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Abstract. This study tests the performance and uncertainty

of calibration strategies for a spatially distributed hydrologic

model in order to improve model simulation accuracy and

understand prediction uncertainty at interior ungaged sites of

a sparsely gaged watershed. The study is conducted using a

distributed version of the HYMOD hydrologic model (HY-

MOD_DS) applied to the Kabul River basin. Several cali-

bration experiments are conducted to understand the bene-

fits and costs associated with different calibration choices,

including (1) whether multisite gaged data should be used

simultaneously or in a stepwise manner during model fit-

ting, (2) the effects of increasing parameter complexity, and

(3) the potential to estimate interior watershed flows using

only gaged data at the basin outlet. The implications of the

different calibration strategies are considered in the context

of hydrologic projections under climate change. To address

the research questions, high-performance computing is uti-

lized to manage the computational burden that results from

high-dimensional optimization problems. Several interesting

results emerge from the study. The simultaneous use of mul-

tisite data is shown to improve the calibration over a step-

wise approach, and both multisite approaches far exceed a

calibration based on only the basin outlet. The basin out-

let calibration can lead to projections of mid-21st century

streamflow that deviate substantially from projections under

multisite calibration strategies, supporting the use of caution

when using distributed models in data-scarce regions for cli-

mate change impact assessments. Surprisingly, increased pa-

rameter complexity does not substantially increase the un-

certainty in streamflow projections, even though parameter

equifinality does emerge. The results suggest that increased

(excessive) parameter complexity does not always lead to in-

creased predictive uncertainty if structural uncertainties are

present. The largest uncertainty in future streamflow results

from variations in projected climate between climate models,

which substantially outweighs the calibration uncertainty.

1 Introduction

In an effort to advance hydrologic modeling and forecasting

capabilities, the development and implementation of physi-

cally based, spatially distributed hydrologic models has pro-

liferated in the hydrologic literature, supported by read-

ily available geographic information system (GIS) data and

rapidly increasing computational power. Distributed hydro-

logic models can account for spatially variable physiographic

properties and meteorological forcing (Beven, 2012), im-

proving simulations compared to conceptual, lumped mod-

els for basins where spatial rainfall variability effects are sig-

nificant (Ajami et al., 2004; Koren et al., 2004; Reed et al.,

2004; Khakbaz et al., 2012; Smith et al., 2012) and for nested

basins (Bandaragoda et al., 2004; Brath et al., 2004; Koren et

al., 2004; Safari et al., 2012; Smith et al., 2012). The ben-

efits of distributed modeling have been recognized by the

U.S. National Oceanic and Atmospheric Administration’s

National Weather Service (NOAA/NWS) and demonstrated

in the Distributed Model Intercomparison Project (DMIP)

(Reed et al., 2004; Smith et al., 2004, 2012, 2013). Impor-

tantly, distributed hydrologic models can evaluate hydrolog-
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ical response at interior ungaged sites, a benefit not afforded

by lumped models. The use of distributed hydrologic mod-

eling for interior point streamflow estimation is particularly

relevant for poorly gaged river basins in developing coun-

tries, where reliable predictions at interior sites are often

required to inform water infrastructure investments. As in-

ternational development agencies begin to integrate climate

change considerations into their decision-making processes

(e.g., Yu et al., 2013), these investments need to be robust

under both current climate conditions and possible future cli-

mate regimes.

Despite their roots in physical realism, distributed hydro-

logic models can suffer from substantial uncertainty. A major

source of uncertainty originates from the proper identifica-

tion of parameter values that vary across the watershed, espe-

cially when observed streamflow data is only available at one

or a few points (Exbrayat et al., 2014). Parameters can be dis-

cretized across the watershed in several ways (Flugel, 1995;

Efstratiadis et al., 2008; Khakbaz et al., 2012): uniquely for

each grid cell or hydrologic response unit (fully distributed),

based on sub-basins whose boundaries do not necessarily

ensure homogenous characteristics (semi-distributed) or, in

the simplest case, a single parameter set for all model grid

cells (lumped). With limited data, the parameter identifica-

tion problem, particularly for the fully distributed case, can

be impractical or infeasible (Beven, 2001). The parameteri-

zation challenge has spurred substantial advances in under-

standing appropriate calibration techniques for distributed

hydrologic models. Many studies have attempted to reduce

the dimensionality of the calibration problem to alleviate the

issue of equifinality (Beven and Freer, 2001), which is the

phenomenon whereby multiple parameter sets produce in-

distinguishable model performance. This work has found fa-

vorable results when the parametric complexity of the dis-

tributed model is aligned with the data available for calibra-

tion (Leavesley et al., 2003; Ajami et al., 2004; Eckhardt et

al., 2005; Frances et al., 2007; Zhu and Lettenmaier, 2007;

Cole and Moore, 2008; Pokhrel and Gupta, 2010; Khakbaz et

al., 2012). There has also been extensive research exploring

the use of multiple objectives and different operational proce-

dures to understand parameter estimation tradeoffs and iden-

tifiability for distributed model calibration, with great suc-

cess (Madsen, 2003; Efstratiadis and Koutsoyiannis, 2010;

Li et al., 2010; Kumar et al., 2013).

Despite these advances, important questions still persist. It

still remains difficult to compare the uncertainty that emerges

from different operational calibration procedures for mul-

tisite applications (i.e., whether gages in series should be

used sequentially or simultaneously for calibration) and un-

der different levels of parametric complexity. Due to the

computational burden required to calibrate distributed mod-

els, this uncertainty is problematic to explore. Furthermore,

in poorly gaged basins, it is challenging to quantify the lost

accuracy and increased uncertainty for interior flow estima-

tion when a distributed model is calibrated only at an out-

let gage (which is often all that is available in developing-

country river basins). In the case of significant spatial vari-

ability in the basin properties that influence runoff generation

(e.g., permeability, vegetation, and slope), accurate runoff

predictions are unlikely at interior locations based only on

the lumped information obtained at the basin outlet (Ander-

son et al., 2001; Cao et al., 2006; Breuer et al., 2009; Lerat et

al., 2012; Smith et al., 2012; Wang et al., 2012). The extent

of this error and uncertainty is not well understood for het-

erogeneous basins due to the computational expense required

to explore this issue. Finally, rarely have the implications of

these calibration issues been explicitly examined for possi-

ble future climate conditions, which is required in climate

change impact studies. This question has been explored for

lumped, conceptual models (Wilby, 2005; Steinschneider et

al., 2012), but has been difficult to evaluate for computation-

ally expensive distributed models.

This study addresses the above research challenges by fo-

cusing on the following four questions: (1) how does calibra-

tion procedure for using multisite data affect the accuracy

and uncertainty of distributed models used for streamflow

predictions at ungaged sites; (2) what effects does increased

parameter complexity have on distributed model calibration

and prediction; (3) how much degradation in model accuracy

and uncertainty can be expected for interior flow estimation

based on a calibration procedure using only the basin out-

let; and (4) how do different calibration formulations for a

distributed model alter projections of streamflow at ungaged

sites under climate change conditions? These questions are

considered in an application of a distributed version of the

daily HYMOD hydrologic model to the Kabul River basin

in Afghanistan and Pakistan. To address these research ques-

tions, high-performance computing is utilized to manage the

computational burden that often hinders such explorations

(Laloy and Vrugt, 2012; Zhang et al., 2013).

2 Study area

The Kabul River basin (67 370 km2) is a plateau sur-

rounded by mountains located in the eastern central part of

Afghanistan (Fig. 1). It is the most important river basin of

Afghanistan, containing 35 % of the country’s population.

While it encompasses just 12 % of the area of Afghanistan,

the basin’s average annual streamflow (about 24 billion cu-

bic meters) is about 26 % of the country’s total streamflow

volume (World Bank, 2010).

Water resources from the basin are shared by Afghanistan

and Pakistan and serve as a water supply source for more than

20 million people. The shared use of transboundary water be-

tween these two countries is central in establishing regional

water resources development for this area (Ahmad, 2010). It

is crucial to develop tools that can support engineering plans

for existing and potential water infrastructure to take full ad-

vantage of the water resources in the basin. The government
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Figure 1. Kabul River basin.

of Afghanistan has developed comprehensive plans for new

hydropower projects on the Kabul River owing to its advanta-

geous topography for the development of water storage and

hydropower (IUCN, 2010), and recently reached an agree-

ment with the Pakistan government to work on a 1500 MW

hydropower project on the Kunar River (one of major tribu-

tary in the Kabul River basin) as part of the joint management

of common rivers between the two countries (DAWN, 2013).

The streamflow regime of the Kabul River can be classified as

glacial with maximum streamflow in June or July and min-

imum streamflow during the winter season. Approximately

70 % of annual precipitation (475 mm) falls during the win-

ter season (November–April). While the dominant source of

streamflow in winter is baseflow and winter rainfall, glaciers

and snow cover are the most important long-term forms of

water storage and, hence, the main source of runoff during

the ablation period for the basin (Shakir et al., 2010). In to-

tal, 2.9 % (1954 km2) of the basin is glacierized based on

the Randolph Glacier Inventory version 3.2 (Pfeffer et al.,

2014). The meltwater from glaciers and snow produce the

majority (75 %) of the total streamflow (Hewitt et al., 1989).

Table 1 provides the climates and geophysical properties of
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Table 1. Streamflow gaging stations in the Kabul River basin.

Data period Physiographic property Basin climate

Data source Station

name

River Start End Drainage

area (km2)

Glacier

area ( %)

Mean

elev. (m)

Mean

annual

Prcp.

(mm)

Mean

annual

mean

Temp. (◦C)

Mean

annual

flow

(mm)

USGS/

GRDC

Dakah Kabul 2/1968 7/1980 67 370 2.9 2883 418 7.7 282

USGS/

GRDC

Pul-i-Kama Kunar 1/1967 9/1979 26 005 7.3 3446 446 5.6 573

USGS Asmar Kunar 3/1960 9/1971 19 960 9.4 3716 483 4.1 651

GRDC Chitral Kunar 1/1978 12/1981 11 396 14.4 4126 518 2.1 698

USGS Gawardesh Landaisin 5/1975 6/1978 3130 2.1 3707 555 4.5 521

USGS/

GRDC

Chaghasarai Pech 2/1960 2/1979 3855 0.4 3141 482 7.4 535

USGS/

GRDC

Daronta Kabul 10/1959 9/1964 34 375 0.3 2722 350 8.0 165

each sub-watershed delineated by the stations located inside

the Kabul Basin (Fig. 1). Two different climate patterns are

distinguishable across the sub-basins. The sub-basins on the

Kunar River tributary (Kama, Asmar, Chitral, Gawardesh,

and Chaghasarai) receive moderate annual precipitation and

are highly affected by snow and glacier covers. All of these

sub-basins have high ratios of mean annual flow to mean an-

nual precipitation, with the ratios for the Kama, Asmar, Chi-

tral, and Chaghasarai sub-basins larger than 1. Conversely,

the Daronta sub-basin contains only minimal glacial cover,

and is relatively dry. Daronta is also much less productive,

with annual streamflow far below the other sub-basins with

an average of only 165 mm yr−1.

Issues of shared water resources between Afghanistan and

Pakistan in the Kabul River basin are becoming complex

due to the impacts of climatic variability and change (IUCN,

2010). The vulnerability of glacial streamflow regimes to

changes in temperature and precipitation (Stahl et al., 2008;

Immerzeel et al., 2012; Radic et al., 2014) highlights the need

to assess the impact of climate change on future water avail-

ability in this area.

3 Data and models

3.1 Data

Gridded daily precipitation and temperature products with a

spatial resolution of 0.25 ◦C were gathered between calendar

years 1961 and 2007 from the Asian Precipitation Highly

Resolved Observational Data Integration Towards Evalua-

tion (APHRODITE) data set (Yatagai et al., 2012). There has

been some concern regarding underestimation of precipita-

tion in APHRODITE for some regions of Asia (Palazzi et

al., 2013); our preliminarily data analysis (intercomparison

of precipitation products between five different databases)

confirmed this for the Kabul River basin (shown in Fig. S1 in

the Supplement). Thus, the APHRODITE precipitation was

bias-corrected by the precipitation product from the Univer-

sity of Delaware global terrestrial precipitation (UD) data set

(Legates and Willmott, 1990). Daily series of bias-corrected

APHRODITE precipitation were coupled with APHRODITE

temperature for 160 0.25 ◦C grid cells to produce a climate

forcing data set for the distributed domain of the Kabul River

basin model.

This study used the set of global climate change simula-

tions from the World Climate Research Programme’s Cou-

pled Model Intercomparison Project Phase 5 (CMIP5) mul-

timodel ensemble (Talyor et al., 2012). Monthly climate

outputs of GCMs (general circulation models) were down-

scaled to a daily temporal resolution and 0.25 ◦C spatial res-

olution based on the bias-correction spatial disaggregation

(BCSD) statistical downscaling method introduced by Wood

et al. (2004).

Monthly streamflow observations for seven locations in

the Kabul River basin (Fig. 1) were gathered between calen-

dar years 1960 and 1981 from two data sources: the Global

Runoff Data Centre (GRDC) database and the United States

Geological Survey (USGS) database (Table 1). Streamflow

data were not collected in Afghanistan after September 1980

until recently because stream gaging was discontinued soon

after the Soviet invasion of Afghanistan in 1979 (Olson and

Williams-Sether, 2010). Though measurements were taken at

a daily time step, data are only made available for public use

at monthly aggregated levels, calculated using the mean of

the daily values. The available monthly streamflow observa-

tions at each station were used for calibrating and validating

the distributed hydrologic model (Fig. 2). Kama and Asmar

stations are treated as ungaged sites because they align with

the potential dam project on the Kunar River tributary. The

two gage stations are left out of the processes of multisite

calibrations in order to evaluate the model’s ability to predict

streamflow at interior ungaged sites. Furthermore, half of the
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Figure 2. Streamflow data usage for the model calibration and val-

idation.

record at the Dakah station, located at the basin outlet, is also

used for validation purposes.

The Randolph Glacier Inventory version 3.2 (RGI 3.2)

data set (Pfeffer et al., 2014) was used to extract glacial cov-

erage in the Kabul River basin, which totaled 5.7 % of the

basin area (Fig. S2). In the hydrological modeling process,

the model needs to be informed by reliable estimates on vol-

ume of water retained in glaciers, especially for future sim-

ulations under warming conditions. We followed the method

proposed in Grinsted (2013), which uses multivariate scaling

relationships to estimate glacier and ice cap volume based

on elevation range and area. Specifically, the scaling law in-

cluding area and elevation range factors was applied to esti-

mate glacier/ice cap volume when the glacier depth exceeded

10 m. Otherwise, glacier/ice cap volume was estimated with

the area–volume scaling law. The elevation range spanned

by each individual glacier is estimated using the global dig-

ital elevation model (DEM) from the shuttle radar topog-

raphy mission (SRTMv4) in 250 m resolution (Jarvis et al.,

2008). Density of ice (0.9167 g cm−3) is applied to calculate

glacier/ice cap volume in meters of water equivalent.

The database for land covers and soil types of the Kabul

River basin (Fig. 1) are provided by the Food and Agricul-

ture Organization of the United Nations (Latham et al., 2014)

and United States Department of Agriculture – Natural Re-

sources Conservation Service Soils (USDA-NRCS, 2005),

respectively.

3.2 Distributed Hydrologic Model (HYMOD_DS)

In this study the lumped conceptual hydrological model HY-

MOD (Boyle, 2001) is coupled with a river routing model

to be suitable for modeling a distributed watershed system.

We name it HYMOD_DS denoting the distributed version of

HYMOD. Snow and glacier modules have been introduced

to enhance the modeling process for glacier and snow cov-

ered areas within the Kabul River basin. The HYMOD_DS

is composed of hydrological process modules that repre-

sent soil moisture accounting, evapotranspiration, snow pro-

cesses, glacier processes and flow routing. The model op-

erates on a daily time step and requires daily precipitation

and mean temperature as input variables. The overall model

structure of the HYMOD_DS and its 15 parameters are de-

scribed in Fig. 3 and Table 2, respectively. Further details are

provided below.

The HYMOD conceptual watershed model has been ex-

tensively used in studies on streamflow forecasting and

model calibration (Wagener et al., 2004; Vrugt et al., 2008;

Kollat et al., 2012; Gharari et al., 2013; Remesan et al.,

2013). The HYMOD is a soil moisture accounting model

based on the probability–distributed storage capacity con-

cept proposed by Moore (1985). This conceptualization rep-

resents a cumulative distribution of varying storage capaci-

ties (C) with the following function:

F (C)= 1−

(
1−

C

Cmax

)B
0≤ C ≤ Cmax, (1)

where the exponent B is a parameter controlling the degree

of spatial variability of storage capacity over the basin and

Cmax is the maximum storage capacity. The model assumes

that all storages within the basin are filled up to the same

critical level (C∗(t)), unless this amount exceeds the storage

capacity of that particular location. With this assumption, the

total water storage S(t) contained in the basin corresponds to

S (t)=
Cmax

B + 1

(
1−

(
1−

C∗ (t)

Cmax

)B+1
)
. (2)

Consequently, two parameters are introduced for the runoff

generation process with two components:

Runoff1 =


P (t)+C∗ (t − 1)−Cmax if P (t)

+C∗ (t − 1)≥ Cmax

0 if P (t)+C∗ (t − 1) < Cmax

, (3)

Runoff2 =

 (P (t)−Runoff1)+ (S (t)− S (t − 1))

if P (t)−Runoff1 ≥ S (t)− S (t − 1)

0 if P (t)−Runoff1 < S (t)− S (t − 1)

, (4)

where P(t) is precipitation, Runoff1 is surface runoff, and

Runoff2 is subsurface runoff. A parameter (α) is introduced

to represent how much of the subsurface runoff is routed over

the fast (Qfast) and slow (Qslow) pathway:

Qfast = Runoff1+α ·Runoff2, (5)

Qslow = (1−α) ·Runoff2. (6)

The potential evapotranspiration (PET) is derived based on

the Hamon method (Hamon, 1961), in which daily PET in

millimeters is computed as a function of daily mean temper-

ature and hours of daylight:

PET= Coeff ·29.8 ·Ld ·

0.611 · exp
(

17.27 · T
(T+273.3)

)
T + 273.3

, (7)
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Table 2. HYMOD_DS parameters.

Feasible range

Parameter Lower Upper

name Description bound bound

Coeff Hamon potential evapotranspiration coefficient 0.1 2

Cmax Maximum soil moisture capacity (mm) 5 1500

B Shape for the storage capacity distribution function 0.01 1.99

α Direct runoff and base flow split factor 0.01 0.99

Ks Release coefficient of groundwater reservoir 0.00005 0.001

DDFs Degree day snowmelt factor (mm ◦C day−1) 0.001 10

Tth Snowmelt temperature threshold (◦C) 0 5

Ts Snow/rain temperature threshold (◦C) 0 5

r Glacier melt rate factor 1 2

Kg Glacier storage release coefficient 0.01 0.99

Tg Glacier melt temperature threshold (◦C) 0 5

N Unit hydrograph shape parameter 1 99

Kq Unit hydrograph scale parameter 0.01 0.99

Velo Wave velocity in the channel routing (m s−1) 0.5 5

Diff Diffusivity in the channel routing (m2 s−1) 200 4000

Figure 3. Distributed version of the HYMOD model (HYMOD_DS).

where Ld is the daylight hours per day, T is the daily mean

air temperature (◦C), and Coeff is a bias correction factor.

The hours of daylight is calculated as a function of lati-

tude and day of year based on the daylight length estimation

model (CBM model) suggested by Forsythe et al. (1995).

The HYMOD_DS includes snow and glacier modules

with separate runoff processes, i.e., the runoff from the

glacierized area is calculated separately and added to runoff

generated from the soil moisture accounting module cou-

pled with the snow module. The implicit assumption here is

that there is no interchange of water between soil layers and

glacial area and runoff from glacial areas is regarded as sur-

face flow. The runoff from each area is weighted by its area

fraction within the basin to obtain total runoff.

The time rate of change in snow and glacier volume gov-

erned by ice accumulation and ablation (melting and subli-

mation) is expressed by the degree day factor (DDF) mass

balance model (Moore, 1993; Stahl et al., 2008). The domi-

nant phase of precipitation (snow vs. rain) is determined by

a temperature threshold (Tth). The snowmelt Ms and glacier

melt Mg is calculated as

Hydrol. Earth Syst. Sci., 19, 857–876, 2015 www.hydrol-earth-syst-sci.net/19/857/2015/
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Ms = DDFs× (T − Ts) , (8)

Mg = DDFg×
(
T − Tg

)
, (9)

with DDFs (Ts) and DDFg (Tg) applied separately for snow

and glacier modules, respectively. To account for the higher

melting rate of glaciers than snow owing to the low albedo

(Konz and Seibert, 2010; Kinouchi et al., 2013), we intro-

duced a parameter r > 1 to constrain DDFg to be larger than

DDFs (i.e., DDFg = r ×DDFs). For the rain that falls on

the glacierized area, the glacier parameter Kg determines the

portion of rain becoming surface runoff as a multiplier for the

rainfall. The remaining rainfall is assumed to be accumulated

to the glacier store.

The within-grid routing process for direct runoff is rep-

resented by an instantaneous unit hydrograph (IUH) (Nash,

1957), in which a catchment is depicted as a series of N

reservoirs each having a linear relationship between storage

and outflow with the storage coefficient of Kq. Mathemati-

cally, the IUH is expressed by a gamma probability distribu-

tion:

u(t)=
Kq

0(N)

(
Kqt

)N−1
exp

(
−Kqt

)
, (10)

where 0 is the gamma function. The within-grid groundwater

routing process is simplified as a lumped linear reservoir with

the storage recession coefficient of Ks.

The transport of water in the channel system is described

using the diffusive wave approximation of the Saint-Venant

equation (Lohmann et al., 1998):

∂Q

∂t
+C

∂Q

∂x
−D

∂2Q

∂2x2
= 0, (11)

whereC andD are parameters denoting wave velocity (Velo)

and diffusivity (Diff), respectively.

Similar to most other hydrological models (Efstratisdis et

al., 2008), HYMOD_DS is not designed to model water ab-

stractions for agricultural lands and dam operations within

the basin. According to the World Bank (2010), water de-

mand for agricultural use is about 2000 million cubic me-

ters, or about 8.3 % of the total annual flow. The Naglu dam

(Fig. 1) upstream of the Daronta streamflow gage forms the

largest and most important reservoir in the basin, with an ac-

tive storage of 379 million cubic meters. In our hydrologic

modeling process, the water consumed by irrigated crop-

lands is implicitly accounted for by the evapotranspiration

module. We note that the degree of irrigation impact dur-

ing the time frame used for calibration (1960–1981) is likely

much smaller than the current level. We also expect that using

monthly data for calibration somewhat reduces the bias from

human interference, particularly the daily operations of the

Naglu dam. Nevertheless, the calibration results for the gage

below this dam (Daronta), and to a lesser extent the basin

outlet (Dakah), should be approached with caution. Given

that a majority of the gages examined in this study are on an

underdeveloped branch of the Kabul River, issues of human

interference on calibration are somewhat mitigated.

4 Methods

The purpose of this study is to explore the implications

of different calibration strategies and choices for a compu-

tationally expensive distributed hydrologic model. A vari-

ety of calibration experiments are conducted, with the re-

sults from preceding experiments informing choices made

for subsequent ones. All calibration approaches are tested in

terms of their ability to predict flows at interior site gages

that were left out of the calibration process. In all cases,

the genetic algorithm (GA) introduced by Wang (1991) is

used as an optimization method for model parameter cali-

bration, and the objective function is based simply on the

Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliff, 1970),

which is by far the most utilized performance metric in hy-

drological model applications (Biondi et al., 2012). A mul-

tisite average of the NSE is used when evaluating perfor-

mance across multiple sites. We fully recognize that the use

of one objective, such as the NSE, is inferior compared to

multiobjective approaches that can identify Pareto optimal

solutions that provide good model performance across dif-

ferent components of the flow regime (Madsen, 2003; Efs-

tratiadis and Koutsoyiannis, 2010; Li et al., 2010; Kumar et

al., 2013). However, in this particular study daily hydrologic

model simulations can only be compared against available

monthly streamflow records, reducing the number of viable

objectives against which to calibrate. That is, statistics repre-

senting peak flows, extreme low flows, and other daily flow

regime characteristics often used in multiobjective optimiza-

tion approaches are unavailable. We believe that the use of a

monthly NSE value as a single objective, while coarse, does

not inhibit our ability to provide insight into the research

questions posed. In addition to the NSE, the Kling–Gupta

efficiency (KGE) (Gupta et al., 2009) is adopted as an al-

ternative model performance metric, which equally weights

model mean bias, variance bias, and correlation with obser-

vations.

In this study, three levels of parameter complexity are con-

sidered: lumped, semi-distributed, and fully distributed for-

mulations (Fig. 4). The different levels of parameter com-

plexity are defined according to the spatial distribution of

unique hydrologic model parameters. In the lumped formu-

lation a single parameter set is applied to the entire basin.

In the semi-distributed formulation, a unique parameter set

is assigned to each sub-basin, defined based on the location

of available streamflow gaging sites. The fully distributed

parameter structure follows the spatial discretization of cli-

mate input grids, allowing for a unique parameter set for each

grid cell. No matter the parameterization scheme, the model
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Figure 4. Model structure based on climate input grids and three different parameterization concepts.

structure follows the climate input grids; i.e., the hydrolog-

ical water cycle within each grid cell is modeled separately.

We note that a lumped model structure (i.e., no gridded or

sub-unit structure) has often been considered as a baseline

model formulation in the assessment of distributed model-

ing frameworks (e.g., see Smith et al., 2013). However, the

focus of our study is on ungaged interior site streamflow

estimation, making this formation somewhat inappropriate.

Furthermore, preliminary tests comparing streamflow sim-

ulations at the basin outlet (Dakah) between a gridded and

basin-averaged structure, both with a lumped parameter for-

mulation, support the use of the distributed grid structure

(Fig. S3).

The parameter complexity will vary depending on the cal-

ibration experiment being conducted but, for each exper-

iment regardless of the parameterization, the optimization

is implemented 50 times using the GA algorithm to ex-

plore calibration uncertainty. The considerably high compu-

tational cost required to perform a large number of calibra-

tions is managed using the parallel computing power pro-

vided by the Massachusetts Green High-Performance Com-

puting Center (MGHPCC), from which several thousands of

processors are available.

In the first modeling experiment, we explore two calibra-

tion strategies for using multisite streamflow data, a stepwise

and pooled approach. In the stepwise calibration, parameters

are calibrated for upstream gaged sub-catchments and subse-

quently fixed during calibration of downstream points, while

for the pooled approach, parameters are calibrated for multi-

ple sub-catchments simultaneously. Both approaches are as-

sessed for the semi-distributed formulation. The better of

the two methods is identified for use in the second experi-

ment, where the effects of increased parameter complexity

are tested in terms of streamflow prediction accuracy and un-

certainty. In the third experiment, we consider the situation

where there is only data at the basin outlet for calibration.

Here, the model is calibrated against the outlet gage under all

levels of parameter complexity and is compared against the

best combination of calibration strategy (stepwise or pooled)

and parameter complexity (lumped, semi-distributed, or fully

distributed) identified in the previous experiments. Finally, a

subset of the calibration approaches deemed worthy of fur-

ther investigation are compared in terms of their projections

of future streamflow under climate change to highlight how

model calibration differences can alter the results of a climate

change assessment for water resources applications. These

experiments are described in further detail below.
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Figure 5. (a) Sub-basins corresponding to five gaging stations are

used for the multisite calibrations. (b) Two sub-basins (Kama and

Asmar) are assumed to be ungaged and used for evaluating the cal-

ibration approaches.

4.1 Multisite calibration: stepwise and pooled

approaches

In the first experiment, the semi-distributed parameterization

concept is compared under alternative multisite calibration

strategies, the stepwise and pooled calibration approaches.

To conduct the stepwise calibration, a nested class of sub-

basins is defined corresponding to multiple gaging stations.

In the first step of the stepwise calibration, the optimiza-

tion process is carried out with nested sub-basins at the low-

est level (i.e., the most upstream sites). Once parameters of

nested sub-basins are determined, the parameters are fixed,

and the calibration procedure proceeds with nested basins at

upper levels until parameters for the entire basin are deter-

mined. In this particular application to the Kabul River basin,

five gaged sub-basins were selected and the stepwise calibra-

tion procedure for those sub-basins followed this direction:

Chitral→ Gawardesh→ Chaghasarai→ Daronta→ Dakah

(Fig. 5). The stepwise calibration approach involves a num-

ber of GA implementations corresponding to the number of

gaging sites. The GA optimization was carried out a total of

250 times in this application, with 50 optimization runs con-

taining GA implementations for five sub-basin regions.

The pooled calibration strategy involves calibrating all pa-

rameters of the model domain simultaneously against mul-

tiple streamflow gages within the watershed. This approach

aims at looking for suitable parameters that are able to pro-

duce satisfactory model results at all gaging stations in a

single implementation of GA optimization. That is, the GA

searches the entire parameter space at once to maximize the

average NSE across all sites. This operational feature reduces

the processing time spent on the GA implementation com-

pared to the stepwise calibration strategy. To identify the bet-

ter of the two multisite calibration approaches, the compar-

ison focused on their ability to predict streamflow and cal-

ibration uncertainties at two interior site gages (Kama and

Asmar) that were assumed to be ungaged (Fig. 5), as well as

for validation data at the basin outlet.

It is important to note that the evaluation of these multi-

site calibration strategies is somewhat weakened because of

the lack of overlapping data periods among most of the sta-

tions (Fig. 2). This drawback prevents the calibration meth-

ods from accounting for simultaneous information from dif-

ferent tributaries, which, if available, would better enable the

calibration methods to account for heterogeneity of hydro-

logical processes across the sub-basins.

4.2 Increased parameter complexity

In the second experiment, the better of the two approaches

(stepwise or pooled) identified in the first experiment is fur-

ther tested with respect to the three different levels of param-

eter complexity. In addition to the semi-distributed param-

eter formulation considered in the first experiment, lumped

and fully distributed parameter formulations are calibrated

for the selected approach to investigate the gain or loss aris-

ing from different levels of parameter complexity. Since the

hydrologic model HYMOD employed in this study involves

15 parameters, the lumped version of the HYMOD_DS con-

tains a single, 15-member parameter set applied to all model

grid cells. The semi-distributed conceptualization of HY-

MOD_DS contains a single parameter set for each sub-

basin, totaling 75 parameters. In the distributed parameteri-

zation the number of parameters increases dramatically. With

160 0.25 ◦C grid cells, the number of parameters requiring

calibration reaches 2400. As the number of parameters in-

crease across the parameterization schemes, calibration be-

comes increasingly computationally expensive. The num-

ber of model runs used in the GA optimization algorithm

for the lumped, semi-distributed, and distributed parameter-

ization schemes are 15 000 (150 populations× 100 gener-

ations), 75 000 (750× 100), and 480 000 (2400× 200), re-

spectively. These population/generation sizes were supported

using convergence tests for each calibration. Again, 50 sep-

arate GA optimizations were used to explore calibration un-

certainties for each parameterization scheme. To give a sense

of the computational burden of this experiment, we note that

50 trials of the HYMOD_DS calibration under the distributed

conceptualization required 1000 processors over 7 days on

the MGHPCC system.
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4.3 Basin outlet calibration

The third experiment considers the situation where there is

only gaged data at the basin outlet (Dakah) for calibration,

a common situation when calibrating hydrologic models in

data-scarce river basins. Here, we evaluate the potential of

the basin outlet calibration to estimate interior watershed

flows in terms of both accuracy and precision at all gaging

stations. All levels of parameter complexity are considered

for this calibration. The main purpose of this experiment is to

compare the veracity of a distributed hydrologic model cali-

brated only using basin outlet data with results from multisite

calibrations to better understand the degradation in model

performance under data scarcity. Other than the use of an

NSE objective only at the basin outlet, all other GA settings

for each level of parameter complexity are identical to the

settings used in the second experiment.

4.4 Climate change projections of streamflow

The fourth experiment investigates how the choice of cali-

bration approach can alter the projections of future stream-

flow under climate change. To explore this question, stream-

flow simulations for the 2050s, defined as the 30-year period

spanning from 2036 to 2065, are carried out using climate

projections from the CMIP5 (Talyor et al., 2012). A total of

36 different climate models run under two future conditions

of radiative forcing (RCP 4.5 and 8.5) are used. Streamflow

projections are developed for the basin outlet (Dakah) and

two interior gages left out of the calibration (Kama and As-

mar). By using 36 different GCMs and 50 optimization trials

for each calibration scheme, this analysis compares the un-

certainty in future streamflow projections originating from

uncertainty in different hydrologic model parameterization

schemes and under alternative future climates.

Streamflow projections are considered under all three

parameterization schemes (lumped, semi-distributed, and

fully distributed) for both the basin outlet model and the

best multisite calibration approach (stepwise or pooled).

Multiple streamflow characteristics are evaluated, includ-

ing monthly streamflow, wet (April–September) and dry

(October–March) season flows, and daily peak flow re-

sponse. The differences and uncertainty in these metrics

across calibration approaches will highlight the importance

of calibration strategy for evaluating future water availability

and flood risk.

5 Results

For the remaining part of the paper, we introduce the

following shorthand: Lump, Semi, and Dist indicate the

lumped, semi-distributed, and fully distributed parameteriza-

tion schemes, and Outlet, Stepwise, and Pooled correspond

to basin outlet, stepwise, and pooled calibrations. The com-

parison between different calibration strategies is based on

the model performance evaluated with the NSE, as well as

an alternative metric, the KGE.

5.1 Pooled calibration vs. stepwise calibration

This section reports the results from the first experiment

comparing the stepwise and pooled calibration approaches

for the semi-distributed model parameterization. Figure 6

shows the comparison between the Semi-Stepwise and Semi-

Pooled with box plots representing the 50 trials of calibra-

tion. Under the stepwise calibration the results for four sub-

basins (Chitral, Gawardesh, Chaghasarai, and Daronta) are

optimal because there is no interaction between those sub-

basins. However, the calibrated parameter sets of each sub-

basin act as constraints in the last step of the Semi-Stepwise

resulting in the degradation of model skill at the basin out-

let (Dakah) and two left-out gages (Asmar and Kama). This

becomes apparent when comparing the Semi-Stepwise to the

Semi-Pooled results. The model skill under the Semi-Pooled

is similar to that from the Semi-Stepwise with respect to the

four upstream sub-basins, but it outperforms at the verifi-

cation gages. This is particularly true for the Asmar gage,

which exhibits a downward bias and substantial variability

in performance under the Semi-Stepwise. The Semi-Pooled

results suggest that small sacrifices of model performance

at certain sites can improve and stabilize basin-wide perfor-

mance. Expected values of KGE from 50 calibrations are also

provided (values in parenthesis in the bottom of Fig. 6) and

this performance metric also leads to the same conclusion.

Therefore, the Semi-Pooled was selected as the better multi-

site calibration strategy and is considered for further analyses

in the following sections.

5.2 Pooled calibration with alternative

parameterizations

Here we examine results for the three levels of parameter

complexity applied to the pooled calibration approach. Fig-

ure 7 shows the comparison of the pooled calibrations. Un-

surprisingly, streamflow predictions from the Lump-Pooled

have the lowest accuracy and largest uncertainty at the cal-

ibration sites, particularly for the Chaghasarai and Daronta

sites. This demonstrates the well-known difficulty in rep-

resenting flow characteristics of a spatially variable system

with a homogenous parameter set (Beven, 2012). The pooled

calibration substantially improves with increasing parame-

ter complexity at the calibration sites. Both the Semi-Pooled

and Dist-Pooled produce NSE values above 0.8 for all cal-

ibration sites; however, the Dist-Pooled shows a somewhat

higher performance, undoubtedly from its greater freedom to

overfit to the calibration data. However, the advantage of the

Dist-Pooled with respect to streamflow predictions at valida-

tion sites becomes less clear. Only the Dist-Pooled at Kama

shows marginally better predictions, while the results are am-

biguous at Dakah and Asmar. Overall, this likely suggests
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Figure 6. Comparison of the stepwise and pooled calibrations under the semi-distributed parameterization. Each calibration is conducted 50

times. Values on the bottom represent expected values of NSE (in upper row) and KGE (within parenthesis in lower row) from 50 calibrations.

Figure 7. Comparison of the pooled calibrations for the 3 parameterizations of lumped, semi-distributed, and distributed. Each calibration is

conducted 50 times. Values on the bottom represent expected values of NSE (in upper row) and KGE (within parenthesis in lower row) from

50 calibrations.

that the fully distributed conceptualization leads to overfit-

ting of the model as compared to the Semi-Dist conceptu-

alization. We reached the same conclusion when examining

the KGE values, which rise with greater parameter complex-

ity at calibration sites but no longer follow this pattern strictly

at validation sites.

Interestingly, the Lump-Pooled performs well at the verifi-

cation sites despite its poor performance at calibration sites.

The Lump-Pooled does not show significant degradation in

skill at Kama compared to the more complex parameteriza-

tions, and the flow prediction at Asmar actually exhibits the

best performance of all three model variants. A partial reason

for this unexpected result arises from different overlapping

periods in the calibration and validation data (see Fig. 2). The

periods used for the calibration for Chitral (1978–1981) and

Gawardesh (1975–1978) have no overlapping periods with

the one for Asmar (1966–1971), which encompasses those

two sub-basins. Instead, the validation at Asmar is mostly

affected by the calibration to Dakah because of the overlap-

ping 4 years (1968–1971) between those two sites. This ex-

plains the reason why the Lump-Pooled shows high skill at

Asmar despite the low skill at its sub-basins. However, the

low model skill at Chaghasarai from the Lump-Pooled propa-

gates to the validation result at Kama, as these two sites have

a relatively long overlapping period (8 years, from 1967 to

1974).

5.3 Limitations of the basin outlet calibration

In the third experiment the HYMOD_DS was calibrated

only to data at the basin outlet under all levels of parame-

ter complexity, and streamflow records for all six sub-basins,

as well as flows at Dakah not used during calibration, are
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Figure 8. Comparison of the basin outlet calibrations for the three parameterizations of lumped, semi-distributed, and distributed. Each

calibration is conducted 50 times. Values on the bottom represent expected values of NSE (in upper row) and KGE (within parenthesis in

lower row) from 50 calibrations.

used for model validation. First, we consider the flows at

Dakah. During the calibration period, all three parameteriza-

tion schemes produce very accurate streamflow predictions

with NSE (KGE) values above 0.95 (0.96) (Fig. 8). High ac-

curacy holds even under the Lump-Outlet, despite the spa-

tial heterogeneity of the basin. While NSE and KGE values

at Dakah rise marginally with greater parameter complexity

during calibration, this no longer holds during the validation

period, suggesting no benefit with an increase in parameter

complexity.

The validation results for the six sub-basins demonstrate

the danger in relying on outlet data alone when calibrating

a distributed model for flow prediction at interior points.

Streamflow predictions at interior sites exhibit low accu-

racy and high uncertainty, with the worst performance at the

Daronta site (all NSEs and KGEs are negative). We note that

the poor performance at Daronta is likely due in part to the

impacts of water abstraction and the operation of Naglu dam.

Further examination (Fig. S4) showed that the HYMOD_DS

significantly overestimated streamflow at Daronta and un-

derestimated flow at three sites in the eastern part of the

basin (Chitral, Gawardesh, and Chaghasarai). Model perfor-

mance at Kama and Asmar is somewhat better than at the

other validation sites, although improvements are not the

same across all parameterizations. The Lump-Outlet predic-

tions at these sites still have low average accuracy (average

NSE < 0.7 and average KGE < 0.6), while the Semi-Outlet

exhibits large uncertainty in performance across the 50 op-

timization trials. Surprisingly, the over-parameterized Dist-

Outlet shows promising results with high expected accuracy

at Kama and Asmar (mean NSE (KGE) of 0.84 (0.71) and

0.90 (0.88), respectively) and comparable performance at

many of the other sites. One exception is Gawardesh, where

the Lump-Outlet outperforms the other model variants, al-

though the reason for this is not immediately clear. Overall,

the results indicate that any calibration based on basin outlet

data should be used with substantial caution when predicting

flows at interior basin sites.

After reviewing all of the calibration experiments, it be-

comes clear that the Semi-Pooled and Dist-Pooled calibra-

tions provide more robust performance compared to the basin

outlet calibrations due to their improved representation of in-

ternal hydrologic processes across the basin. To further com-

pare these calibration strategies against one another, we eval-

uate the variability in optimal parameters resulting from the

50 trials of the GA algorithm. Figure 9 shows the coefficient

of variation (CV) of Cmax (a parameter for the soil moisture

account module) over the basin from all combinations of cal-

ibration approaches (the outlet and pooled) and three param-

eterization schemes. A clear pattern of increasing variabil-

ity (higher uncertainty in Cmax) emerges as parameter com-

plexity increases for both the outlet and pooled calibration

strategies. That is, the semi- and fully distributed parameter-

izations lead to significantly variable parameter sets that pro-

duce similar representations of the observed basin response.

Figure 9 also suggests that the equifinality can be alleviated

to an extent by pooling data across sites. The pooled calibra-

tion approaches consistently show lower variability in Cmax

compared to the outlet calibration at the same level of param-

eter complexity. These results are relatively consistent across

the remaining 14 HYMOD_DS parameters. The implications

of parameter stability on streamflow projections under cli-

mate change is addressed in the next section.

5.4 Climate change projections of streamflow with

uncertainty

Here we explore how projections of future water availabil-

ity and flood risk under climate change are influenced by the

choice of calibration approach. For the Kabul River basin,
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Figure 9. Coefficient of variation (CV) of 50 optimal values of

Cmax (parameter for the soil moisture accounting module in the

HYMOD_DS) from the basin outlet calibrations (left panel) and

the pooled calibrations (right panel).

the CMIP5 GCM projections of monthly total precipitation

and mean temperature are shown in Fig. S5. According to

the CMIP5 ensemble, precipitation projections show no clear

trend; the average precipitation change in monthly total pre-

cipitation fluctuates between −10 and 10 mm. On the other

hand, temperature clearly shows an upward trend for both

radiative forcing scenarios. The average changes in annual

temperature are +2.2 and +2.8 ◦C for RCPs 4.5 and 8.5,

which, using the Hamon method, correspond to an increase

in annual PET by approximately 100 and 150 mm, respec-

tively.

We first examine average monthly streamflow estimates

across four calibration strategies: the Semi-Pooled and Dist-

Pooled (most promising calibration strategies), as well as the

Lump-Outlet (as a baseline) and Dist-Outlet (the best outlet

calibration strategy). Figure 10 shows the monthly stream-

flow estimates for the historical period with the whisker bars

indicating the uncertainty range across the 50 calibration tri-

als. The monthly streamflow predictions are also provided for

the 2050s under the RCP 4.5 and 8.5 scenarios. For the fu-

ture scenarios, the whisker bars are derived by averaging over

the 36 different climate projections for each of the 50 trials.

For the historical time period, all calibration schemes match

the observed monthly streamflow at Dakah well, but monthly

streamflow is underestimated in most months at Kama and

Asmar under the basin outlet calibrations, particularly by the

Lump-Outlet. The historical monthly streamflow estimates

from the outlet calibration strategies also tends to be highly

uncertain for the months of June, July, August, and Septem-

ber, especially compared to the Semi-Pool and Dist-Pool.

Under future climate projections for the 2050s, the four

calibration strategies show similar changes in monthly

streamflow at Dakah, but the magnitudes of change are some-

what different. All calibration strategies suggest reduction in

streamflow for June, July, and August under both RCP 4.5

and 8.5 scenarios. Also, the peak monthly flow, which oc-

curred in June or July in the historical period, is shifted to

May at Dakah. However, the Lump-Outlet predicts less re-

duction of flow in June and July and a greater reduction in

August and September as compared to the other three cali-

brations. Considering that all calibration schemes had simi-

lar levels of good performance at this site for both calibration

and validation periods, it is notable that they project future

streamflow somewhat differently.

Future monthly streamflow predictions at Kama and As-

mar vary widely between the four calibration schemes,

mostly an artifact of their historic differences (Fig. 10).

Streamflow projections under the outlet calibration strate-

gies tend to show large uncertainties at these two sites,

particularly the Lump-Outlet calibration. For three months,

July–September, the outlet calibration and pooled calibra-

tion strategies provide substantially different insights about

future water availability at Kama and Asmar. The outlet cali-

brations suggest less water with large uncertainties for those

months as compared to the pooled calibrations. At Kama, the

pooled calibrations suggest significant changes in the pattern

of peak monthly flow timing under both RCP scenarios; in-

stead of having a clear peak in July, streamflow from May to

August show similar amounts of water.

To further understand the sources of uncertainty in future

water availability, we evaluate the separate and joint influ-

ence of uncertainties in parameter estimation and future cli-

mate on seasonal streamflow projections across all calibra-

tion schemes. Figure 11 represents the uncertainty of wet

and dry seasonal streamflow at Dakah from three sources:

(1) calibration uncertainty across the 50 trials, with future

climate uncertainty averaged out for each trial; (2) future cli-

mate uncertainty across the 36 projections, with calibration

uncertainty averaged out across the 50 trials; and (3) the com-

bined uncertainty across all 1800 (50× 36) simulations. The

results suggest somewhat surprisingly that uncertainty reduc-

tion can be expected as parameter complexity increases and,

less surprisingly, by applying pooled calibration approaches.

Another clear point is that the uncertainty resulting from dif-

ferent climate change scenarios substantially outweighs that

from calibration uncertainty.

Up to this point, there has been little difference between

the Semi-Pooled and Dist-Pooled model variants. These

two versions were further analyzed with respect to extreme

streamflow to see if distinguishing characteristics emerge. It

has been demonstrated that clear gains in predicting peak
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Figure 10. Historical and 2050s average monthly streamflow predictions at Dakah, Kama, and Asmar under four calibration strategies:

Lump-Outlet, Dist-Outlet, Semi-Pooled, and Dist-Pooled. The error bars represent the streamflow ranges resulting from 50 trails of the

HYMOD_DS calibration. For each of the 50 trials, the 2050s streamflow predictions are averaged over 36 GCM climate projections.

Figure 11. Uncertainties in wet and dry season average streamflow predictions for 2050s are derived from the basin outlet and pooled

calibrations for Dakah. Uncertainties are evaluated by the CV of average season streamflow predictions. Three uncertainty sources are

considered: calibration uncertainty across 50 calibration trials (Par), climate uncertainty across GCM projections (Clim), and combined

uncertainty (Joint).
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flows from distributed models are noticeable (Reed et al.,

2004) and spatial variability in model parameters signifi-

cantly influence the runoff behavior (Brath and Montanari,

2000; Pokhrel and Gupta, 2011). The spatial variability of

optimal parameters derived from the Semi-Pooled and Dist-

Pooled is shown in Fig. S6, with larger variability across all

parameters for the Dist-Pooled than for the Semi-Pooled. To

understand the effects of spatial variability and calibration

uncertainty of parameters on extreme event estimation, the

100-year daily flood event was calculated under the Semi-

Pooled and Dist-Pooled for each of the 50 historic simula-

tions and 1800 future simulations across both RCP scenar-

ios. Although the intermodel comparison is intended to be

a useful addition that provides a distinction between the pa-

rameterization schemes in the pooled calibration approach,

results from this analysis should be viewed in the context

of a theoretical calibration exercise, not for decision-making

purposes, because no observed daily streamflow is avail-

able against which to compare the estimated 100-year daily

flood events. Projections of the 100-year daily flood, esti-

mated using a log-Pearson type III distribution fit to annual

peaks of 30 years, differ somewhat between the Semi-Pooled

and Dist-Pooled (Fig. 12). At three validation sites, extreme

floods are consistently larger under the Semi-Pooled than the

Dist-Pooled, and the mean difference in the 100-year daily

flood estimate between the two calibration approaches grows

between the historic runs and the RCP 4.5 and 8.5 scenar-

ios. This suggests that the flood-generation process is funda-

mentally different between the two parameterizations, with

the Semi-Pooled formalization magnifying the effect of cli-

mate change on extremes. Furthermore, there is substantially

more uncertainty in the 100-year daily flood estimate un-

der the Semi-Pooled. Figure 12 shows the combined uncer-

tainty across both climate projections and calibrations, but

this uncertainty is broken down further in Fig. 13. Similar

to Fig. 11, three sources of uncertainty are evaluated for the

100-year daily flood, including calibration uncertainty alone,

climate projection uncertainty alone, and their combined ef-

fect. For both the Semi-Pooled and Dist-Pooled, calibration

uncertainty has a smaller influence than projection uncertain-

ties and, for all sites, the Dist-Pooled has a smaller uncer-

tainty range than the Semi-Pooled, even for calibration un-

certainty alone. This was a truly surprising result, given the

parametric freedom in the Dist-Pooled model and the fact

that no daily data were ever used in the calibration of either

model. It appears that a lack of model parsimony does not

necessarily lead to greater uncertainty in model simulations

under different climate conditions, somewhat counter to what

would be expected of overfit models. One possible reason for

this result would be if increased parametric freedom some-

how offset the effects of structural deficiencies in the model.

However, further research is needed to investigate this issue.

Figure 12. Comparison of GCM average 100-year daily flood

events derived from the semi-distributed and distributed pooled cal-

ibrations. The uncertainty range is from 50 trials of the model cali-

bration.

6 Discussion and conclusion

In this study we examined a variety of calibration experi-

ments to better understand the benefits and costs associated

with different calibration choices for a complex, distributed

hydrologic model in a data-scarce region. The goal of these

experiments was to provide insight regarding the use of mul-

tisite data in calibration, the effects of parameter complexity,

and the challenges of using limited data for distributed model

calibration, all in the context of projecting future streamflow

under climate change.

This study tested two multisite calibration strategies, the

stepwise and pooled approaches, finding that the pooled ap-

proach using all data simultaneously provides improved cal-

ibration results. This suggests that small sacrifices of model

performance at certain sites can improve and stabilize basin-

wide performance. The pooled calibration substantially im-

proves with increasing parameter complexity at the calibra-

tion sites, but similar streamflow predictions at the valida-

tion sites between the semi-distributed and distributed pooled

calibrations were found, suggesting overfitting of the model

from the fully distributed conceptualization. It is worth not-

ing that for the transformation of rainfall to runoff, up to five

or six parameters can be identified on the basis of a single

hydrograph (Wagner et al., 2001). Under this premise, the
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Figure 13. Uncertainties in 100-year daily flood estimates for 2050s

are assessed using the Semi-Pooled and Dist-Pooled calibrations.

Uncertainties are evaluated by calculating the CV of the 2050s 100-

year flood estimates under three uncertainty sources: calibration

uncertainty across 50 calibration trials (Par), climate uncertainty

across GCM projections (Clim), and combined uncertainty (Joint).

number of the HYMOD_DS parameters being calibrated in

the semi-distributed approach remains realistic, but the fully

distributed parameterization scheme likely causes poor iden-

tifiability of the parameters. Thus, pursuing a parsimonious

configuration (e.g., optimization for a small portion of the

parameters) with an effort to increase the amount of informa-

tion (e.g., multivariable/multisite) is critical in the calibration

of watershed system models (Gupta et al., 1998; Efstratiadis

et al., 2008). We also note the important role of experienced

hydrologists in designing a parsimonious hydrologic calibra-

tion (e.g., Boyle et al., 2000). In this study, the feasible ranges

of the HYMOD_DS parameters were kept wide (as is often

done in automatic hydrologic calibrations) without consider-

ation of the physical properties of the basin; the judgment

of local hydrologic experts could help reduce the feasible

ranges used during the calibration and thus contribute to a

reduction of calibration uncertainty.

Calibration only based on data at the basin outlet is all too

common in hydrologic model applications and is sometimes

considered comparable to multisite calibrations even for pre-

dictions at interior gauges (Lerat et al., 2012). In contrast,

others have reported improvements in interior flow predic-

tions by using internal flow measurements (Anderson et al.,

2001; Wang et al., 2012; Boscarello et al., 2013). This is in

agreement with the findings from this study, demonstrating

the superiority of the pooled calibration approach to the basin

outlet calibration in terms of its ability to represent interior

hydrologic response correctly. This study shows the danger

in relying on an outlet calibration for interior flow prediction.

It was shown that caution is needed when using an out-

let calibration approach for streamflow predictions under fu-

ture climate conditions. This study showed that the basin

outlet calibration can lead to projections of mid-21st cen-

tury streamflow that deviate substantially from projections

under multisite calibration strategies. From the test of impli-

cations of the pooled calibration in the context of climate

change, it was found that applying the pooled calibration

with semi-distributed and distributed parameter formulations

showed clear gains in reducing uncertainties in predictions of

monthly and seasonal water availability as compared to the

basin outlet calibrations. Surprisingly, increased parameter

complexity in the calibration strategies did not increase the

uncertainty in streamflow projections, even though parame-

ter equifinality did emerge. The results suggest that increased

(excessive) parameter complexity does not always lead to in-

creased uncertainty if structural uncertainties in the model

are present.

The semi-distributed pooled and distributed pooled cali-

brations are very similar for monthly streamflow projections,

yet differ in their projections of extreme flows in part due to

their differences in the spatial variability of optimal parame-

ters, with the distributed pooled calibration showing less un-

certainty for 100-year daily flood events. We evaluated the

separate and joint influence of uncertainties in parameter esti-

mation and future climate on projections of seasonal stream-

flow and 100-year daily flood across calibration schemes and

found that the uncertainty resulting from variations in pro-

jected climate between the CMIP5 GCMs substantially out-

weighs the calibration uncertainty. These results agree with

other studies showing the dominance of GCM uncertainty in

future hydrologic projections (Chen et al., 2011; Exbrayat

et al., 2014). While the GCM-based simulations still have

widespread use in assessing the impacts of climate change

on water resources availability, the bounds of uncertainty re-

sulting from an ensemble of GCMs cannot be well-defined

because of the low credibility with which GCMs are able

to produce time series of future climate (Koutsoyiannis et

al., 2008). This issue hinders a straightforward appraisal of

future water availability under climate change and has mo-

tivated other efforts; e.g., performance-based selection of

GCMs (Perez et al., 2014).

In addition to the uncertainties surrounding model param-

eters and future climate explored in this study, there is also

significant uncertainty in streamflow projections stemming

from structural differences between applied hydrologic mod-

els, which can be especially pertinent where robust calibra-

tion is hampered by the scarcity of data (Exbrayat et al.,

2014). Furthermore, the residual error variance of hydrologic

model simulations would increase the effects of hydrologic

model uncertainty as compared to that of the climate projec-

tions (Steinschneider et al., 2014). These issues need to be

addressed in future work for exploring a comprehensive un-

certainty assessment of climate change risk for poorly moni-

tored hydrologic systems.

Successful automatic calibration algorithms for hydro-

logic models are based primarily on global optimization al-

gorithms that are computationally expensive and require a

large number of function evaluations (Kuzmin et al., 2008).
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Although the speed and capacity of computers have in-

creased multifold in the past several decades, the time con-

sumed by running hydrological models (especially complex,

physically based, distributed hydrological models) is still a

concern for hydrology practitioners. A single trial of param-

eter optimization of HYMOD_DS associated with 100 000

runs can take 28 days on a single processor (Fig. S7). Ac-

cordingly, the use of high-performance computing power

was essential in this study to better understand the impli-

cations of different calibration choices and their associated

uncertainty for streamflow projections. Enhanced data with

high spatial and temporal resolution are increasingly avail-

able from remote sensing and satellite products. In the future,

remote sensing and satellite information can be integrated

into calibration approaches to develop more robust estimates

of spatially distributed parameter values, enabling internal

consistency of distributed hydrological modeling. Significant

progress has been made toward this end (Tang et al., 2009;

Khan et al., 2011; Thirel et al., 2013). Future work will con-

sider using high-performance computing power (e.g., Laloy

and Vrugt, 2012; Zhang et al., 2013) to understand how

such information can enhance the hydrologic simulation at

ungaged sites and reduce the calibration uncertainty of dis-

tributed hydrologic models in data-scarce regions.

The Supplement related to this article is available online

at doi:10.5194/hess-19-857-2015-supplement.

Acknowledgements. The authors are grateful to Efrat Morin, An-

dreas Efstratiadis, and one anonymous reviewer for their construc-

tive suggestions for improving this manuscript.

This research is funded by a World Bank grant: Hydro-Economic

Modeling for Brahmaputra and Kabul River. The views expressed

in this paper are those of the authors and do not necessarily reflect

the views of the World Bank.

We acknowledge the use of the supercomputing facilities

managed by the Research Computing department at the University

of Massachusetts.

Edited by: E. Morin

References

Ahmad, S.: Towards Kabul Water Treaty: Managing Shared Water

Resources – Policy Issues and Options, Karachi, Pakistan, 2010.

Ajami, N. K., Gupta, H., Wagener, T., and Sorooshian, S.: Calibra-

tion of a semi-distributed hydrologic model for streamflow esti-

mation along a river system, J. Hydrol., 298, 112–135, 2004.

Anderson, J., Refsgaard, J. C., and Jensen, K. H.: Distributed hydro-

logical modeling of the Senegal river basin – model construction

and validation, J. Hydrol., 247, 200–214, 2001.

Bandaragoda, C., Tarboton, D. G., and Woods, R.: Application of

TOPNET in the distributed model intercomparison project, J.

Hydrol., 298, 178–201, 2004.

Beven, J. K.: Rainfall-Runoff Modelling: The Primer, 2nd Edition,

Wiley-Blackwell, Chichester, 2012.

Beven, K. and Freer, J.: Equifinality, data assimilation, and uncer-

tainty estimation in mechanistic modelling of complex environ-

mental systems using the GLUE methodology, J. Hydrol., 249,

11–29, 2001.

Beven, K.: How far can we go in distributed hydrological mod-

elling?, Hydrol. Earth Syst. Sci., 5, 1–12, doi:10.5194/hess-5-1-

2001, 2001.

Biondi, D., Freni, G., Iacobellis, V., Mascaro, G., and Montanari,

A.: Validation of hydrological models: conceptual basis, method-

ological approaches and a proposal for a code of practice, Phys.

Chem. Earth, 42–44, 70–76, 2012

Boscarello, L., Ravazzani, G., and Mancini, M.: Catchment multi-

site discharge measurements for hydrological model calibration,

Procedia Environmental Sciences, 19, 158–167, 2013.

Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved

calibration of hydrologic models: Combining the stregths of

manual and automatic methods, Water Resour. Res., 36, 3663–

3674, 2000.

Boyle, D. P.: Multicriteria calibration of hydrologic models, Ph.D.

thesis, Department of Hydrology and Water Resources Engineer-

ing, The University of Arizona, USA, 2001.

Brath, A. and Montanari, A.: The effects of the spatial variability of

soil infiltration capacity in distributed flood modelling, Hydrol.

Process., 14, 2779–2794, 2000.

Brath, A., Montanari, A., and Toth, E.:. Analysis of the effects

of different scenarios of historical data availability on the cali-

bration of a spatially-distributed hydrological model, J. Hydrol.,

291, 232–253, 2004.

Breuer, L., Huisman J. A., Willems, P., Bormann, H., Bronstert, A.,

Croke, B. F. W., Frede, H. G., Gräff, T., Hubrechts, L., Jakeman,

A. J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D. P., Lind-

ström, G., Seibert, J., Sivapalan, M., and Viney, N. R.: Assessing

the impact of land use change on hydrology by ensemble model-

ing (LUChEM). I: Model intercomparison with current land use,

Adv. Water Resour., 32, 129–146, 2009

Cao, W., Bowden, W. B., Davie, T., and Fenemor, A.: Multi-variable

and multi-site calibration and validation of SWAT in a large

mountainous catchment with high spatial variability, Hydrol.

Process, 20, 1057–1073, 2006.

Chen, J., Brissette, F. P., Poulin, A., and Leconte, R.: Overall un-

certainty study of the hydrological impacts of climate change

for a Canadian watershed, Water Resour. Res., 47, W12509,

doi:10.1029/2011WR010602, 2011.

Cole, S. J. and Moore, R. J.: Hydrological modelling using

raingauge- and radar-based estimators of areal rainfall, J. Hy-

drol., 358, 159–181, 2008.

DAWN: Pakistan, Afghanistan mull over power project on Kunar

River, available at: http://www.dawn.com/news/1038435 (last

access: 2 January 2015), 2013.

Eckhardt, K., Fohrer, N., and Frede, H. G.: Automatic model cali-

bration, Hydrol. Process., 19, 651–658, 2005.

Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-

objective calibration approaches in hydrological modelling: a re-

view, Hydrolog. Sci. J., 55, 58–78, 2010.

Efstratiadis, A., Nalbantis, I., Koukouvinos, A., Rozos, E., and

Koutsoyiannis, D.: HYDROGEIOS: a semi-distributed GIS-

based hydrological model for modified river basins, Hydrol.

www.hydrol-earth-syst-sci.net/19/857/2015/ Hydrol. Earth Syst. Sci., 19, 857–876, 2015

http://dx.doi.org/10.5194/hess-19-857-2015-supplement
http://dx.doi.org/10.5194/hess-5-1-2001
http://dx.doi.org/10.5194/hess-5-1-2001
http://dx.doi.org/10.1029/2011WR010602
http://www.dawn.com/news/1038435


874 S. Wi et al.: Implication for streamflow projections under climate change

Earth Syst. Sci., 12, 989–1006, doi:10.5194/hess-12-989-2008,

2008.

Exbrayat, J. F., Buytaert, W., Timbe, E., Windhorst, D., and Breuer,

L.: Addressing sources of uncertainty in runoff projections for

a data scarce catchment in the Ecuadorian Andes, Climatic

Change, 125, 221–235, 2014.

Flugel, W. A.: Delineating Hydrological Response Units (HRU’s)

by GIS analysis for regional hydrological modelling using

PRMS/MMS in the drainage basin of the River Brol, Germany,

Hydrol. Process., 9, 423–436, 1995.

Forsythe, W. C., Rykiel Jr., E. J., Stahl, R. S., Wu, H., Schoolfield,

R. M.: A model comparison for daylength as a function of lati-

tude and day of year, Ecol. Model., 80, 87–95, 1995.

Frances, F., Velez, J. I., and Velez, J. J.: Split-parameter structure

for the automatic calibration of distributed hydrological models,

J. Hydrol., 332, 226–240, 2007.

Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H. H.

G.: An approach to identify time consistent model parameters:

sub-period calibration, Hydrol. Earth Syst. Sci., 17, 149–161,

doi:10.5194/hess-17-149-2013, 2013.

Grinsted, A.: An estimate of global glacier volume, The

Cryosphere, 7, 141–151, doi:10.5194/tc-7-141-2013, 2013.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-

position of the mean squared error and NSE performance criteria:

Implications for improving hydrological modelling, J. Hydrol.,

377, 80–91, 2009.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Towards improved

calibration of hydrologic models: Multiple and noncommensu-

rable measures of information, Water Resour. Res., 34, 751–763,

1998.

Hamon, W. R.: Estimating potential evapotranspiration, J. Hydr.

Eng. Div.-ASCE, 87, 107–120, 1961.

Hewitt, K., Wake, C. P., Young, G. J., and David, C.: Hydrologicl

investigations at Biafo glacier, Karakoram Himalaya, Pakistan:

An important source of water for the Indue River, Ann. Glaciol.,

13, 103–108, 1989.

Immerzeel, W. W., van Beek, L. P. H., Konz, M., Shrestha, A. B.,

and Bierkens, M. F. P.: Hydrological response to climate change

in a glacierized catchment in the Himalayas, Climatic Change,

110, 721–736, 2012.

IUCN: Towards Kabul Water Treaty: Managing Shared Water Re-

sources – Policy Issues and Options, IUCN Pakistan, Karachi,

11 pp., 2010.

Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled

seamless SRTM data V4, International Centre for Tropical Agri-

culture (CIAT), available at: http://srtm.csi.cgiar.org (last access:

2 January 2015), 2008.

Khakbaz, B., Imam, B., Hsu, K., and Sorooshian, S.: From lumped

to distributed via semi-distributed: Calibration strategies for

semi-distributed hydrologic models, J. Hydrol., 418–419, 61–77,

2012.

Khan, S. I., Yang, H., Wang, J., Yilmaz, K. K., Gourley, J. J., Adler,

R. F., Brakenridge, G. R., Policell, F., Habib, S., and Irwin, D.:

Satellite remote sensing and hydrologic modeling for flood inun-

dation mapping in Lake Victoria Basin: Implications for hydro-

logic prediction in ungauged basins, IEEE T. Geosci. Remote,

49, 85–95, 2011.

Kinouchi, T., Liu, T., Mendoza, J., and Asaoka, Y.: Modeling glacier

melt and runoff in a high-altitude headwater catchment in the

Cordillera Real, Andes, Hydrol. Earth Syst. Sci. Discuss., 10,

13093–13144, doi:10.5194/hessd-10-13093-2013, 2013.

Kollat, J. B., Reed, P. M., and Wagener, T.: When are multiobjective

calibration trade-offs in hydrologic models meaningful?, Water

Resour. Res., 48, W03520, doi:10.1029/2011WR011534, 2012.

Konz, M. and Seibert, J.: On the value of glacier mass balances for

hydrological model calibration, J. Hydrol., 385, 238–246, 2010.

Koren, V., Reed, S., Smith, M., Zhang, Z., and Seo, D. J.: Hydrol-

ogy laboratory research modeling system (HL-RMS) of the US

national weather service, J. Hydrol., 291, 297–318, 2004.

Koutsoyiannis, D., Efstratiadis, A., Mamassis, N., and Christofides,

A.: On the credibility of climate predictions, Hydrolog. Sci. J.,

53, 671–684, 2008.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of dis-

tributed hydrologic model parameterization on water fluxes at

multiple scales and locations, Water Resour. Res., 49, 360–379,

2013.

Kuzmin, V., Seo D., and Koren V.: Fast and efficient optimization

of hydrologic model parameters using a priori estimates and step-

wise line search, J. Hydrol., 353, 109–128, 2008.

Laloy, E. and Vrugt, J. A.: High-dimensional posterior explo-

ration of hydrologic models using multiple-try DREAM(ZS) and

high-performance computing, Water Resour. Res., 48, W01526,

doi:10.1029/2011WR010608, 2012.

Latham, J., Cumani, R., Rosati, I., and Bloise, M.: Global Land

Cover SHARE (GLC-SHARE) database Beta-Release Version

1.0, available at: http://www.glcn.org/databases/lc_glcshare_en.

jsp (last access: 2 January 2015), 2014.

Leavesley, G. H., Hay, L. E., Viger, R. J., and Markstrom, S. L.: Use

of Priori Paramter-Estimation Methods to Constrain Calibration

of Distributed-Parameter Models, Water. Sci. Appl., 6, 255–266,

2003.

Legates, D. R. and Willmott, C. J.: Mean seasonal and spatial vari-

ability in gauge-corrected, global precipitation, Int. J. Climatol.,

10, 111–127, 1990.

Lerat, J., Andreassian V., Perrin, C., Vaze, J., Perraud J. M., Rib-

stein, P., and Loumagne C.: Do internal flow measurements im-

prove the calibration of rainfall-runoff models?, Water Resour.

Res., 48, W02511, doi:10.1029/2010WR010179, 2012.

Li, X., Weller, D. E., and Jordan, T. E.: Watershed model calibration

using multi-objective optimization and multi-site averaging, J.

Hydrol., 380, 277–288, 2010.

Lohmann, D., Raschke, R., Nijssen, B., and Lettenmaier, D. P.: Re-

gional scale hydrology: I. Formulation of the VIC-2L model cou-

pled to a routing model, Hydrolog. Sci. J., 43, 131–141, 1998.

Madsen, H.: Parameter estimation in distributed hydrologicl catch-

ment modelling using automatic calibration with multiple objec-

tives, Adv. Water Resour., 26, 205–216, 2003.

Moore, R. D.: Application of a conceptual streamflow model in a

glacierized drainage basin, J. Hydrol., 150, 151–168, 1993.

Moore, R. J.: The probability-distribted principle and runoff pro-

duction at point and basin scales, Hydrolog. Sci. J., 30, 273–297,

1985.

Nash, J. E. and Sutcliff, J. V.: River flow forecasting through con-

ceptual models: Part 1. A discussion of priciples, J. Hydrol., 10,

282–290, 1970.

Nash, J. E.: The form of the instantaneous unit hydrograph, Interna-

tional Association of Science and Hydrology, 3, 114–121, 1957.

Hydrol. Earth Syst. Sci., 19, 857–876, 2015 www.hydrol-earth-syst-sci.net/19/857/2015/

http://dx.doi.org/10.5194/hess-12-989-2008
http://dx.doi.org/10.5194/hess-17-149-2013
http://dx.doi.org/10.5194/tc-7-141-2013
http://srtm.csi.cgiar.org
http://dx.doi.org/10.5194/hessd-10-13093-2013
http://dx.doi.org/10.1029/2011WR011534
http://dx.doi.org/10.1029/2011WR010608
http://www.glcn.org/databases/lc_glcshare_en.jsp
http://www.glcn.org/databases/lc_glcshare_en.jsp
http://dx.doi.org/10.1029/2010WR010179


S. Wi et al.: Implication for streamflow projections under climate change 875

Olson, S. A. and Williams-Sether, T.: Streamflow characteristics

at streamgages in Northern Afghanistan and selected locations,

U.S. Geological Survey, Reston, Virginia, 2010.

Palazzi, E., von Hardenberg, J., and Provenzale, A.: Precipitation in

the Hindu-Kush Karakoram Himalaya: Observations and future

scenarios, J. Geophys. Res., 118, 85–100, 2013.

Perez, J., Menendez, M., Mendez, F. J., and Losada, I. J.: Evaluat-

ing the performance of CMIP3 and CMIP5 global climate mod-

els over the north-east Atlantic region, Clim. Dynam., 43, 2663–

2680, 2014.

Pfeffer, T. W., Arendt, A. A., Bliss, A., Bolch, T., Cogley J. G.,

Gardner, A. S., Hagen, J. O., Hock R., Kaser, G., Kienholz, C.,

Miles E. S., Moholdt, G., Molg, N., Paul, F., Radic, V., Rastner,

P., Raup, B. H., Rich, J., Sharp, M. J., and The Randolph Consor-

tium: The Randolph Glacier Inventory, J. Glaciol., 60, 537–552,

2014.

Pokhrel, P. and Gupta, H. V.: On the use of spatial regularization

strategies to improve calibration of distributed watershed models,

Water. Resour. Res., 46, W01505, doi:10.1029/2009WR008066,

2010.

Pokhrel, P. and Gupta, H. V.: On the ability to infer spatial catch-

ment variability using streamflow hydrographs, Water Resour.

Res., 47, W08534, doi:10.1029/2010WR009873, 2011.

Radic, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cog-

ley, J. G.: Regional and global projections of twenty-first cen-

tury glacier mass changes in response to climate scenarios from

global climate models, Clim. Dynam., 42, 37–58, 2014.

Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D. J.,

and DMIP Participants: Overall distributed model intercompari-

son project results, J. Hydrol., 298, 27–60, 2004.

Remesan, R., Bellerby, T., and Frostick, L.: Hydrological modelling

using data from monthly GCMs in a regional catchment, Hydrol.

Process., 28, 3241–3263, 2013.

Safari, A., De Smedt, F., and Moreda, F.: WetSpa model application

in the Distributed Model Intercomparison Project (DMIP2), J.

Hydrol., 418–419, 77–89, 2012.

Shakir, A. S., Rehman, H., and Ehsan, S.: Climate change impact on

river flows in Chitral watershed, Pakistan Journal of Engineering

and Applied Sciences, 7, 12–23, 2010.

Smith, M. B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda,

F., Cui, Z., Mizukami, N., Anderson, E. A., and Cosgrove, B. A.:

The distributed model intercomparison project – Phase 2: Moti-

vation and design of the Oklahoma experiments, J. Hydrol., 418–

419, 3–16, 2012.

Smith, M. B., Seo, D. J., Koren, V. I., Reed, S. M., Zhang, Z., Duan,

Q., Moreda, F., and Cong, S.: The distributed model intercom-

parison project (DMIP): motivation and experiment design, J.

Hydrol., 298, 4–26, 2004.

Smith, M., Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B.,

Mizukami, N., Kitzmiller, D., Ding, F., Reed, S., Anderson, E.,

Schaake, J., Zhang, Y., Andreassian, V., Perrin, C., Coron, L.,

Valery, A., Khakbaz, B., Sorooshian, S., Behrangi, A., Imam, B.,

Hsu, K. L., Todini, E., Coccia, G., Mazzetti, C., Andres, E. O.,

Frances, F., Orozco, I., Hartman, R., Henkel, A., Fickenscher, P.,

and Staggs, S.: The distributed model intercomparison project –

Phase 2: Experiment design and summary results of the western

basin experiments, J. Hydrol., 507, 300–329, 2013.

Stahl, K., Moore, R. D., Shea, J. M., Hutchinson, D., and Cannon,

A. J.: Coupled modelling of glacier and streamflow response

to future climate scenarios, Water Resour. Res., 44, W02422,

doi:10.1029/2007WR005956, 2008.

Steinschneider, S., Polebitski, A., Brown, C., and Letcher, B. H.:

Toward a statistical framework to quantify the uncertainties of

hydrologic response under climate change, Water Resour. Res.,

48, W11525, doi:10.1029/2011WR011318, 2012.

Steinschneider, S., Wi, S., and Brown, C.: The integrated effects

of climate and hydrologic uncertainty on future flood risk as-

sessments, Hydrol. Process., doi:10.1002/hyp.10409, accepted,

2014.

Talyor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of

CMIP5 and the Experiment Design, B. Am. M. Soc., 93, 485–

498, 2012.

Tang, Q., Gao, H., Lu, H., and Lettenmaier, D. P.: Remote sensing:

hydrology, Prog. Phys. Geog., 33, 490–509, 2009.

Thirel, G., Salamon, P., Burek, P., and Kalas, M.: Assimilation of

MODIS snow cover area data in a distributed hydrological model

using the particle filter, Remote Sensing, 5, 5825–5850, 2013

USDA-NRCS: FAO-UNESCO Soil Map of the World, avail-

able at: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/

use/?cid=nrcs142p2_054013 (last access: 2 January 2015), 2005.

Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A.:

Equifinality of formal (DREAM) and informal (GLUE) Bayesian

approaches in hydrologic modeling?, Stoch. Env. Res. Risk A.,

23, 1011–1026, 2008.

Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V.,

and Sorooshian, S.: A framework for development and applica-

tion of hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26,

doi:10.5194/hess-5-13-2001, 2001.

Wagener, T., Wheater, H. S., and Gupta, H. V.: Rainfall-Runoff

Modelling in Gauged and Ungauged Catchments, Imperical Col-

lege Press, London, 2004.

Wang, Q. J.: The Genetic Algorithm and Its Application to Calibrat-

ing Conceptual Rainfall-Runoff Models, Water Resour. Res., 27,

2467–2471, 1991.

Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., and Yao,

A.: Multi-site calibration, validation, and sensitivity analysis of

the MIKE SHE Model for a large watershed in northern China,

Hydrol. Earth Syst. Sci., 16, 4621–4632, doi:10.5194/hess-16-

4621-2012, 2012.

Wilby, R. L.: Uncertainty in water resource model parameters used

for climate change impact assessment, Hydrol. Process., 19,

3201–3219, 2005.

Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hy-

drologic Implications of Dynamical and Statistical Approaches

to Downscaling Climate Model Outputs, Climatic Change, 62,

189–216, 2004.

World Bank: Afghanistan – Scoping strategic options for develop-

ment of the Kabul River Basin: a multisectoral decision support

system approach, World Bank, Washington, D.C., 2010.

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi,

N., and Kitoh, A.: APHRODITE: Constructing a Long-Term

Daily Gridded Precipitation Dataset for Asia Based on a Dense

Network of Rain Gauges, B. Am. Meteorol. Soc., 93, 1401–1415,

2012.

Yu, W., Yang, Y. C. E., Savitsky, A., Alford, D., Brown, C., Wescoat,

J., Debowicz, D., and Robinson, S.: The Indus Basin of Pakistan:

The Impacts of Climate Risks on Water and Agriculture, World

Bank, Washington DC, 2013.

www.hydrol-earth-syst-sci.net/19/857/2015/ Hydrol. Earth Syst. Sci., 19, 857–876, 2015

http://dx.doi.org/10.1029/2009WR008066
http://dx.doi.org/10.1029/2010WR009873
http://dx.doi.org/10.1029/2007WR005956
http://dx.doi.org/10.1029/2011WR011318
http://dx.doi.org/10.1002/hyp.10409
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013
http://dx.doi.org/10.5194/hess-5-13-2001
http://dx.doi.org/10.5194/hess-16-4621-2012
http://dx.doi.org/10.5194/hess-16-4621-2012


876 S. Wi et al.: Implication for streamflow projections under climate change

Zhang, X., Beeson, P., Link, R., Manowitz, D., Izaurralde, R. C.,

Sadeghi, A., Thomson, A. M., Sahajpal, R., Srinivasan, R., and

Arnold, J. G.: Efficient multi-objective calibration of a computa-

tionally intensive hydrologic model with parallel computing soft-

ware in Python, Environ. Modell. Softw., 46, 208–218, 2013.

Zhu, C. and Lettenmaier, D. P.: Long-Term Climate and Derived

Surface Hydrology and Energy Flux Data for Mexico: 1925–

2004, J. Climate., 20, 1936–1946, 2007.

Hydrol. Earth Syst. Sci., 19, 857–876, 2015 www.hydrol-earth-syst-sci.net/19/857/2015/


	Abstract
	Introduction
	Study area
	Data and models
	Data
	Distributed Hydrologic Model (HYMOD_DS)

	Methods
	Multisite calibration: stepwise and pooled approaches
	Increased parameter complexity
	Basin outlet calibration
	Climate change projections of streamflow

	Results
	Pooled calibration vs. stepwise calibration 
	Pooled calibration with alternative parameterizations
	Limitations of the basin outlet calibration 
	Climate change projections of streamflow with uncertainty

	Discussion and conclusion
	Acknowledgements
	References

