Articles | Volume 2, issue 2/3
https://doi.org/10.5194/hess-2-149-1998
https://doi.org/10.5194/hess-2-149-1998
30 Sep 1998
 | 30 Sep 1998

Combining remotely sensed data using aggregation algorithms

W. J. Shuttleworth

Abstract. This paper describes a strategic approach for providing documentation of the surface energy exchange for heterogeneous land surfaces via the simultaneous, four-dimensional assimilation of several streams of remotely sensed data into a coupled land surface-atmosphere model. The basic concepts and underlying theory behind this proposed approach are presented with the intent that this will guide, facilitate, and stimulate future research focused on its practical implementation when appropriate data from the Earth Observing System (EOS) become available. The theoretical concepts that underlie the approach are derived from relationships between the values of parameters which control surface exchanges at pixel (or patch) scale and the area-average value of equivalent parameters applicable at larger, grid scale. A three-step implementation method is proposed which involves (a) estimating grid-average surface radiation fluxes from appropriate remotely sensed data; (b) absorbing these radiation flux estimates into a four-dimensional data assimilation model in which grid-average values of vegetation-related parameters are calculated from pertinent remotely sensed data using the equations that link pixel and grid scales; and (c) improving the resulting estimate of the surface energy balance-again using scale-linking equations by estimating the effect of soil-moisture availability, perhaps assuming that cloud-free pixels are an unbiased subsample of all the pixels in the grid square.

Download