 11.4-22.8 days (1), for
enclosed boxes below mean volume.

Table 1. Values of the empirical probabilities f7_14 and the probabilities P used in the disaggregation, for the three types of division
and eight classes.

0/1-division 1/0-division x/ x-division
Position Volume Sfr-14 p frs p Sr-14 P
Starting Below mean 0.61 0.61 0.23 0.21 0.17 0.18
Above mean 0.31 0.29 0.13 0.10 0.56 0.61
Enclosed Below mean 0.34 0.34 0.34 0.34 0.32 0.32
Above mean 0.13 0.13 0.13 0.13 0.74 0.74
Ending Below mean 0.19 0.21 0.61 0.61 0.20 0.18
Above mean 0.07 0.10 0.28 0.29 0.65 0.61
Isolated Below mean 0.44 - 0.44 0.45 0.44 0.11 0.12
Above mean 0.25 0.24 0.23 0.24 0.52° 0.52
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In terms of constant W,/, distributions and f values, a
reasonable scaling regime thus exists between 5.7 days (/ =
7) and 1 hour (/ = 14). These limits agree with limits
found by analysing similar data using monofractal tech-
niques (Olsson et al., 1992, 1993), whereas analyses of
power spectrum and statistical moments of the present
series have indicated multifractal scaling from approxi-
mately the same upper limit down to the 8-min resolution
(Olsson, 1995). As previously mentioned, however, the
results of the present study are not directly comparable
with most previous analyses due to the microcanonical
framework employed.

To verify the applicability of the model with uniformly
distributed W,/, values in the scaling regime, some statis-
tical tests and calculations were carried out. To test the
hypothesis of a uniform distribution, the probability-plot
correlation-coefficient, PPCC, test proposed by Vogel and
Kroll (1989) was employed. For the seven modulations
between 5.7 days and 1 hour for all eight classes (56 his-
tograms), the uniform PPCC was 0.98740.009 (meanistd).
At significance level 0.01, the hypothesis of a uniform dis-
tribution could not be rejected for any histogram. At sig-
nificance level 0.1, only one histogram was rejected.
Concerning the probabilities f, for the model to be applic-
able, it is required that these exhibit a limited variation and
no significant trend. To quantify the variation, the stan-
dard deviation of f in the scaling regime was calculated.
For the three probability types and eight classes (24 prob-
abilities), the standard deviation was 0.08240.035, which
indicates a limited variation. The hypothesis that the slope
of a straight regression line of f versus modulation scale
equals zero in the scaling regime, i.e., absence of trend,
was tested using the z-ratio (estimated slope divided by its
standard error) as test statistic. At significance level 0.01,
the hypothesis of zero slope of a straight regression line
could not be rejected for any probability. At significance
level 0.1, eight probabilities were rejected.

Table 1 shows f7_14, i.e., the mean of f in the scaling
regime, for all probabilities; for all position classes,
Jfr-14(x/x) for volumes above mean is substantially higher
than for volumes below mean. This confirms the assump-
tion about the influence of the volume on the probabilities
made in the previous section. Also the lower quartile, the
median, and the upper quartile were tested as limit
between the volume classes. However, this did not change
the result significantly, and in the disaggregation below the
mean will be used for simplicity. Concerning the influence
of the position, f7_14(x/x) is higher for enclosed than for
isolated boxes, and f7_14(0/1) (f7-14(1/0)) for starting (end-
ing) boxes is substantially higher than f7.14(1/0)
(/7-14(0/1)). Thus, these assumptions were also confirmed.

Table 1 shows that some simplifications of the model are
possible. Firstly, starting and ending boxes have reversed
f7-14(0/1) and f7.14(1/0) values (i.e., f7-14(0/1) for starting
boxes nearly coincided with f7_14(1/0) for ending boxes
and vice versa) and similar f7_14(x/x) values (see also Figs
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3a and c). This is valid for both volume classes. Thus,
starting and ending boxes may be viewed as being of the
same principal ‘edge-of-rainfall-sequence’ class having the
same but reversed f7_14(0/1) and f714(1/0) values, and
identical f7_14(x/x) values. Secondly, for enclosed and iso-
lated boxes there are almost no difference between
f-14(0/1) and f7-14(1/0) (see also Figs 3b and d). This
means that if all rainfall originated from one half of the
period, there is an equal chance of this being the first or
the last half, which appears reasonable. This behaviour is
also valid for both volume classes.

In order to assess the applicability of the model for dis-
aggregation, a number of complementary analyses were
performed. An important issue is how accurately the P val-
ues can be estimated using only larger scales, since this is
the course of action in a real-world application where only
larger-scale data are available. This issue was investigated
by comparing f7-14 to the average of fin the interval 5.7
days to 17 hours (/ = 10), f7_10. The absolute difference
between f7-14 and f7j0 for all 24 probabilities was
0.05140.040, which supports the potential for disaggrega-
tion. Other crucial issues are the temporal stationarity and
robustness of the probabilities. Although the seasonal vari-
ability of rainfall in the region is limited, its effect on the
probabilities may be significant and must therefore be eval-
uated. For this purpose, f7_14 for spring, summer, and
autumn data, respectively, were calculated separately, and
then compared with f7_14 obtained from the entire series
and with each other. Table 2 shows that the absolute dif-
ference between f7_14 estimated for separate seasons and
the entire series, respectively, is about 0.0530.05, whereas
the difference between different seasons is about
0.0740.08. This indicates a slight temporal nonstationarity
of the generator parameters. It should be stressed that the
probabilities estimated from single seasons are associated
with larger uncertainties due to the smaller amount of
data. To investigate the temporal robustness, f7-14 was
estimated using only the first and the second years of the
time series and compared with f7_14 obtained from the
entire series. Table 2 shows that the absolute difference is
only about 0.02 * 0.02.

Disaggregation

Since the proposed model proved to be applicable between
5.7 days and 1 hour, tests of rainfall disaggregation within
this range were performed. In hydrological applications,
the available rainfall data are often l-day or 12-hour vol-
umes, whereas a higher resolution, e.g. 1 hour, is required
for model input. Therefore, the original 8-min values were
firstly aggregated into 17-hour (1024-min) values, which
were then disaggregated to l-hour (64-min) values by
using the cascade model generator (Eqn. 1). In the disag-
gregation, the values of f7_14 obtained in the evaluation
were used as estimates of the probabilities P. The simpli-
fications described in the previous section were imple-
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Table 2. Absolute differences between the 24 empirical probabil-
ities estimated from different time periods. The subscripts cor-
respond to different time periods and are self-explanatory.

Absolute difference

Compared probabilities (meantstd)
f;pring - ﬂotal 0.05840.064
f;ummer - ﬂotal 0.04410.043
ﬂutumn “ﬂotal 0.05910.058
f;pring - f;ummer 0.07310.074

summer — f;utumn 0.07340.075
f;pring - f;utumn 0.07140.096
fyearl _ftoml 0.02240.021
f;'earZ _ﬁotal 0.01610.010
fifearl _firearZ 0.02540.017

mented and, because of these, the number of P values to
be specified was reduced from 16 to 8. The P values
employed in the disaggregation are shown in Table 1.

When disaggregating a certain wet box, its volume and
position were used firstly to determine the class, i.e., the set
of P values to be used. A random number 7, uniformly dis-
tributed between 0 and 1, was then drawn to determine the
type. of division. If » < P(1/0), a 1/0-division was made (/¥
=1and W, =0). If P(1/0) < r < (P(1/0) + P(0/1)),a 0/1-
division was made (W) = 0 and W, = 1). If (P(0/1) +
P(1/0))<r, a x/x-division was made (W) = W,/, and W, =
1— W,/,). In this third case, since the ¥, /,~distribution was
suggested to be uniform in the evaluation, W,,, was drawn
from a uniform distribution between 0 and 1.

When all the 17-hour values had been disaggregated, a
series of 8.5-hour values had thus been produced. This
series was then disaggregated by the same procedure to
4.3-hour values, the 4.3-hour values to 2.1-hour values,
and finally the 2.1-hour values to 1-hour values. The dis-
aggregation procedure will thus preserve nonstationarities
in the data at scales larger than the scale from which the
disaggregation starts, whereas at smaller scales the gener-
ated data will be stationary. This is in agreement with the
present data, which do not contain any pronounced diur-
nal nonstationarities, but may constitute a limitation of the
model when applied to data from other rainfall regimes.

This disaggregation of the 17-hour values was repeated
ten times, i.¢. ten different realisations of the 1-hour series
were produced. The performance was evaluated by com-
paring the disaggregated with the observed 1-hour values
(aggregated 8-min values). This comparison was made for
all time scales to which the 17-hour values were disaggre-
gated, i.e. 8.5 hours, 4.3 hours, 2.1 hours, and 1 hour. The
following five variables were considered in the first step:
(1) percentage of zero~values, (2) rainfall volume of indi-
vidual values, (3) rainfall volume of events, (4) duration of
events, and (5) length of dry periods between events. At

all scales, an event was defined as a sequence of consecu-
tive non-zero values.

In Table 3, the results, in terms of mean and standard
deviation of the above five variables, from the ten disaggre-
gations of the 17-hour values performed by the model
(M7_14) are compared to the observed data (Obs). As
expected, the agreement between observed and generated
data generally decreases with scale. At the largest scale of
8.5 hours the agreement is nearly perfect for all variables,
but also at the smallest scale of 1 hour the agreement
appears satisfactory. In terms of percentage of zero-values
and mean individual volume, the generated data almost per-
fectly match the observed at all scales. Thus, the division
into rainy and non-rainy periods is accurately performed by
the model. The standard deviation of individual volumes is,
to an increasing degree, overestimated as the scale
decreases. This indicates the presence of too high values in
the generated data (confirmed by inspection), a fact that to
some extent contradicts the common opinion that micro-
canonical cascades are too ‘calm’ to be relevant for rain (e.g.
Lovejoy and Schertzer, 1995; Menabde ez al., 1997). The
mean value and standard deviation of event volumes and
durations are well reproduced at larger scales, but underes-
timated at smaller scales. Consequently, the dry period
lengths will also be underestimated. Table 3 shows that this
is the case but, generally, the dry periods are rather well
represented, which is expected since long dry periods at the
17-hour scale are essentially preserved by the model.

Since the main aim of the study was disaggregation
down to 1 hour, the 1-hour series produced by the model
was studied in greater detail. This was done firstly by eval-
uating the agreement of the entire cumulative distribution
function of the four last variables (of the five variables
described above) using quantile-quantile plots, g-g-plots.
The g-g-plots were constructed by interpolating the larger
data set to the same size as the smaller set by using the
Weibull plotting position (e.g. Helsel and Hirsch, 1992),
and some typical examples are shown in Fig. 4. For non-
zero 1-hour volumes (Fig. 4a), the overall agreement is
good. There is, however, a systematic overestimation of
the disaggregated values around 5 mm. Also, the highest
values are somewhat overestimated by the model, as sus-
pected from the overestimated standard deviation (Table
3). For event volumes and durations (Figs. 4b and c),
respectively, the agreement between observed and disag-
gregated data is similar (note that in Fig. 4c, due to the
small number of event durations present, a point value
generally represents many identical pairs of values). For
small values, the agreement is good. For medium-sized
values, the agreement is satisfactory although the variables
are somewhat underestimated by the model. For the
largest values, the variables are significantly underesti-
mated by the model. For dry period lengths (Fig. 4d), the
overall agreement is good although a slight systematic
underestimation by the model is apparent.

Figure 5 shows typical examples of the agreement
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Table 3. Comparison between observed data (Obs), data generated by the model using f7.14 to approximate P (M7.14), and data gen-
erated by the model using f7_19 to approximate P (M7.19), in terms of five variables at all scales to which disaggregation was performed.

Zero values Individual volume Event volume Event duration Dry period

Scale Data % mm(meanistd) mm(meanistd) hrs(meanistd) hrs(meandtstd)

8.5 hrs Obs 82.5 28 £38 50 +73 152 + 9.65 72.0 £ 84.0
M7 82 27 %39 50 7.1 156 *10.6 71.0 £84.0
M7 81 26 38 50 +7.1 16.2 109 71.0 + 84.0

4.3 hrs Obs 89 22 28 39 +59 74 *+ 4.6 60.0 +79.5
M714 88 21 %31 3.7 54 75 50 57.0 £78.5
Ms7_10 87.5 20 29 3.7 £535 79 * 545 55.5 £ 78.0

2.1 hrs Obs 93 1.7 £2.0 32 %51 41 £ 27 52.0 £76.0
M7_4 92.5 16 +24 28 42 37 t 24 45.5+73.0
My7_10 92 1.5 23 2.65 £39 38 * 25 42.0 £71.0

1 hrs Obs 95 1.2 +145 27 £445 235+% 19 44.0 £72.0
M7_14 95 1.25£1.9 22 +34 19 £ 13 36.0 £67.0
Mz7-10 95 1.1 £1.8 20 +3.0 18 £ 12 32.0 £ 64.0
& (Starting boxes, below mean volume) © (Ending boxes, below mean volume)
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Fig. 3. Empirical probabilisies f(1/0), f(0/1), and f(x/x) as a function of modulation time scale for starting (a), enclosed (b), ending (c),
and isolated (d) boxes below mean volume. The vertical dashed lines mark the time scale limits of applicability of the model as interpreted in
the present study.

between observed and generated 1-hour series in terms of  coincide). For short lags, the observed autocorrelation is
power spectrum and autocorrelation. The spectrum from  underestimated by the model (Fig. 5b). The overall shape
the generated series matches the approximately power-law  is, however, reasonably well reproduced considering that
shaped observed spectrum (Fig. 5a) well for time scales the disaggregation was performed without taking any cor-
below 17 hours (for larger time scales the spectra naturally  relation structure into account.
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Fig. 4. Quantile-quantile-plots comparing the cumulative distribution functions of four variables in observed 1-hour data and I-hour data dis-
aggregated from 17-hour data by the model My_14: individual 1-hour volume (a), event volume (b), event duration (c), and dry period length

(d). The solid line represents x=y, i.e. perfect maich.

To investigate to which degree the scaling properties of
the disaggregated data obtained by the final model agree
with the observed data, analyses of statistical moments
were performed. This is a standard method in investiga-
tions of scaling and is often used in rainfall analyses (e.g.
Over and Gupta, 1994; Svensson ef al., 1996). The analy-
sis is generally done by averaging the values over different

non-overlapping time intervals of length A, where A thus
may be viewed as a scale parameter. To obtain the A:th
order moment M(A,%), all averaged values are raised to the
power A4, and then summed. If the data exhibit scaling,
M(A,h) is related to A by

M(Ah) =~ AK® @
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a (Power spectrum)

b (Autocorrelation)

Fig. 5. Power spectrum (a) and autocorrelation (b) for observed I-hour data and 1-hour data disaggregated from 17-hour data by the model

Mj_q

where K(%) is a characteristic function of the scaling
behaviour. The validity of Eqn. 2 is usually investigated by
plotting M(A,%) as a function of A in a log-log-plot. If scal-
ing holds, the points fall on an approximately straight line.
This is a theoretical property of cascade models (e.g.
Schertzer and Lovejoy, 1987; Gupta and Waymire, 1990),
such as the present. Fig. 6 shows a typical plot of the
moments M(A,k%) versus scale A for observed and generated
1-hour data. As for the power spectrum, at scales larger
than 17 hours the curves naturally coincide. For scales
smaller than 17 hours, the curves are straight lines of the
same slope as in the range 17 hours to 5.7 days. As is evi-
dent, the curves of the observed and generated data agree
very well for all values of 4. This result, and to some
extent the result from the power spectrum analysis, con-
firm that the model is able to reproduce the scaling behav-
iour of the rainfall time series.

Finally, to investigate the sensitivity of the generated
data to differences in P values, ten disaggregations were
performed in which the P values were approximated by
the f values from the scale interval 5.7 days to 17 hours,
i.e. f7-10, obtained in the evaluation. In Table 3, the
results, in terms of mean and standard deviation of the
above five variables, from the ten disaggregations of the
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17-hour values performed by the model (M7-19) are com-~
pared to the observed data (Obs). The agreement with the
observed series is similar but in general slightly worse than
for the generated data obtained using P values estimated
from the entire range 5.7 days to 1 hour (M7_14). However,
the difference is small and even at the l-hour scale the
accuracy of the data generated by M7_j¢ decreased by only
approximately 3% as compared to the data obtained by
M714.

The results of the disaggregation may be compared with
the results obtained by Bo et al. (1994), who performed
disaggregation of continuous rainfall time series from cen-
tral Italy and Kentucky, USA, in the same scale interval
using the modified Bartlett-Lewis rectangular pulses
model. They fitted the model on a monthly basis to daily
data and showed that it could be used also for reproduc-
ing smaller-scale statistics. The accuracy of the generated
data in the present study appears comparable with the
results obtained by Bo ez al. (1994) despite the fact that
seasonal nonstationarities were not taken into account
here. Bo et al. (1994) found an upper time scale limit at 2
days, which were claimed to be associated with a break of
the power spectrum. This limit is thus in some disagree-
ment with the limits obtained using the present approach,
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Fig. 6. Statistical moment M(Ah) as a function of scale A between 5.7 days and 1 hour for h=0.5, 1.5, and 2.0. The point values correspond
to observed I-hour data, and the solid lines to I-hour data disaggregated by the model M;_14.

a fact probably related to geographical differences in sta-
tistical rainfall properties.

Summary and conclusions

A cascade scheme was employed to model the temporal
small-scale structure of rainfall. The model was based on
exact conservation of rainfall volume between cascade lev-
els. The model parameters were assumed to depend on
characteristics of the rainy time period (wet box) to be
branched. For a 2-year rainfall time series observed in
southern Sweden, the model was reasonably applicable
between approximately 1 week and 1 hour. The parame-
ters showed a pronounced dependence on the box charac-
teristics, and were characterised by a slight seasonal
nonstationarity. To investigate the potential for disaggre-
gation, the series was disaggregated from 17-hour resolu-
tion to l-hour resolution by the model. The observed
division into rainy and non-rainy periods as well as the
scaling structure were nearly perfectly reproduced by the
model, whereas events and dry periods were somewhat
underestimated.

Although the model-generated series overall compared
well with the observed series, it is clear that the approach
used here can be improved in various respects. Obviously
the disaggregation can be performed seasonally to take the
slight nonstationarities of the cascade parameters into
account, something that was not done here due to insuffi-
cient seasonal data. The systematic underestimation of
events and dry periods may be due to an excessive ten-
dency of the model to break up long rainfall events into
two parts separated by a zero-value, at some modulation.
This problem, in turn, may be related to correlations
between the P values and rainfall generating mechanisms.
For example, P(x/x) i1s likely to be higher for rain pro-
duced by frontal passages (long continuous events) than by

convective activity (showers separated by dry periods).
Such correlations could be included in the model, for
example by defining the position of a wet box not only by
the characteristics of the preceding and succeeding box,
respectively, but by using a number of preceding and suc-
ceeding boxes. Another way could be to include a correla-
tion between the pairs of weights at each cascade level.
Such a correlation is usually not considered in cascade
models, but has been found in empirical analyses of rain-
fall time series (Carsteanu and Foufoula-Georgiou, 1996).

A main concern of the present approach is naturally the
connection between the cascade structure of the model on
the one hand, and the underlying physics of the rainfall
process on the other. Establishing this connection remains
a crucial task of research in the present field. The fact that
the conceptually simple model employed in the present
study was able to capture fundamental features of the rain-
fall process accurately over a range of scales does, however,
constitute yet another indication that a cascade type of
behaviour is inherent in the rainfall producing mecha-
nisms. It also shows that scaling-based rainfall models are
potentially important tools in hydrological applications
where some form of disaggregation or downscaling of rain-
fall is required.
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