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Abstract. We analyze scale-dependent statistics of corre-

lated random hydrogeological variables and their extremes

using neutron porosity data from six deep boreholes, in three

diverse depositional environments, as example. We show that

key statistics of porosity increments behave and scale in

manners typical of many earth and environmental (as well

as other) variables. These scaling behaviors include a ten-

dency of increments to have symmetric, non-Gaussian fre-

quency distributions characterized by heavy tails that decay

with separation distance or lag; power-law scaling of sam-

ple structure functions (statistical moments of absolute in-

crements) in midranges of lags; linear relationships between

log structure functions of successive orders at all lags, known

as extended self-similarity or ESS; and nonlinear scaling of

structure function power-law exponents with function order,

a phenomenon commonly attributed in the literature to multi-

fractals. Elsewhere we proposed, explored and demonstrated

a new method of geostatistical inference that captures all of

these phenomena within a unified theoretical framework. The

framework views data as samples from random fields con-

stituting scale mixtures of truncated (monofractal) fractional

Brownian motion (tfBm) or fractional Gaussian noise (tfGn).

Important questions not addressed in previous studies con-

cern the distribution and statistical scaling of extreme incre-

mental values. Of special interest in hydrology (and many

other areas) are statistics of absolute increments exceeding

given thresholds, known as peaks over threshold or POTs. In

this paper we explore the statistical scaling of data and, for

the first time, corresponding POTs associated with samples

from scale mixtures of tfBm or tfGn. We demonstrate that

porosity data we analyze possess properties of such samples

and thus follow the theory we proposed. The porosity data

are of additional value in revealing a remarkable cross-over

from one scaling regime to another at certain lags. The phe-

nomena we uncover are of key importance for the analysis of

fluid flow and solute as well as particulate transport in com-

plex hydrogeologic environments.

1 Introduction

Hydrogeologic variables such as log permeability are known

to vary with scales of measurement, observation, domain of

investigation, spatial correlation and resolution (Neuman and

Di Federico, 2003). The statistics of these and diverse envi-

ronmental (as well as earth, financial, astrophysical, biolog-

ical and many other) variables are likewise known to vary

with scale. This is especially true of statistics characteriz-

ing spatial and/or temporal increments of these variables.

Symptoms of such statistical scaling include irregular spatial

variability, persistence or antipersistence of increments (large

and small values tending to either persist or alternate rapidly

in space and/or time); tendency of increments to have sym-

metric, non-Gaussian frequency distributions characterized

by heavy tails that often decay with separation distance or

lag; power-law scaling of sample structure functions (statis-

tical moments of absolute increments) in midranges of lags,

with breakdown in power-law scaling at small and/or large

lags; linear relationships between log structure functions of

successive orders at all lags, also known as extended self-

similarity or ESS; and nonlinear scaling of structure function

power-law exponents with function order. The traditional in-

terpretation of these widely documented behaviors has been

based on the concept of multifractals. This, however, does not
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explain observed breakdown in power-law scaling at small

and large lags or extended power-law scaling (Neuman et al.,

2013, and references therein).

Of special concern are the statistics of extremes, which

have received much attention among hydrologists (Katz et

al., 2002) and others concerned with a wide range of phe-

nomena including snow avalanches on mountain slopes (An-

cey, 2012); rupture events associated with the propagation

of cracks or sliding along faults in brittle materials in-

cluding rock failure, landslides and earthquakes (Amitrano,

2012; Lei, 2012; Main and Naylor, 2012) as well as vol-

canic eruptions, landslides, wildfires and floods (Sachs et

al., 2012; Schoenberg and Patel, 2012; Süveges and Davi-

son, 2012); demographic and financial crises (Akaev et al.,

2012; Janczura and Weron, 2012); neuronal avalanches and

coherence potentials in the mammalian cerebral cortex (de

Arcangelis, 2012; Plenz, 2012); citations of scientific papers

(Golosovsky and Solomon, 2012); and distributions of city

sizes (Pisarenko and Sornette, 2012). Extreme values clus-

ter around heavy tails of data frequency distributions which

are often modeled as stretched exponential, lognormal or

power functions. There is growing evidence that these fre-

quency distributions, as well as other geospatial and/or tem-

poral statistics of many data, vary with scale. A key related

question concerns the scale dependence of frequency distri-

butions (typically generalized extreme value or GEV in the

case of block extrema and generalized Pareto distribution or

GPD in the case of peaks over thresholds or POTs, e.g., Em-

brechts et al., 1997) and statistics of extremes at the tails of

the original data distributions (e.g., Riva et al., 2013a).

In this paper we explore the statistical scaling of variables

and, for the first time, corresponding POTs using as an ex-

ample neutron porosity data and their POTs from six deep

boreholes in three different depositional environments. These

data are of interest because, as we show below, (a) they pos-

sess statistics that scale in manners typical of many earth,

environmental and other variables and (b) reveal a remark-

able cross-over from one scaling regime to another at cer-

tain separation distances or lags. The phenomena we uncover

vis-à-vis neutron porosity data, and corresponding extremes,

are of critical importance for the analysis of fluid flow and

solute as well as particulate transport in complex hydroge-

ologic environments. This is so because spatial variability

of porosity controls fluid flow velocity distributions in ge-

ologic media and has an impact on solute and particulate

concentration dynamics. Extreme values of porosity are par-

ticularly relevant to depositional processes responsible for

the development of preferential flow paths through hetero-

geneous porous and fractured media. Neutron porosity logs

are widely used to characterize stratigraphic sequences and

the geostatistical description of geological structures of litho-

types in multilayer systems of aquifers and aquitards (e.g.,

Barrash and Reboulet, 2004; Tronicke and Holliger, 2005).

Combined with laboratory-determined particle size distribu-

tions, porosity data may allow one to infer spatial distribu-

tions (see review of Vuković and Soro, 1992) and covariances

(Riva et al., 2014) of hydraulic conductivity.

Statistical scaling of hydrogeological data such as perme-

ability or hydraulic conductivity has been studied amongst

others by Painter (2001), Meerschaert et al. (2004),

Kozubowski et al. (2006), Siena et al. (2012, 2014), Riva

et al. (2013b, 2013c), and Guadagnini et al. (2012, 2013,

2014). Whereas research in the subsurface hydrology liter-

ature has not addressed specifically the distribution and sta-

tistical scaling of extreme incremental values, spatial corre-

lations between values significantly in excess of the mean

have been studied vis-à-vis variables such as transmissiv-

ity and their relevance to transport processes has been high-

lighted. Sanchez-Vila et al. (1996) conjectured that observed

scale dependence of transmissivities estimated from large-

scale pumping tests could be related to strong connectivity

between regions of elevated transmissivity, as opposed to

spatial persistence of average or low transmissivity values.

Spatial correlation of extreme conductivity values was exam-

ined for the first time by Gómez-Hernández and Wen (1998).

In these authors’ opinion the standard multi-Gaussian as-

sumption was not consistent with observed short solute travel

times resulting from fast spatially connected pathways. Con-

nectivity of high permeability zones thus became an impor-

tant concept underlying some modern interpretations of ef-

fective conductivity and solute travel time (see for example

Meier et al., 1998; Wen and Gómez-Hernández, 1998; West-

ern et al., 2001; Fogg et al., 2000; Zinn and Harvey, 2003;

Knudby and Carrera, 2005, 2006; Knudby et al., 2006; Nield,

2008, and references therein). The above ideas have moti-

vated the development of multipoint geostatistical methods

of analysis such as those described in a recent special issue of

the journal Mathematical Geosciences on 20 years of multi-

point statistics (e.g., Renard and Mariethoz, 2014; Mariethoz

and Renard, 2014, and references therein).

Notably, attempts by hydrologists to investigate the man-

ner in which statistics of extremes vary with scale have

centered almost exclusively on peak rainfall intensities and

stream flows. Whereas some have found statistical mea-

sures of rainfall extremes to exhibit linear (sometimes termed

simple) scaling (Menabde et al., 1999; Garcia-Bartual and

Schneider, 2001; De Michele et al., 2001) under at least some

conditions (Burlando and Rosso, 1996; Veneziano and Fur-

colo, 2002; Yu et al., 2004), most authors describe them by

means of nonlinear (often called multiscaling) models (Bur-

lando and Rosso, 1996; Veneziano and Furcolo, 2002; Castro

et al., 2004; Langousis and Veneziano, 2007; Mohymont and

Demarée, 2006). Statistical measures of peak stream flows

were considered by Javelle et al. (1999), Menabde and Siva-

palan (2001) and Rigon et al. (2011) to scale linearly. Work

on the scaling of GEVs and/or GPDs associated with ex-

treme rainfall and/or stream flow was reported amongst oth-

ers by Nguyen et al. (1998), Menabde et al. (1999), Menabde

and Sivapalan (2001), Willems (2000), Trefry et al. (2005),

Veneziano et al. (2009) and Veneziano and Yoon (2013).
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The general tendency has been to interpret linear scaling as

a manifestation of monofractal behavior analogous to that

of fractional Brownian motion (fBm) or fractional Gaussian

noise (fGn). Nonlinear scaling has commonly been attributed

to multifractal behavior, a viewpoint espoused originally by

Schertzer and Lovejoy (1987) and expanded on recently by

Veneziano and Yoon (2013).

Work by our group has demonstrated theoretically

(Neuman, 2010, 2011; Guadagnini and Neuman, 2011;

Siena et al., 2012; Neuman et al., 2013), computationally

(Guadagnini et al., 2012; Neuman et al., 2013) and on the

basis of varied pedological, hydrological and hydrogeolog-

ical data (Siena et al., 2012, 2014; Riva et al., 2013b, c;

Guadagnini et al., 2012, 2013, 2014) that statistical scal-

ing behaviors of the kind traditionally attributed to multi-

fractals can be interpreted more simply and consistently by

viewing the data as samples from stationary sub-Gaussian

random fields subordinated to truncated fBm (tfBm) or fGn

(tfGn). Such sub-Gaussian fields are scale mixtures of sta-

tionary Gaussian fields with random variances (Andrews and

Mallows, 1974; West, 1987) that we model as being lognor-

mal or Lévy-stable (Samorodnitsky and Taqqu, 1994). In this

sense our approach bears partial relationship to cascades of

Gaussian-scale mixtures that Ebtehaj and Foufoula-Georgiou

(2010) use to reproduce coherent structures and extremes of

precipitation reflectivity images in the wavelet domain.

Our analysis suggests that, quantitatively, the statistics of

neutron porosity increments and their POTs at intra-layer

vertical separation scales (or lags) differ from those at inter-

layer scales. Qualitatively, however, the statistics of porosity

increments at each of these two scales behave in a manner

that the literature would typically associate with multifrac-

tals. This behavior includes all statistical scaling symptoms

described above. Our alternative interpretation of the data

allows us to obtain maximum likelihood (ML) estimates of

all parameters characterizing the underlying truncated sub-

Gaussian fields at both intra- and inter-layer scales. Most im-

portantly, we offer what appears to be the first data-driven

exploration (following a synthetic study of outliers by Riva

et al., 2013a) of how statistics of POTs associated with such

families of sub-Gaussian fields vary with scale.

2 Source of neutron porosity data

As stated in Sect. 1, we illustrate and explore our approach

on neutron porosity data from six deep vertical boreholes in

three different depositional environments. These are part of a

broader set of geophysical logs from the same boreholes, pre-

viously described and analyzed within a multifractal frame-

work by Dashtian et al. (2011), provided to us courtesy of

Professor Muhammad Sahimi, University of Southern Cal-

ifornia. Three of the wells (numbered here 1, 2 and 3) are

drilled in the Maroon field within which a gas drive is used

to produce oil and natural gas, Wells 4 and 5 in the Ahwaz

oil field, and Well 6 in the Tabnak gas field. The Maroon

and Ahwaz fields in southwestern Iran, and the Tabnak field

in southern Iran, have distinct geologies. Whereas carbon-

ate rock content is highest in the Tabnak and lowest in the

Maroon and Ahwaz fields, the opposite is true about sand-

stone content. Though we do not have information about the

relative geographic locations of the six wells, we note that

Dashtian et al. (2011) analyzed data from each well indepen-

dently of those from the remaining five wells. We do the same

on the assumption that distances between the wells are suf-

ficiently large to allow treating data from each well as being

statistically independent of the rest.

3 Theoretical basis and method of inference

Summary information about the available neutron porosity

(P) data is listed in Table 1. As the sampling interval be-

tween available values in Well 6 is half of that in Wells 1–

5, we disregard every other measurement in analyzing these

data, leaving a total of 4267 values. Most of our analysis

concerns increments in recorded P values at various sepa-

ration distances or lags, s, in each well. Lags are taken to

be integer multiples, s = sn×1z, of the vertical spacing,

1z= 0.1524 m, between recorded values.

As stated in Sec. 1, we view the data as samples from

stationary sub-Gaussian random fields subordinated to trun-

cated fBm (tfBm) or fGn (tfGn). Sub-Gaussian random vari-

ables, defined in Appendix A following standard statisti-

cal terminology (e.g., Samorodnitsky and Taqqu, 1994), are

scale mixtures of Gaussian variables with random variances.

We consider two sub-Gaussian variables, one α-stable with

Gaussian variances that are α/2-stable, and another normal–

lognormal (NLN) variable with lognormal Gaussian vari-

ances. There is no physical basis for their choice, just as there

usually is no such basis for working with the Gaussian distri-

bution. Lévy-stable (or α-stable) probability distributions are

frequently employed due to their ability to interpret heavy

tails displayed by empirical distributions of data. While con-

venient in this sense, this model has the drawback of being

associated with densities with diverging moments of order

larger than α, notably the variance (e.g., Neuman et al., 2013,

and references therein). The use of a lognormal subordina-

tor provides us with the ability to represent tailing behaviors

reasonably well with the additional benefit that associated

densities possess finite moments of all orders. Regardless of

this choice, our approach is compatible with diverse types

of subordinators. Using ML we compare the ability of the

above two subordinators to (a) capture critical distributional

features of our data and (b) yield reliable parameters of the

underlying sub-Gaussian random fields.

Statistical scaling of the data is analyzed in part on the ba-

sis of sample structure functions, S
q
N (sn), of order q. Struc-

ture functions are moments of order q of absolute increments

(e.g., Frisch, 1995). The corresponding sample moments are
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Table 1. Summary information about available neutron porosity (P) data.

Standard Number of

Well Sampling Min P Max P Mean P deviation data points

Reservoir # interval (m) (%) (%) (%) SD (%) used

Maroon 1 0.1524 0 46.04 14 6.4 3567

(MN) 2 0.1524 0* 74.29 17.27 9.98 4049

3 0.1524 0* 37.6 15.72 8.54 2945

1+ 2+ 3 0.1524 0* 74.29 15.74 8.62 10 561

Ahwaz 4 0.1524 0 36.01 16.47 6.82 3882

(AZ) 5 0.1524 0 47.91 16.05 8.35 6949

Tabnak (TBK) 6 0.0762** 0 96.9 9.28 13.2 4267

* These, being negative and very close to zero, were set equal to zero. ** We disregard every other measurement in analyzing these

data.

constructed with N (sn) absolute increments at normalized

(by 1z) lags sn:

S
q
N (sn)=

1

N (sn)

N(sn)∑
j=1

∣∣1Pj (sn)∣∣q , (1)

where 1Pj (sn) is the j th increment of P values separated

by lag sn. The variable P is said exhibits power-law scal-

ing if S
q
N (sn)∝ s

ξ(q)
n , where the power or scaling exponent,

ξ (q), depends solely on the order q. The exponent is es-

timated through linear fits of log(S
q
N ) to log(sn) within the

range of lags where such linear behavior is indicated. We re-

fer to this approach of assessing and quantifying power-law

scaling as method of moments.

As shown by Neuman et al. (2013, and references therein),

another way to assess the dependence of scaling exponents

ξ(q) on q is through ESS or extended power-law scaling.

ESS is an empirical approach originally introduced by Benzi

et al. (1993a, b, 1996) to widen the range of lags over which

velocities in fully developed turbulence scale according to

Eq. (1). The approach calls for plotting the S
q+1
N vs. S

q
N for

various q values and quantifying the resulting linear depen-

dence between them (see Neuman et al., 2013, and references

therein). In this work we apply both methods to available

neutron porosity data.

To estimate parameters characterizing the distribution of

the underlying (Gaussian) tfBm or tfGn, we consider the

zero-mean tfBm G′ (x;λl,λu) defined by Di Federico and

Neuman (1997) as a Gaussian random function of space hav-

ing variance

σ 2
G (λl,λu)= σ

2
G (λu)− σ

2
G (λl) , (2)

variogram or semi-structure function of second order

γG (s;λl,λu)= γG (s;λu)− γG (s;λl) , (3)

and integral autocorrelation scale

I (λl,λu)=
2H

1+ 2H

λ1+2H
u − λ1+2H

l

λ2H
u − λ

2H
l

, (4)

where for m= l,u,

σ 2
G (λm)= Aλ

2H
m /2H, (5)

γG (s;λm)= σ
2
G (λm)ρ (s/λm) , (6)

A is a coefficient, H is a Hurst scaling exponent and s is

lag. The tfBm variogram γG (s;λl,λu) is a weighted inte-

gral of variograms characterizing stationary Gaussian fields,

or modes, having integral scales λ and variances σ 2 (λ)=

Aλ2H /2H , between lower and upper cutoff scales, λl and

λu, respectively. Here we consider modes having Gaussian

variograms in which case

ρ (s/λm)=

[
1− exp

(
−
π

4

s2

λ2
m

)
+

(
π

4

s2

λ2
m

)H
0

(
1−H,

π

4

s2

λ2
m

)]
0<H < 1, (7)

where 0(·, ·) is the incomplete gamma function. In

the limits λl→ 0 and λu→∞, γG (s;λl,λu) tends to

a power variogram (PV) γ 2 (s)= Bs2H where B =

A(π/4)2H/20(1− 2H/2)/2H , 0 being the gamma func-

tion. The stationary tfBm G′ (x;λl,λu) thus tends to non-

stationary fBm, G′ (x;0,∞), the stationary increments of

which, 1G(x,x+ s;0,∞), form fGn. It follows that when

λu <∞, γG (s;λl,λu) is a truncated power variogram

(TPV) characterizing a (stationary) truncated version of fBm

(tfBm).

We treat neutron porosity increments in each borehole as a

sample from a zero-mean random field,1Y (x,x+ s;λl,λu),

subordinated to tfBm according to (see Appendix A)

1Y (x,x+ s;λl,λu)=W
1/21G(x,x+ s;λl,λu) , (8)

where s ≥ 0 is lag and the subordinator,W , is a non-negative

random variable independent of 1G (and of G′). As stated
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Figure 1. Variation of neutron porosity (P) with depth in Wells 1

(Maroon field), 4–5 (Ahwaz field) and 6 (Tabnak field).

above, we allow W to be Lévy-stable or lognormal. Ap-

pendix A explains that, in the first case, W is α/2-stable, to-

tally skewed to the right of zero (hence non-negative) with

scale parameter σS =
(

cosπα
4

)2/α
, unit skewness and zero

shift. The corresponding univariate pdf (probability density

function) of 1Y (x,x+ s;λl,λu) is symmetric α-stable with

zero skewness and shift. The pdf possesses heavy, power-

law tails. In the second case W 1/2
= eV , where V is zero-

mean Gaussian with variance σ 2
V = (2−α)

2. This renders

W 1/2
≡ 1 when α = 2 and its pdf increasingly skewed to the

right as α diminishes. The corresponding univariate NLN pdf

of1Y (x,x+ s;λl,λu) possesses heavier tails than the expo-

nential tails of the Gaussian to which NLN tends asymptot-

ically as α increases toward 2. Whereas α-stable variables

do not possess finite moments of order ≥ α, all moments

of NLN variables are finite. Parameters of the variogram

characterizing the underlying Gaussian field are estimated

through ML model calibration, as detailed in Sect. 7 for the

two types of subordinators we consider.

4 Frequency distributions of neutron porosity data

Figure 1 shows how the neutron porosity data vary with depth

in Wells 1, 4, 5 and 6. Frequency distributions of deviations,

P ′ = P−Pa, from average values, Pa, in Wells 1, 4 and 6 are

plotted on arithmetic and semi-logarithmic scales in Fig. 2.

The empirical frequency distributions exhibit sharp peaks,

asymmetry and slight bimodality. Also shown in Fig. 2 are

ML fits of a Gaussian and two sub-Gaussian pdfs to the em-

pirical frequency distributions. Figure 1 shows that neutron

porosity values in Well 6 exhibit greater variability than in

other wells. This could be due to a larger carbonate content

in formations penetrated by Well 6 than in those penetrated

by other wells (see Sect. 2), rendering the former more het-

erogeneous than the rest.
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Figure 2. Frequency distributions on arithmetic and semi-

logarithmic scales of P ′ = P −Pa in (a, b) Well 1 (Maroon field),

(c, d) Well 4 (Ahwaz field), and (e, f) Well 6 (Tabnak field). Also

shown are ML fits of Gaussian (dashed), α-stable (solid red), and

NLN (black solid) pdfs.

ML fits to Gaussian and α-stable pdfs is accomplished

with a code developed by Nolan (2001) and to NLN using

a code we have written in Matlab. The quality of these fits

is variable; in the case of Well 1, the NLN model is seen to

fit the empirical frequency distribution slightly better than do

the other two models but, in the case of Well 6, the α-stable

model is seen to be best and Gaussian model worst. Formal

Kolmogorov–Smirnov (KS), χ2 and Shapiro–Wilk tests con-

ducted on some of the data tend to reject the Gaussian model

at a significance level of 0.05.

5 Frequency distributions of neutron porosity

increments

Rather than presenting results in terms of lag s we report

them below in terms of normalized (by 1z) integer values,

sn. Figure 3 shows how increments1P (sn) at three different

normalized lags (sn = 1, 32, 1024) vary with sequential (in-

teger) vertical position in Wells 1 (Maroon field), 4 (Ahwaz

field) and 6 (Tabnak field).

Frequency distributions of 1P (sn) at the same three lags

in Wells 1 and 4 are plotted on semi-logarithmic scale in

Fig. 4. The empirical frequency distributions exhibit pro-

nounced symmetry with sharp peaks and heavy tails, which

decay toward Gaussian shapes as lags increase. At all lags,

the empirical frequency distributions of increments are rep-
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Figure 3. Increments 1P (sn) of P at normalized lags sn = 1 (s =

0.15 m), 32 (s = 4.80 m), and 1024 (s = 153.60 m) versus sequen-

tial (integer) vertical position in (a–c) Well 1 (Maroon field), (d–f)

Well 4 (Ahwaz field), and (g–i) Well 6 (Tabnak field).
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Figure 4. Frequency distributions of increments 1P (sn) of P at

normalized lags sn = 1 (s = 0.15 m), 32 (s = 4.80 m), and 1024

(s = 153.60 m) in (a–c) Well 1 (Maroon field) and (d–f) Well 4 (Ah-

waz field). Also shown are ML fits of Gaussian (dashed), α-stable

(solid, red), and NLN (black, solid) pdfs.

resented quite closely by α-stable and NLN models fitted to

them by ML. Negative log likelihood (NLL) measures of best

fit associated with these two models as well as values of the

Kashyap (1982) information criterion, KIC, demonstrate that

they fit the empirical frequency distributions equally well

(not shown). The same is true for all increments in all other

wells. Frequency distributions of 1P (sn) plotted for two

normalized lags in Well 6 (Fig. 5) are likewise symmetric

with sharp peaks and heavy tails which, however, do not de-

cay with lag. Empirical frequency distributions of 1P (sn)

 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-30 -15 0 15 30

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-100 -80 -60 -40 -20 0 20 40 60 80

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-100 -80 -60 -40 -20 0 20 40 60 80

sn = 1

(a) (b)



Well 6 Well 6

 sn = 1024

p
d
f

p
d
f

P(sn) P(sn) 

NLN

normal

-stable

Figure 5. Frequency distributions of increments 1P (sn) of P at

normalized lags sn = 1 (s = 0.15 m) and 1024 (s = 153.60 m) in

Well 6 (Tabnak field). Also shown are ML fits of Gaussian (dashed),

α-stable (solid, red), and NLN (black, solid) pdfs.

0.0

5.0

10.0

1 10 100 1000 10000

0.5

1.0

1.5

2.0

1 10 100 1000 10000

(a) (b)
̂

Vertical lag, sn Vertical lag, sn

̂



Well 2

Well 1 

Well 3

 Well 1+2+3 



Well 2

Well 1 

Well 3

 Well 1+2+3 
Well 4
Well 5
Well 6

Well 4
Well 5
Well 6

Figure 6. ML estimates α̂ and σ̂ of stability and scale parameters,

respectively, characterizing α-stable distribution models of incre-

ments 1P (sn) of P in all wells versus normalized lag.

in Well 6 are represented equally well by α-stable and NLN

models.

Figure 6 shows how estimates α̂ and σ̂ of stability and

scale parameters, respectively, characterizing α-stable distri-

bution models (see Appendix A) of neutron porosity incre-

ments in all wells vary with normalized lag. Estimates α̂ of

the stability index, α, in Wells 1–3 (Maroon field) and 4–5

(Ahwaz field) exceed 1 and increase asymptotically toward 2

with increasing lag, confirming that the increments become

Gaussian at large lags. In Well 6 (Tabnak field) α̂ fluctu-

ates around a value that exceeds 1 by a small amount. Es-

timates σ̂ of the scaling index σ , which measures the width

of the α-stable distribution, first increase with lag and then

stabilize in all wells. All these behaviors are consistent with

sub-Gaussian random fields associated with α-stable subor-

dinators; whether or not α does or does not grow with lag

depends on how these fields are generated (see Riva et al.,

2013c; Neuman et al., 2013). We do not show but note that

parameters of NLN distribution models fitted to the incre-

ments also vary with lag in a way that renders them asymp-

totically Gaussian at large lags, with the exception of Well 6.

6 Statistical scaling of neutron porosity increments

Next we analyze the scaling behavior of sample structure

functions, S
q
N (sn), of order q defined in Eq. (1). Figure 7

shows how such structure functions of orders q = 0.5, 1.0

and 2.0 vary with sn in Wells 1 (Maroon) and 6 (Tabnak).

Log–log regression lines fitted to the data separately at verti-

cal distance scales sn< 10 and sn> 12 suggest, at relatively

high levels of confidence (coefficients of determination, R2,
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Figure 7. S
q
N
(sn) versus normalized lag for q = 0.5, 1.0, and 2.0

in Wells 1 (Maroon) and 6 (Tabnak). Red dashed line demarcates

breaks in power-law scaling regimes. Logarithmic-scale regression

lines and corresponding power-law relations between S
q
N
(sn) and

sn are given in (a) for Well 1 at sn< 10, (b) Well 1 at sn> 12, (c)

Well 6 at sn< 10, and (d) Well 6 at sn> 12.

ranging from 0.98 to 0.99 at sn< 10 and from 0.89 to 0.99 at

sn> 12), that S
q
N (sn) varies as a power of sn in each of these

two scale ranges. Power-law exponents are larger at small

(sn< 10) than at large (sn> 12) lags. We thus have a cross-

over between two diverse power-law regimes at distance

scales 1.5–1.8 m delineated in Fig. 7 by a dashed red line.

We interpret the power-law scaling of S
q
N (sn) with sn< 10

representing variability within, and that at sn> 12 variability

between, sedimentary layers at each site. Similar dual power-

law scaling behavior is exhibited by structure functions of in-

crements from Wells 2–5 (not shown). The identification of

layers of diverse geomaterials is related to depositional pro-

cesses which take place over time in any sedimentary basin of

the kind we deal with here. Dashtian et al. (2011) concluded

that these formations are layered based on complete suites

of well logs at each of the three sites. We note further that a

similar dual-scaling phenomenon has recently been reported

by Siena et al. (2014) vis-á-vis porosities and specific sur-

face areas imaged using X-ray computer microtomography

throughout a millimeter-scale block of Estaillades limestone,

at a spatial resolution of 3.3 µm, as well as Lagrangian veloc-

ities computed by solving the Stokes equation in the sample

pore space.

Following the most recent examples of Guadagnini et

al. (2013, 2014) we use the method of moments described

in Sect. 3 to obtain estimates, Ĥw and Ĥb, of Hurst scal-

ing exponents, Hw and Hb, characterizing the within- and

between-layers scaling behaviors of neutron porosity incre-

ments, respectively, in each well. Ĥw and Ĥb are set equal to

the slopes, ξw(q = 1) and ξb(q = 1), of regression lines fitted

to S1
N (sn) on log–log scale at sn< 10 and sn> 12, respec-

tively. Values of these estimates are listed, for all six wells,

Table 2. Method of moments estimates of H for porosity incre-

ments at sn< 10 (denoted by subscript w) and sn> 12 (subscript b).

Well Ĥw Ĥb

1 (Maroon field) 0.86 0.10

2 (Maroon field) 0.87 0.08

3 (Maroon field) 0.85 0.11

4 (Ahwaz field) 0.70 0.11

5 (Ahwaz field) 0.66 0.16

6 (Tabnak field) 0.75 0.17
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Figure 8. S
q+1
N

vs. S
q
N

for q = 1, 2 and 3 in Wells 1 (Maroon) and

6 (Tabnak). Logarithmic-scale regression lines and corresponding

power-law relations between S
q+1
N

and S
q
N

are given in (a) for Well

1 at sn< 10, (b) Well 1 at sn> 12, (c) Well 6 at sn< 10, and (d)

Well 6 at sn> 12.

in Table 2. As Ĥw > 1/α̂ and Ĥb� 1/α̂ in all cases, we con-

clude that whereas intra-layer variability is persistent (large

values tend to follow large values and small values tend to

follow small values), inter-layer variability is strongly an-

tipersistent (small and large values tend to alternate rapidly).

The latter is likely a manifestation of strong variations in en-

vironments responsible for the deposition of alternating sed-

imentary layers.

As no theory other than ours (Siena et al., 2012; Neuman et

al., 2013) is known to explain extended self-similarity (ESS)

of variables that do not necessarily satisfy Burger’s equation

(Chakraborty et al., 2010), demonstrating that 1P (sn) sat-

isfy ESS is akin to verifying that these data conform to our

theoretical scaling framework. That this is indeed the case

becomes evident upon examining the high-confidence (R2
=

0.91–0.99) straight-line relationships between log S
q+1
N and

log S
q
N , and corresponding power-law relationships between

S
q+1
N and S

q
N , at sn< 10 and sn> 12 in Fig. 8 for q = 1, 2

and 3 in Wells 1 (Maroon) and 6 (Tabnak). Similar ESS rela-

tionships hold (not shown) in Wells 2–5.
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Figure 9. ξw(q) and ξb(q) evaluated as functions of q by the

method of moments (M) and ESS in (a) Well 1 at sn< 10, (b) Well

1 at sn> 12, (c) Well 6 at sn< 10, and (d) Well 6 at sn> 12.

Our next step is to compute functional relationships be-

tween power exponents ξw(q) and ξb(q), and the order q,

of structure functions that scale as power laws of lag. In the

method of moments these powers are the slopes of regres-

sion lines fitted to log–log plots of S
q
N (sn) versus sn, such as

those depicted in Fig. 7. In the case of ESS we use ξw(q = 1)

and ξb(q = 1), determined by the method of moments, as ref-

erence values for the sequential computation of ξw(q) and

ξb(q) at q > 1 based on known power-law relationships be-

tween S
q+1
N and S

q
N , such as those given in Fig. 8. Corre-

sponding plots of ξw(q) and ξb(q) as functions of q, eval-

uated by the method of moments and ESS in Wells 1 and

6 at sn< 10 and sn> 12, are presented in Fig. 9. Results ob-

tained by the two methods are, for the most part, very similar.

With the exception of ξw(q) at sn< 10 in Wells 1, 2, and 3

(Maroon field), in all cases (including those corresponding

to Wells 2–5, which we do not show) ξw(q) and ξb(q) de-

lineate convex functions that fall below straight lines having

slopes Ĥw and Ĥb, respectively, which pass through the ori-

gin. Tradition has it that whereas such straight lines are char-

acteristic of monofractal (self-affine, additive) random fields,

nonlinear variations of power exponents such as those exhib-

ited by ξw(q) and ξb(q) in Fig. 9 are symptomatic of (multi-

plicative) multifractals. Yet we have seen that the data in this

paper conform to a statistical scaling theory in which the un-

derlying random fields are subordinated to truncated versions

of monofractal fBm or fGn. As we have previously demon-

strated theoretically (Neuman, 2010, 2011; Neuman et al.,

2013) and computationally (Guadagnini et al., 2012), non-

linear scaling of such data is nothing but a random artifact of

sampling from similar fields.

7 Estimation of variogram parameters

We saw that our analysis supports treating the neutron poros-

ity data from each well as a random sample from a sta-

tionary sub-Gaussian random field subordinated to tfBm or

tfGn. Our previous ML fits of univariate α-stable and NLN

pdf models to neutron porosity increments in each well have

yielded estimates of all distributional parameters character-

izing these models. We also found the data to exhibit dif-

ferent modes of scaling at sn< 10 and sn> 12 and obtained

estimates of H for each of these two ranges of lags. All

that remains to fully characterize the multivariate random

fields, 1Y (x,x+ s;λl,λu), which we take to underlie the

incremental data, is to estimate the parameters A, λl and λu

(and, optionally, H) of TPVs corresponding to sn< 10 and

sn> 12. We do so next for each of the two subordinators we

consider.

Assuming first that neutron porosity increments in each

well are α-stable, one can estimate the scale parameter

σ (s;λl,λu) of their distribution at any lag, s, from the theo-

retical relationship (Samorodnitsky and Taqqu, 1994)

σ̂ (s;λl,λu)=
√
γG (s;λl,λu). (9)

Here we employ this relationship separately for normalized

lag ranges sn< 10 and sn> 12. We saw earlier that structure

functions of neutron porosity data in both lag ranges, includ-

ing second-order structure functions, can be closely repre-

sented in each well by power laws. In other words, the TPVs

within these lag ranges are effectively PVs. We recall that

this happens in the limits as λl and λu tend, respectively, to

zero and infinity. We note further that λl should be a fraction

of the measurement scale. In our case, the measurement scale

can be considered as smaller than the 0.15 m data resolution

scale (in Well 6 data resolution is 0.07 m). When compared

to the much larger length scale of each borehole (on the or-

der of 103 m), λl is negligibly small and can be disregarded.

Accordingly, we set λl = 0 and λu to a sufficiently large num-

ber to ensure that the TPV γG (s;λl,λu) reduces, within both

working lag ranges, to the PV γ (s)= Bs2H . Then, in a man-

ner analogous to that outlined most recently by Guadagnini

et al. (2013, 2014), we obtain ML estimates Â of A in two

ways: once by adopting corresponding method-of-moment

estimates Ĥw and Ĥb from Table 2 and once by estimating

the latter jointly with A. Both sets of estimates are obtained

upon fitting the theoretical PV γ (s)= Bs2H to sample scale

parameters σ̂ (sn) such as those plotted versus sn in Fig. 7b.

The fits are depicted graphically in Fig. 10 for Wells 1 and 6.

The corresponding parameter estimates and 95 % confidence

limits are listed, for all wells and both lag ranges, in Table 3.

The two sets of estimates lie within each other’s 95 % confi-

dence intervals, implying that they are equally reliable.

Next we consider the case where neutron porosity incre-

ments in each well are NLN. Due to finiteness of all (statisti-

cal) moments associated with this model, structure functions

of order q = 2 in Fig. 7 coincide with twice the variogram of
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Table 3. Estimates Â of A given estimates Ĥ ofH from Table 2, and joint estimates Â and Ĥ , of PVs with associated 95 % confidence limits

(in parenthesis) for all wells at sn< 10 and sn> 12 in the case of α-stable subordinator.

Data Â estimated using Joint estimates Â

source Ĥ from Table 2 and Ĥ

Ĥ Â Ĥ Â

Well 1 sn< 10 0.86 0.06 (0.05; 0.07) 0.87 (0.78; 0.97) 0.05 (0.02; 0.13)

Well 1 sn> 12 0.10 2.12 (1.84; 2.45) 0.14 (0.10; 0.20) 2.00 (1.66; 2.43)

Well 2 sn< 10 0.87 0.12 (0.11; 0.13) 0.91 (0.86; 0.96) 0.08 (0.04; 0.16)

Well 2 sn> 12 0.08 5.14 (4.48; 5.90) 0.10 (0.06; 0.16) 5.27 (4.56; 6.08)

Well 3 sn< 10 0.85 0.16 (0.14; 0.17) 0.89 (0.82 0.96) 0.11 (0.05; 0.23)

Well 3 sn> 12 0.11 4.02 (3.60; 4.49) 0.09 (0.06; 0.14) 4.02 (3.59; 4.51)

Well 4 sn< 10 0.70 0.21 (0.19; 0.24) 0.76 (0.70; 0.83) 0.16 (0.11; 0.23)

Well 4 sn> 12 0.11 1.80 (1.67; 1.94) 0.13 (0.11; 0.16) 1.74 (1.59; 1.90)

Well 5 sn< 10 0.66 0.18 (0.15; 0.23) 0.70 (0.53; 0.93) 0.15 (0.06; 0.37)

Well 5 sn> 12 0.16 1.36 (1.13; 1.65) 0.25 (0.22; 0.30) 0.84 (0.64; 1.11)

Well 6 sn< 10 0.75 0.09 (0.08; 0.11) 0.81 (0.70; 0.94) 0.06 (0.03; 0.14)

Well 6 sn> 12 0.17 0.86 (0.78; 0.94) 0.18 (0.15; 0.22) 0.80 (0.66; 0.96)

Table 4. Estimates Ĉ of C given estimates Ĥ ofH from Table 2, and joint estimates Ĉ and Ĥ , of PVs with associated 95 % confidence limits

(in parenthesis) for all wells at sn< 10 and sn> 12 in the case of lognormal subordinator.

Data Ĉ estimated using Joint estimates Ĉ

source Ĥ from Table 2 and Ĥ

Ĥ Ĉ Ĥ Ĉ

Well 1 sn< 10 0.86 0.52 (0.46; 0.58) 0.85 (0.75; 0.96) 0.53 (0.40; 0.70)

Well 1 sn> 12 0.10 13.22 (12.36; 14.13) 0.07 (0.05; 0.08) 17.88 (15.44; 20.70)

Well 2 sn< 10 0.87 1.35 (1.18; 1.53) 0.84 (0.74; 0.96) 1.43 (1.07; 1.92)

Well 2 sn> 12 0.08 39.31 (36.17; 42.72) 0.04 (0.03; 0.07) 55.61 (45.31; 68.24)

Well 3 sn< 10 0.85 0.87 (0.76; 1.00) 0.83 (0.72; 0.95) 0.91 (0.67; 1.25)

Well 3 sn> 12 0.11 19.96 (18.30; 21.77) 0.09 (0.06; 0.12) 24.88 (18.72; 33.06)

Well 4 sn< 10 0.70 1.09 (0.92; 1.31) 0.65 (0.52; 0.80) 1.23 (0.85; 1.80)

Well 4 sn> 12 0.11 10.02 (9.48; 10.59) 0.08 (0.07; 0.09) 13.01 (11.66; 14.52)

Well 5 sn< 10 0.66 1.59 (1.35; 1.88) 0.61 (0.50; 0.75) 1.78 (1.25; 2.53)

Well 5 sn> 12 0.16 8.69 (7.73; 9.76) 0.09 (0.08; 0.11) 16.05 (13.83; 18.61)

Well 6 sn< 10 0.76 2.52 (2.15; 2.95) 0.71 (0.60; 0.84) 2.77 (1.98; 3.89)

Well 6 sn> 12 0.17 26.90 (24.45; 29.58) 0.14 (0.11; 0.17) 37.02 (27.90; 49.11)

neutron porosity. As shown in Appendix A, the variogram of

Y ′ (x;λl,λu) is given by

γY (sn;λl,λu) =
(
µ2

w+ σ
2
w

)
γG (sn;λl,λu) , (10)

where µw and σ 2
w are defined in (Eq. A1). We replace

Eq. (10) by γY (s)= Cs
2H and fit the latter by ML to second-

order sample structure functions of porosity increments in

each well, separately for sn< 10 and sn> 12. Joint estimates

of C and H for each range of lags, as well as ML estimates

ofC based on method-of-moment estimates Ĥw and Ĥb from

Table 2, together with associated 95 % confidence intervals,

are listed in Table 4. Corresponding best fits are depicted

graphically in Fig. 11. Here again the two sets of estimates

lie within each other’s 95 % confidence intervals, implying

that they are equally reliable.

8 Frequency distributions of peaks over thresholds

Extreme value analyses of randomly varying data typically

concern block maxima (BM) and/or POTs. The number of

neutron porosity increments, 1P (sn), available to us at any

normalized lag at any well are insufficient to conduct a sta-

tistically meaningful analysis of BM. For this reason, and

for the fact that POTs provide a higher resolution of max-

ima than do BM, we focus in this paper exclusively on the

former. In way of illustration we consider absolute incre-

ments |1P (sn)| to constitute POTs whenever they exceed
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from Table 2 Ĥ
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Figure 10. Sample scale parameter square σ̂ 2 (sn) as functions of

sn (squares), ML fitted PVs (solid lines) and 95 % confidence limits

(broken curves) in Wells 1 and 6 based on (a, b) estimates Â given

estimates Ĥ from Table 2 and (c, d) joint estimates of Â and Ĥ .
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joint estimates     and  Ĉ Ĥjoint estimates     and  Ĉ Ĥ

estimates      Ĉ
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Figure 11. Sample structure functions, S2
N
(sn), of order q = 2 as

functions of sn (squares), ML fitted PVs (solid lines) and 95 % con-

fidence limits (broken curves) in Wells 1 and 6 based on (a, b) esti-

mates Ĉ given estimates Ĥ from Table 2 and (c, d) joint estimates

of Ĉ and Ĥ .

a non-negative threshold, ut, equal to the 95 % quantile of

|1P (sn)| values in a sample. This renders about 5 % of all

sampled |1P (sn)| values of POTs. Figure 12 identifies POTs

associated with sequences of porosity increments depicted in

Fig. 3.

In each well, sample autocorrelation of non-overlapping

neutron porosity increments at diverse normalized lags di-

minishes rapidly with the number, n, of these normalized

increments (not shown), in line with theoretical expressions

(18)–(20) of Neuman (2010). We expect autocorrelations be-

tween POTs to be weaker, possibly justifying a represen-

tation of their frequency distributions by GPDs (see Ap-

pendix B) which, theoretically, apply to independent identi-
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Figure 12. POTs of absolute increments |1P (sn)| at normalized

lags sn = 1, 32, and 1024 versus sequential (integer) vertical posi-

tions in (a–c) Well 1 (Maroon), (d–f) Well 4 (Ahwaz), and (g–i)

Well 6 (Tabnak).

Table 5. POT sample sizes and Kolmogorov–Smirnov p values as-

sociated with three lags in various wells.

Well No. of No. of p value

sn no. samples POT samples (KS test)

1 3566 177 0.240

2 4048 202 0.994

1 3 2944 147 0.706

4 3881 194 0.437

5 6948 208 0.970

6 4265 213 0.788

1 3535 177 0.612

2 4017 201 0.199

32 3 2913 146 0.394

4 3850 191 0.426

5 6917 208 0.313

6 4203 210 0.215

1 2543 126 0.089

2 3025 151 0.530

1024 3 1921 96 0.928

4 2858 143 0.473

5 5925 178 0.072

6 2219 111 0.590

cally distributed (iid) variables. To test this, we plot in Fig. 13

quantile–quantile (Q–Q) plots of GPD fits to frequency dis-

tributions of POTs identified in Fig. 12. Included in Fig. 13

are 95 % confidence intervals of these fits and p values of

KS goodness-of-fit tests. A list of POT sample sizes and p

values associated with the same three lags in all wells is pro-

vided in Table 5. The p value is the probability of obtaining

given data when a null hypothesis is true. As all p values in
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Figure 13. Quantile–quantile plots of GPD fits to frequency distri-

butions of POTs of porosity increments at normalized lag sn = 1,

32 and 1024 in (a–c) Well 1 (Maroon), (d–f) Well 4 (Ahwaz), and

(g–i) Well 6 (Tabnak). Also shown are a line of unit slope (solid),

95 % confidence intervals (dashed), and p values of Kolmogorov–

Smirnov tests.

Table 6. Method of moments estimates of H for POTs at sn< 10

(denoted by subscript w) and sn> 12 (subscript b).

Well Ĥw Ĥb

1 (Maroon field) 0.84 0.02

2 (Maroon field) 0.83 0.0001

3 (Maroon field) 0.80 0.06

4 (Ahwaz field) 0.61 0.03

5 (Ahwaz field) 0.60 0.02

6 (Tabnak field) 0.71 0.11

Table 5 exceed 0.05, one cannot reject (at a significance level

of 0.05) the null hypothesis that all POTs have GPDs.

Figure 14 shows variations of best fit GPD shape (ξPOT,

governing the tail behavior of the distribution) and scale

(σPOT, governing the spread of the distribution) parameters

with normalized lag, and corresponding 95 % uncertainty

bounds, in the same wells as in Fig. 13. With the exception of

Well 6 in which ξPOT first diminishes with lag and then sta-

bilizes, this parameter fluctuates but does not vary system-

atically with lag. The same applies to the shape parameter

of each fitted GPD. However, σPOT in all wells increases as

a power of lag before stabilizing at larger lags, as does the

scale parameter of α-stable distributions fitted to all neutron

porosity increments in Fig. 6b.

9 Statistical scaling of peaks over thresholds

We end our analysis by exploring the scaling behavior of q-

order sample structure functions of POT in absolute incre-

ments
∣∣1PPOT,j (sn)

∣∣. Following Eq. (1), these sample struc-
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Figure 14. Variations of best fit GPD shape (ξPOT) and scale (σPOT)

parameters with normalized lag in (a, b) Well 1 (Maroon), (c, d)

Well 4 (Ahwaz), and (e, f) Well 6 (Tabnak). Also shown are 95 %

uncertainty bounds.

ture functions are defined as

S
q
NPOT

(sn)=
1

NPOT (sn)

NPOT(sn)∑
j=1

∣∣1PPOT,j (sn)
∣∣q , (11)

where NPOT (sn) is the number of POTs at normalized lag sn.

We do so as we did earlier for all increments, according to

the methodology summarized in Sect. 3. Figure 15 depicts

variations of S
q
NPOT

(sn) with normalized lag for q = 0.5, 1.0,

and 2.0 in Wells 1 (Maroon) and 6 (Tabnak). A red dashed

line in the figure demarcates cross-over between two diverse

power-law scaling regimes at sn< 10 and sn> 12. Included

in Fig. 15 are logarithmic-scale regression lines and corre-

sponding power-law relations between S
q
NPOT

(sn) and sn in

each well and scaling regime. The scaling behavior in Fig. 15

is similar to that shown previously for all (unfiltered) porosity

increments in Fig. 7. Corresponding estimates of Hurst ex-

ponent are listed in Table 6; these too differ little from those

obtained earlier for all porosity increments (Table 2) with the

exception of estimates Ĥb which are consistently lower than

those associated with unfiltered increments. Like the latter

(Fig. 8), POTs exhibit ESS at all lags in the scaling intervals

sn< 10 and sn> 12 (not shown).

Our final step is to compute functional relationships be-

tween power exponents ξw(q) and ξb(q), and the order q, of

POT structure functions that scale as power-laws of lag. We
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Figure 15. S
q
NPOT

(sn) versus normalized lag for q = 0.5, 1.0, and

2.0 in Wells 1 (Maroon) and 6 (Tabnak). Red dashed line demarcates

breaks in power-law scaling regimes. Logarithmic-scale regression

lines and corresponding power-law relations between S
q
NPOT

(sn)

and sn are given in (a) for Well 1 at sn< 10, (b) Well 1 at sn> 12,

(c) Well 6 at sn< 10, and (d) Well 6 at sn> 12.

do so as we did previously for unfiltered porosity increments.

Corresponding plots of ξw(q) and ξb(q) as functions of q,

evaluated by the method of moments and ESS in Wells 1 and

6 at sn< 10 and sn> 12, are presented in Fig. 16. Results ob-

tained by the two methods are again, for the most part, very

similar. Similar behavior has been shown by us elsewhere

(Guadagnini et al., 2012) to be consistent with increments

sampled from random fields subordinated to tfBm or tfGn.

10 Conclusions

After showing that neutron porosity data from six deep bore-

holes in three geologic environments have statistical scaling

properties characteristic of samples from scale mixtures of

truncated fractional Brownian motion (tfBm) or fractional

Gaussian noise (tfGn), we used these data to explore the sta-

tistical behavior of extreme porosity increments, the absolute

values of which exceed certain thresholds. We expect our re-

sults to hold for many earth, environmental and other vari-

ables that were shown elsewhere to possess similar statistical

scaling properties. These results include the following:

1. The frequency distributions of neutron porosities in any

well, or group of wells in any one of the three geo-

logic environments, are non-Gaussian with sharp peaks,

asymmetry and slight bimodality.

2. The frequency distributions of neutron porosity incre-

ments in any well, or group of wells at one of the three

sites, are zero-mean symmetric with heavy tails that de-

cay with increasing vertical separation distance or lag.

At all lags, the distributions are represented closely by
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Figure 16. ξw(q) and ξb(q) evaluated for POTs as functions of q by

M and ESS in (a) Well 1 at sn< 10, (b) Well 1 at sn> 12, (c) Well

6 at sn< 10, and (d) Well 6 at sn> 12.

either α-stable or normal–lognormal probability density

models that tend to Gaussian with increasing lag.

3. Order q structure functions of absolute neutron poros-

ity increments grow approximately as positive powers

ξw (q) of normalized lag, sn, at sn< 10 and as much

smaller positive powers, ξb (q), of sn at sn> 12. We in-

terpret this dual power-law scaling to represent within-

or intra-layer variability at sn< 10 and between- or

inter-layer variability at sn> 12. Values of ξw (q = 1)

and ξb (q = 1) provide method-of-moment estimates of

Hurst exponents Hw and Hb for these two power-law

scaling ranges, respectively.

4. Structure functions of absolute neutron porosity incre-

ments exhibit extended self similarity (ESS) at all nor-

malized lags within both power-law scaling ranges,

sn< 10 and sn> 12.

5. Values of power-law exponents ξw(q) and ξb(q) asso-

ciated with absolute neutron porosity data, computed

by the method of moments and by ESS, are for the

most part very similar. Whereas such nonlinear scaling

of power-law exponents has traditionally been viewed

as a hallmark of multifractality (or, more recently, of

fractional Laplace motion), we find the neutron poros-

ity data in this paper to behave in a way fully con-

sistent with that of samples from sub-Gaussian ran-

dom fields subordinated to truncated (monofractal, self-

affine, Gaussian) fractional Brownian motion or frac-

tional Gaussian noise. The latter is the only view known

to be theoretically consistent with ESS in the case of

data, such as those considered here, that do not neces-

sarily satisfy Burger’s equation.

6. Our method of interpretation allows one to fully char-

acterize the sub-Gaussian random field that underlies a
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given set of data by estimating the parameters of corre-

sponding (generally truncated) power variograms.

7. The autocorrelation of neutron porosity increments

diminishes rapidly with the number, n, of non-

overlapping increments in a separation distance (lag).

This helps explain why sample distributions of peaks

over thresholds (POTs, taken here to be absolute incre-

ments which exceed their 95 % quantile) are described

reasonably well by a generalized Pareto distribution

(GPD) model, which in theory applies to iid extrema.

Whereas GPD shape parameter estimates do not show

systematic variations with lag except in one well, cor-

responding estimates of GPD shape parameters tend

to increase as a power of small lags and stabilize at

larger lags. The same happens with scale parameters

of α-stable distributions fitted to all (unfiltered) neutron

porosity increments.

8. In all other respects, POTs show statistical scaling very

similar to that of unfiltered increments. Estimates of

POT Hurst exponents are very close to those obtained

for unfiltered increments, with the exception of Ĥb, that

are consistently lower than those associated with unfil-

tered increments. Such nonlinear scaling is consistent

with our method of interpreting the data. To our knowl-

edge, this is the first documented example of POT sta-

tistical scaling interpreted on the basis of sub-Gaussian

theory. We are not aware of any known theoretical rea-

son why statistics of POT increments would necessarily

scale in a manner similar to that of their parent popula-

tion, as they do here.
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Appendix A

Let 1Y(x,x+ s)=W 1/21G(x,x+ s), where x is a spatial

(or temporal) coordinate, s ≥ 0 is lag,W 1/2 is a random vari-

able acting as subordinator, and 1G is a zero-mean Gaus-

sian random field of increments with pdf (probability density

function) f1G(1g) and variance σ 2
1G dependent on lag,1G

and W 1/2 being statistically independent of each other at all

lags. In this paper we consider W to be either Lévy-stable or

lognormal.

In the first case (e.g., Samorodnitsky and Taqqu, 1994) W

is α/2-stable, totally skewed to the right of zero (hence non-

negative) with scale parameter σS =
(
cos πα

4

)2/α
, unit skew-

ness and zero shift. The corresponding pdf of 1Y is sym-

metric α-stable with zero skewness and shift. In the second

case we follow Neuman (2011) and Guadagnini et al. (2012)

by setting W 1/2
= eV , where V is zero-mean Gaussian with

variance σ 2
V = (2−α)

2, yielding the following respective

mean and variance expressions for W 1/2,

µw = exp(σ 2
V /2) and σ 2

w = exp
(
σ 2
V

) [
exp

(
σ 2
V

)
− 1

]
.

(A1)

Correspondingly, the pdf of 1Y is

f1Y (1y)=

∞∫
−∞

1

|u|
fU (u)f1G

(
1y

u

)
du, (A2)

where U =W 1/2, and u= w1/2. Since U =W 1/2 > 0 one

has

f1Y (1y)=

∞∫
0

1

u
fU (u)f1G

(
1y

u

)
du. (A3)

As 1G∼N(0,σ 2
1G) and U =W 1/2

∼ lnN(0,σ 2
V ),

Eq. (A3) becomes

f1Y (1y)=
1

2πσV

∞∫
0

1

u2
e
−
1y2

2u2 · e
−
(lnu−lnσ1G)

2

2σ2
V du. (A4)

This is the normal–lognormal (NLN) pdf we refer to in

the text. In it σ1G plays the role of a scale parameter, and

σV of a shape factor. Letting σV → 0 is tantamount to let-

ting Eq. (A4) converge to a normal density f1Y (1y)=

1
√

2πσ1G
e
−
(1y)2

2σ2
1G . The larger is σV the heavier are the tails

and the sharper is the peak of the NLN distribution. Fitting

Eq. (A4) by maximum likelihood (ML) to sample frequency

distributions of 1Y allows one to estimate σ 2
1G and σ 2

V ,

which in turn allows one to estimate µw and σ 2
w according

to Eq. (A1). The variance of 1Y is σ 2
1Y =

(
µ2

w+ σ
2
w

)
σ 2
1G

and the variogram of Y ′ is

γY (s)=
1

2
E
[
(1Y(x,s))2

]
= E

[(
W 1/2

)2
]

·
1

2
E
[
(1G(x,s))2

]
=

(
σ 2

w+µ
2
w

)
γG (s) , (A5)

where γG (s) is the variogram of G′. Once µw and σ 2
w have

been estimated by maximum likelihood on the basis of 1Y

data as described above, fitting Eq. (A5) to corresponding

second-order sample structure functions allows one to esti-

mate all parameters of γG (s).

In case G′ has a power variogram, γG (s)= Bs
2H , of the

kind we consider in the manuscript so does Y ,

γY (s)=
(
σ 2

w+µ
2
w

)
γG (s)= Cs

2H , (A6)

where C is a coefficient. Fitting Eq. (A6) to second-order

sample structure functions of corresponding increments al-

lows one to estimate C and H .

Appendix B

In this work empirical distributions of POTs (peaks over

thresholds) of absolute neutron porosity increments at nor-

malized lag sn, |1P (sn)|, are shown to fit well-known two-

parameter generalized Pareto distributions (GPDs). A GPD

is described in terms of the following cumulative distribution

function (CDF):

H(y)= 1− (1+ y ξPOT/σPOT)
−1/ξPOT ,

y = |1P (sn)| − ut > 0 (B1)

where ξPOT and σPOT are the shape and scale parameters, re-

spectively, governing tail behavior and spread of the distribu-

tion; and ut is the predetermined threshold. Equation (B1) re-

duces to a Pareto (type-II) distribution when ξPOT> 0, an ex-

ponential distribution when ξPOT = 0 and a generalized beta

distribution (of the first kind) when ξPOT< 0 (Arnold, 2008).
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Vuković, M. and Soro, A.: Determination of hydraulic conductivity

of porous media from grain-size composition, Water Resources

Publications, ISBN:0-918334-77-2, 1992.

Wen, X.-H. and Gómez-Hernández, J. J.: Numerical modeling of

macrodispersion in heterogeneous media – a comparison of

multi-Gaussian and non-multi-Gaussian models, J. Contam. Hy-

drol., 30, 129–156, doi:10.1016/S0169-7722(97)00035-1, 1998.

West, M.: On scale mixtures of normal distributions, Biometrika,

74, 646–648, doi:10.1093/biomet/74.3.646, 1987.

Western, A. W., Blöschl, G., and Grayson, R. B.: Toward capturing

hydrologically significant connectivity in spatial patterns, Water

Resour. Res., 37, 83–97, doi:10.1029/2000WR900241, 2001.

Willems, P.: Compound intensity/duration/frequency-relationships

of extreme precipitation for two seasons and two storm types,

J. Hydrol., 233, 189–205, doi:10.1016/S0022-1694(00)00233-X,

2000.

Yu, P. S., Yang, T. C., and Lin, C. S.: Regional rainfall intensity

formulas based on scaling property of rainfall, J. Hydrol., 295,

108–123, doi:10.1016/j.jhydrol.2004.03.003, 2004.

Zinn, B. and Harvey, C. F.: When good statistical models of

aquifer heterogeneity go bad: A comparison of flow, disper-

sion, and mass transfer in connected and multivariate Gaus-

sian hydraulic conductivity fields, Water Resour. Res., 39, 1051,

doi:10.1029/2001WR001146, 2003.

www.hydrol-earth-syst-sci.net/19/729/2015/ Hydrol. Earth Syst. Sci., 19, 729–745, 2015

http://dx.doi.org/10.1029/Jd092id08p09693
http://dx.doi.org/10.1140/epjst/e2012-01568-4
http://dx.doi.org/10.5194/hess-16-29-2012
http://dx.doi.org/10.5194/hess-16-29-2012
http://dx.doi.org/10.1103/PhysRevE.90.023013
http://dx.doi.org/10.1140/epjst/e2012-01566-6
http://dx.doi.org/10.1061/(Asce)1084-0699(2005)10:6(437)
http://dx.doi.org/10.1190/1.1925744
http://dx.doi.org/10.1029/2001WR000372
http://dx.doi.org/10.1002/wrcr.20352
http://dx.doi.org/10.1029/2009wr008257
http://dx.doi.org/10.1016/S0169-7722(97)00035-1
http://dx.doi.org/10.1093/biomet/74.3.646
http://dx.doi.org/10.1029/2000WR900241
http://dx.doi.org/10.1016/S0022-1694(00)00233-X
http://dx.doi.org/10.1016/j.jhydrol.2004.03.003
http://dx.doi.org/10.1029/2001WR001146

	Abstract
	Introduction
	Source of neutron porosity data
	Theoretical basis and method of inference
	Frequency distributions of neutron porosity data
	Frequency distributions of neutron porosity increments
	Statistical scaling of neutron porosity increments
	Estimation of variogram parameters
	Frequency distributions of peaks over thresholds
	Statistical scaling of peaks over thresholds
	Conclusions
	Appendix A
	Appendix B
	Acknowledgements
	References

