

Supplement of

Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

R. G. Anderson et al.

Correspondence to: R. G. Anderson (ray.anderson@ars.usda.gov)

Supplement: Technical details on soil moisture calibration and Eddy Covariance cross checks.

3 4

1. Soil moisture calibration and water retention characteristics

5 6 To calibrate the Water Content Reflectometry probes, three ~19 L (5 U.S. gallon) water coolers 7 (Internal height 46.6 cm, internal diameter 32.8 cm) were used to calibrate each soil. We inserted 8 the probe rod vertically in the center (middle) of the experimental coolers into the soil ensuring 9 full contact with the soil. Then, the coolers were closed with their respective lids to allow the system to equilibrate before taking account of the period readings for each VWC. For the upper 10 11 40 cm of soil in each field, we determined bulk density, porosity, and soil texture (Bouyoucus, 12 1962) and soil water retention characteristics (Windy field only) with samples from 3 locations within the tower footprint. Soil water retention characteristic (from saturation point to 1 bar) 13 were determined for the Windy soil using Tempe Cells (1400 Series, Soil Moisture Equipment 14 15 Corp, Santa Barbara, California, USA). Permanent wilting point (PWP) was determined using a dew point potentiometer (WP4C, Decagon Devices, Inc., Pullman, Washington, USA). Soil 16 water depth was determined for the upper 40 cm by converting soil VWC with porosity and 17 subtracting PWP 18

19 20

21

2. Eddy Covariance instrument cross-checks and validations

22 We conducted two major cross-checks with our Eddy Covariance instrumentation. One major 23 cross-check was with our net radiometer. Net radiation is perhaps the most significant single 24 observation for ET accuracy with Eddy Covariance since it controls the scale of the energy balance correction. Because of the known sensitivity of the domeless radiometer (NR-Lite) to 25 wind (Cobos and Baker, 2003), we conducted two quality assurance evaluations to evaluate 26 potential biases in the net radiation observations. First, we plotted our daily, wind corrected, net 27 28 radiation observations against mean daily wind speed to see if there was any residual relationship 29 between wind speed and observed net radiation. Second, we compared our net radiation 30 observations to net radiation as parameterized from nearby weather stations (Table 1), inputting solar insolation, air temperature, and relative humidity observations following the ASCE 31 32 formulations for net radiation (see Appendix B in Allen et al. 2005). We compared the ASCEweather station net radiation parameterizations to observed net radiation during the mid-period to 33 34 ensure that the crop surface measured by the net radiometer was most similar to the ASCE reference surface characteristics. 35 Intercomparison of the net radiometers at the EC towers with the ASCE net radiation 36 37 parameterization did not show a greater underestimation of Rn at the Windy field compared to the Lee field (Table 2). Both slopes were within 12% of unity, with Windy's weather station 38

having a slope within 5% of unity. Bias at both stations was less than 0.5 MJ/day. We also

40 compared the residuals of daily Rn (radiometer Rn-ASCE parameterized Rn) to mean daily wind

speed. For both weather station – EC tower pairings, the slope of the relationship was not

- 42 significantly different from 0 (p>0.10). Finally, we note that, since we used the radiometer-
- 43 observed net radiation in both our EC correction and reference ET calculation, any (unlikely)
- 44 bias would bias measured and calculated reference ET in the same direction.
- 45
- 46 Table 1
- 47 This table contains weather station information for weather stations used in net radiation
- 48 intercomparison. Station instrumentation consists of an anemometer (Wind Monitor Jr., R.M.
- 49 Young, Traverse City, Michigan, USA), rain gauge (TE525, Texas Electronics, Dallas, Texas,
- 50 USA), downwelling (incoming) pyranometer (LI200X, LI-COR, Inc.), and air temperature and
- relative humidity probe (HMP35C or 45C, Vaisala). Most stations are mounted at ~10 m above
- 52 ground elevation on wooden poles near sugarcane fields. Operation, maintenance, annual
- 53 instrument calibration, and data processing for the network are contracted to an independent,
- 54 commercial company. We paired two of the weather stations (hereafter referred to as WindyWS
- and LeeWS) with the EC towers in the Windy and Lee fields respectively (Table 2). The two
- weather stations are within 1500 m of their paired EC tower, and there are no significant
- 57 topographic barriers between the weather station and EC tower.
- 58 59

Name	LeeWS	WindyWS-close	
Operator	Farm/contractor	Farm/contractor	
Latitude (°N)	20.795361	20.813333	
Longitude (°W)	156.406444	156.496694	
Elevation (m)	142	24	
Distance between WS and	1220	1360	
associated EC tower (m)			

60

61

62

- 63 Table 2: Comparison of EC tower net radiometer observations with ASCE net radiation
- 64 parameterizations from weather station observations
- 65

	Slope	Intercept	r^2	RMSE (MJ/day)	Bias (MJ/day)
WindyWS	0.99	0.33	0.89	1.16	-0.21
LeeWS	0.89	0.79	0.89	1.09	0.39

66

- 67 A second major cross check was our routine calibration and swapping of instruments. We
- 68 calibrated our infrared gas analyzers (IRGA) against EPA protocol, primary gas standards for
- ⁶⁹ zero and span (400 ppmv) concentrations (Airgas, Kahului, Hawaii). We also calibrated the
- 70 IRGA for water vapor against a dewpoint generator (Licor 610, Lincoln, Nebraska). During our

71 multiple calibrations during the experiment, we swapped the IRGA in each field with a spare

- 72 instrument in our laboratory. We also swapped the sonic anemometer heads in both fields,
- replacing the anemometer in Windy with a new instrument following a transducer failure.
- Finally, we replaced the temperature and humidity probes with freshly calibrated probes midway
- through the experiment following manufacturer's recommendations. After all of these
- instrument swaps, we did not find any observational discontinuities (with fluxes or
- 77 meteorological values) that would indicate a badly calibrated instrument. Also, the instrument
- exchanges and recalibrations eliminate the possibility of a single bad instrument or calibration
- 79 biasing the measurements.
- 80
- 81 References
- 82
- Allen, R. G., Walter, I.A., Elliott, R.L, Howell, T.A., Itenfisu, D., Jensen, M.E. and Snyder, R.L:
- 84 The ASCE standardized reference evapotranspiration equation, American Society of Civil
- Engineers, Reston, Va., 2005.

86

- 87 Bouyoucos, G. J.: Hydrometer Method Improved for Making Particle Size Analyses of Soils,
- 88 Agron. J., 54(5), 464, doi:10.2134/agronj1962.00021962005400050028x, 1962.

89

- 90 Cobos, D. R. and Baker, J. M.: Evaluation and Modification of a Domeless Net Radiometer,
- 91 Agron. J., 95(1), 177–183, 2003.

92