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Abstract. Understanding the variability of precipitation at

small scales is fundamental in urban hydrology. Here we con-

sider the case study of Warsaw, Poland, characterized by a

precipitation-monitoring network of 25 gauges and micro-

canonical cascade models as the instrument of investigation.

We address the following issues partially investigated

in literature: (1) the calibration of microcanonical cascade

model generators in conditions of short time series (i.e., 2.5–

5 years), (2) the identification of the probability distribution

of breakdown coefficients (BDCs) through ranking criteria

and (3) the variability among the gauges of the monitoring

network of the empirical distribution of BDCs.

In particular, (1) we introduce an overlapping moving win-

dow algorithm to determine the histogram of BDCs and com-

pare it with the classic non-overlapping moving window al-

gorithm; (2) we compare the 2N–B distribution, a mixed dis-

tribution composed of two normal (N) and one beta (B), with

the classic B distribution to represent the BDCs using the

Akaike information criterion; and (3) we use the cluster anal-

ysis to identify patterns of BDC histograms among gauges

and timescales.

The scarce representation of the BDCs at large timescales,

due to the short period of observation (∼ 2.5 years), is solved

through the overlapping moving window algorithm. BDC

histograms are described by a 2N–B distribution. A clear

evolution of this distribution is observed, in all gauges, from

2N–B for small timescales, N–B for intermediate timescales

and B distribution for large timescales.

The performance of the microcanonical cascades is evalu-

ated for the considered gauges. Synthetic time series are an-

alyzed with respect to the intermittency and the variability of

intensity and compared to observed series. BDC histograms

for each timescale are compared with the 25 gauges in War-

saw and with other gauges located in Poland and Germany.

1 Introduction

Urban hydrology requires access to very precise information

about the precipitation variability over small spatial and tem-

poral scales. Widespread use of surface runoff models cou-

pled to urban drainage networks increases the common re-

quest for rainfall data inputs at high temporal and spatial

resolutions. As already estimated a decade ago by Berne et

al. (2004), the necessary resolution of rainfall data as the

input in hydrological models in Mediterranean regions was

about 5 min in time and 3 km in space for urban catchments

of ∼ 1000 ha. For smaller urban catchments of ∼ 100 ha,

even higher resolutions of 3 min and 2 km were required.

Results obtained with the application of operational semi-

distributed urban hydrology models fully confirmed earlier

observations from select study cases in England and France

(Gires et al., 2012, 2013). These authors strongly recommend

the use of radar data in urban hydrology, especially in the

context of real-time control of urban drainage systems. In

particular, they opted for X band radars (whose resolution

is hectometric), as opposed to the more common C band

radars, because they are affected by less uncertainty. Addi-

tionally, Gires et al. (2012) stated that small-scale rainfall

variability under 1 km resolution cannot be neglected and

should be accounted for in probabilistic ways in the real-time

management of urban drainage systems. As a matter of fact,
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the implementation of radar techniques gained a rising pop-

ularity in major cities across the EU (for details refer to the

Thames Tideway Tunnel (TTT), 2010).

Despite the obvious benefits of radar instruments, radar

data are not always available for practical applications.

Thus, current versions of even the most advanced computer

rainfall-runoff urban drainage models do not consider radar

data as rainfall input. Therefore the only possibility of ac-

counting for spatial rainfall variability is to consider different

point time series for each subcatchment (Gires et al., 2012).

The vast majority of engineering practical calculations and

modeling of drainage systems is still associated with point

rainfall time series or their elaborations, such as intensity–

duration–frequency (IDF) curves, depth–duration–frequency

(DDF) relations or simplified design hyetographs. This ex-

plains the necessity of high temporal resolution of point

rainfall measurements in urban catchments. It should be

noted that time series at high temporal resolution (1–10 min)

with a considerable record length (at least 20–30 years) are

nowadays required, especially from the European perspec-

tive with respect to the probabilistic assessment of the urban

drainage network functioning (Schmitt, 2000; BS EN 752-3,

1997) or the probabilistic assessment of retention volumes at

hydraulic-overloaded storm-water systems (Deutsche Vere-

inigung für Wasserwirtschaft, Abwasser und Abfall e.V.,

2006).

The strategy of using local precipitation time series as

the basis of the probabilistic assessment of urban drainage

systems has two important shortcomings. In the case of lo-

cal precipitation data shortage, this strategy fails completely.

Whereas in all other situations when some local precipitation

data sets are accessible, questions and doubts about the repre-

sentativeness and reliability of data arise. First of all, we con-

sider the doubts regarding the temporal representativeness

of data: short data sets could not describe (Willems, 2013)

the multi-decadal oscillatory behavior of rainfall extremes in

storm-water outflow modeling. Other doubts regarding the

spatial representativeness of data include the recording of

rainfall time series only in a limited number of gauges in-

stalled in selected subcatchments. This results in assigning

the same time series to a group of neighboring subcatch-

ments or, in critical but not rare cases, one time series for

the whole urban drainage system, habitually collected by a

gauge installed near the airport. Sometimes in situations of

local precipitation shortage, time series from other locations

are allowed by technical guidelines (Schmitt, 2000) only if

there is compatibility in terms of annual precipitation totals

and IDF values.

Finally, since most of the modeling activity is oriented

to predict the future behavior (e.g., in the next 50 years)

of drainage systems, the mere use of historical precipitation

time series of the last 20–30 years could not be significant to

represent the future scenarios. Alternatively, the generation

of synthetic time series from precipitation models could rep-

resent probable precipitation scenarios to feed hydrodynamic

urban drainage models and take into account the uncertainty

associated with the discharge. However, it should be pointed

out that the information content of historical precipitation

records is not increased by precipitation models and synthetic

data generation, which just provide an operational basis for

the extraction of such information.

Thus, there is a strong motivation for the development

of local precipitation models at high temporal resolutions.

Many of them are based on the idea of precipitation dis-

aggregation in time. Disaggregation refers to a technique

generating consistent rainfall time series at some desired

fine timescale (e.g., 5 min resolution) starting from the pre-

cipitation at a coarser scale (e.g., daily resolution). At the

same time, as stressed by Lombardo et al. (2012), the down-

scaling techniques aim at producing fine-scale rain time se-

ries with statistics consistent with those of observed data.

A general overview of rainfall disaggregation methods is

given by Koutsoyiannis (2003). Among an ensemble of

known techniques, random cascade models, especially mi-

crocanonical cascade models (MCMs), are quite often used.

The popularity of the latter could be explained by their ap-

peal to engineering applications, the assumption of mass

conservation (i.e., rainfall depth conservation) across cas-

cade levels and straight rules for the extraction of cascade

generators from local precipitation time series (Cârsteanu

and Foufoula-Georgiou, 1996). Olsson (1998), Menabde and

Sivapalan (2000), Ahrens (2003) and Paulson and Bax-

ter (2007) provide contributions demonstrating the poten-

tiality of MCMs in rainfall downscaling. Molnar and Bur-

lando (2005) and Hingray and Ben Haha (2005) highlight

the application of MCMs in urban hydrology. Hingray and

Ben Haha (2005) apply a continuous hydrological simula-

tion to produce from synthetic rainfall series continuous dis-

charge series used afterwards for the retention design. Re-

cently, Licznar (2013) illustrates the possibility of substitut-

ing synthetic time series generated from MCMs for observed

time series of the probabilistic design of storm-water reten-

tion facilities.

Two decades of random cascade applications to precipita-

tion disaggregation has progressed the construction of gen-

erators. Quite soon the assumption of independence and

identical distribution of the cascade weight generators at all

timescales was questioned and found suitable only for a lim-

ited, rather narrow range of analyzed scales (Olsson, 1998;

Harris et al., 1998). As an alternative, Marshak et al. (1994),

Menabde et al. (1997) and Harris et al. (1998) promote the

use of the so-called “bounded” random cascade; its weights

distribution systematically evolves, decreasing the weights

variance with the reduction of timescale. In addition, Rupp

et al. (2009) suggest that microcanonical cascade weights

should not only be timescale-dependent but also intensity-

dependent. The common practice of assuming the beta distri-

bution for MCM generators is questioned by Licznar (2011a,

b), especially for sub-hourly timescales. Alternatively, MCM

generators are assumed normal–beta (N–B) distributed, with
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Figure 1. Map of 25 gauges composing the precipitation-monitoring network in Warsaw. Administrative limits of Warsaw city were marked

in black. The land use classification was made with the Urban Atlas, which provides pan-European comparable land use and land cover

data for large urban zones with more than 100 000 inhabitants (http://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-metadata).

The average density of the network is one instrument for 20.7 km2. MPS weighing-type TRwS 200E gauges were accompanied by standard

Hellman gauges for the routine control of daily precipitation totals.

the atom at 0.5, or 3N–B distributed, composed of three N

and one B distribution. For the sake of clarity, it should

be stressed that B refers solely to the distribution of MCM

generators and has nothing in common with the β model,

the simplest cascade model often known as the monofractal

model (for details refer to Over and Gupta, 1996).

Molnar and Burlando (2008) explore the variability of

MCM generators on a large data set of 10 min time resolu-

tion, including 62 stations across Switzerland. These authors

investigate seasonal and spatial variability in breakdown dis-

tributions to give indications concerning the parameters’ es-

timation of MCM in ungauged locations. To our knowledge,

there are only studies considering the large-scale variability

(i.e., among different urban areas) of MCM generators, and

there is a lack of knowledge concerning the small-scale vari-

ability (i.e., within an urban area).

It should be stressed that the fitting of cascade generators

was relatively simple but extremely data-demanding. Obser-

vational precipitation time series in high resolution usually

exceeding 20 years were unavoidable for the fit of the cas-

cade parameters. This resulted in the prevailing practice of

comparing the statistics of synthetic and observed time se-

ries. In the majority of studies, data originating from old-type

manual gauges were subject to obvious uncertainty related to

the precision of measurements as well as the resolution of

records digitization. Simultaneously, the fitting of theoreti-

cal distributions to breakdown coefficients (BDCs) was, in

almost all cases, not supported by statistical tests confirm-

ing the correctness of achieved results or by the use of some

information criteria to rank the theoretical distributions.

Keeping in mind the above discussed needs of urban hy-

drology, the current state of MCMs and severe limitations of

this rainfall disaggregation technique, the goals of our study

were the following:

1. Propose a methodology to calibrate microcanonical cas-

cade generators in conditions of short time series;

2. Identify the probability distribution of BDCs through

the use of information criterion;

3. Investigate the variability of empirical BDC distribu-

tions among a group of gauges;

4. Address the following questions of interest in urban hy-

drology: is it sufficient to use a single time series for

the probabilistic assessment of the entire urban drainage

system? Is it sufficient to fit just one MCM for the analy-

sis of the whole city area? Could we continue the prac-

tice of supplying urban rainfall-runoff models by time

series recorded outside city center by gauges located at

the airport or over rural areas?
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2 Data and methodology

2.1 Data

We used data belonging to a precipitation network of 25

gauges distributed across 517.24 km2 of Warsaw, Poland

(Fig. 1). The data set was the same used by Rupp et al. (2012)

and consisted of a 1 min precipitation (both liquid and solid)

time series recorded by electronic weighing-type gauges. All

stations, TRwS 200E of MPS system Ltd (Fig. 2), were in-

stalled and operated by the Municipal Water Supply and

Sewerage Company (MWSSC) in Warsaw. Prior to the net-

work installation, studies about the location of the stations

were done by the MWSSC to identify the configuration most

representative of the precipitation variability within the urban

area (Oke, 2006). Finding good places for the installation of

gauges was possible due to the fact that the MWSSC in War-

saw operates a vast number of local water intakes and water-

and sewage-pumping stations. Due to sanitary standards, all

these installations had to occupy terrain with green areas to

serve as buffers, e.g., for the spread of odors. In addition, all

facilities were fenced and guarded for safety reasons. There-

fore all instruments were placed on grass and the neighbor-

hood met at least the requirements of class 2 or 3 as recom-

mended by the WMO (2012). The majority of gauges (i.e.,

R1, R3, R5, R7, R8, R10, R12, R17, R18 and R19) were able

to be installed on flat, horizontal surfaces, surrounded by an

open area, thus meeting even requirements for class 1 instru-

ments. In addition, gauge R15 was installed in perfect condi-

tions on the ground at the Warsaw Fryderyk Chopin Airport.

Since the installation of the precipitation network in War-

saw was mainly motivated by the real-time control of the

drainage system, all gauges (Fig. 1) were connected to a sin-

gle data acquisition system. The accuracy of gauge measure-

ments as claimed by the manufacturer was 0.1 %, and the

data resolution was 0.001 mm for depth and 1 min for time.

As previously mentioned by Rupp et al. (2012), field tests

conducted prior to the operational use of the precipitation

network have shown good agreement between simulated and

recorded totals and have revealed a dampening/broadening of

the input signal evident over the range of a few minutes. The

last phenomenon – known as a “step response error” – was

studied in detail in laboratory conditions for different gauge

types by Lanza et al. (2005). They found that the step error of

TRwS gauge was quite small in comparison to other gauges

and equal to 3 min in laboratory conditions. Our short 15 min

field test (as displayed on Fig. 2) suggested a dampening of

the gauge-recorded signal for the first 3 min initial phase of

the generated hyetograph and the slightly longer 5 min broad-

ening at the final phase of hyetograph. Detailed discussion of

the origins of gauge step response errors is beyond the scope

of this paper and is in fact hard to realize since it is intro-

duced by the gauge’s inner microprocessor algorithm for data

processing. This algorithm is known only by the gauge man-

ufacturer and is not reported in the technical documentation.

Figure 2. Weighing-type TRwS 200E gauge during some tests (up-

per panel). Rainfall is simulated by means of a precise medical

pump. Sample of test results reporting simulated and recorded rain-

fall depths (lower panel).

In general, it could only be stated that in weighing-type elec-

tronic gauges, the weight of deposed precipitation was sam-

pled by some electronic (often piezometric) sensor with some

high temporal resolution at presumably kHz rate. Afterwards

all samples were averaged over longer time windows, un-

known to the user. This process was repeated for overlapping

time windows, and the difference of the rainfall total of adja-

cent windows was calculated to obtain the temporal rainfall

rate reported as instrument output at its recording time reso-

lution. In addition, rainfall rates were always rounded regard-

less of the magnitude of real precipitation (resulting in addi-

tional rounding errors discussed afterwards). This procedure

allowed for satisfactory smoothing of electronic sensor signal

fluctuation due to wind effects and temperature changes. It

allows for the introduction of some additional filters, cutting

sudden signal jumps due to foreign-object deposition inside

the open orifice of the gauge inner tank (e.g., falling leaves

or acts of vandalism by throwing small stones or garbage).
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Figure 3. Location of Polish and German precipitation gauges used during the comparison of Warsaw results with other studies.

In light of our personal experiences and test results of the

WMO (Lanza et al., 2005), it could be stated that reliable

precipitation recording at single minute scales by commer-

cially available gauges is still the goal to be achieved and not

a current reality. Having this in mind, as well as timescales

of previous microcanonical cascade studies concerning ur-

ban hydrology realized on time series recorded by old-type

gauges, we decided to work with the aggregated precipita-

tion time series at 5 min resolution. The technique used to

aggregate original 1 min data into 5 min time series is dis-

cussed afterwards; here we only mention that this operation

was opposite to the rainfall total differentiation for adjacent

time windows operated by the gauge microprocessor.

Despite the limited timespan of available data covering

the period from the 38th week of 2008 to the 49th week

of 2010, we believe that the Warsaw precipitation network

might support good probing ground for the variability study

in the microcanonical cascade parameters over small-scale

urban areas. In fact, the Warsaw precipitation-monitoring

network belongs to the biggest European urban gauge net-

work. Its size can be compared only with similar networks

of 25 gauges in Vienna (414.87 km2) or with 24 gauges

spread throughout Marseille (240.62 km2) and Barcelona

(100.4 km2) (see TTT, 2010).

We compare the results of our study with those related to

other Polish and German gauges. We limit our comparison to

results previously published by Licznar et al. (2011a, b) for

four gauges in Germany (gauges A, B, C and D represent

local climates of different parts of western Germany) and

one gauge in Wroclaw, Poland and yet unpublished results by

Górski (2013) for a rain gauge in Kielce, Poland (Fig. 3). Our

choice is motivated by the similarity of the used methodology

and the investigated range of timescales, as well as by the in-

dispensable accessibility to precise recordings of the BDC

histograms.

Finally, to investigate the existence of possible statistical

bias induced by the calculation of BDCs on short precipi-

tation records, we use additional data recorded by an old-

type pluviograph gauge installed previously at the current lo-

cation of gauge R7 on the ground of Lindley’s Filters sta-

tion. This pluviograph gauge was operated only in summer

months from 1 May to 31 October. Data are in the form of

15 min rainfall time series read off the original paper strips

with the resolution of 0.1 mm for depth, covering a period of

25 years (1983–2007).

2.2 Microcanonical cascade models

We use MCMs as in Licznar et al. (2011a, b). We consider the

disaggregation of precipitation totals from 1280 min (quasi

daily) into 5 min time series, assuming the branching num-

ber b equal to 2, and constructing cascades assembled from

only nine levels (n= 8, . . .,1,0) corresponding to timescales

λ= 2n from λ= 256 to λ=1 (Fig. 4). Precipitation-depth

time series generated by such cascades are the products of

the original precipitation total R0 at timescale λ= 256, mul-

tiplied by the sequence of weights at the descending cascade

levels:

Rj,k = R0

k∏
i=1

Wf (i,j),i, (1)

where j = 1,2, . . .2k − 1,2k marks the position in the time

series at the kth cascade step. The sequence of randomly
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Figure 4. Schematic diagram of a developed microcanonical cascade model with branching number b = 2.

generated weights Wf (i,j),i is steered at the following ith

cascade step by the function f (i,j), which rounds up j/2k−i

to the closest integer. The weights in the microcanonical cas-

cades are forced to sum to 1 so their pairs are always equal to

W and 1−W , whereW is a two-sided truncated random vari-

able from 0 to 1. The microcanonical assumption conserves

the mass (precipitation depth in our case) at each branch and

eliminates the risk of cascade degeneration. From an engi-

neering perspective, this means that the downscaling process

can be seen as opposite to precipitation summation realized

by Hellman gauges, recording daily totals only, and a prag-

matic solution for the generation of synthetic precipitation

time series at 5 min resolution.

In our study we do not focus our attention on the disaggre-

gation capabilities of microcanonical cascades already dis-

cussed in numerous papers. We concentrate on the small-

scale variability of their generators W among gauges con-

stituting the urban precipitation network. The obvious attrac-

tiveness of MCMs arises from the possibility of extracting

the distribution of W from data on the basis of BDC stud-

ies (Cârsteanu and Foufoula-Georgiou, 1996). By definition,

BDCs are generally calculated using non-overlapping adja-

cent pairs of precipitation time series:

BDCj,τ =
Rj,τ

Rj,τ +Rj+1,τ

j = 1,3,5, . . .,Nτ − 1, (2)

whereRj,τ is the precipitation amount for the time interval of

length τ at position j in the time series, and Nτ is the length

of time series at timescale τ . The calculation of BDCs with

respect to Eq. (2) for Warsaw gauges is conducted only for

non-zero pairs of Rj and Rj+1. Calculations are executed

at aggregated intervals of length 2nτorg, where τorg is the

original time step equal to 5 min and n is a cascade level,

increasing from 0 to 8 with increasing cascade timescales

λ from 1 to 256 (Fig. 4). Simultaneously for all analyzed

timescales, BDC couples equal to 0/1 or 1/0 (when only

one between Rj and Rj+1 is 0) are separated from resulting

data sets and their occurrence probabilities, p0(LEFT) and

p0(RIGHT), respectively, are used to estimate intermittency

probability p0:

Pr(BDCn(j)= 0 or BDCn(j + 1)= 0) (3)

= p0(LEFT)+p0(RIGHT)= p0.

The probability p0 is used within a MCM generator to take

into account the intermittency characteristic of precipitation,

forcing some portion of random weights W to be equal to 0.

The preliminary results have revealed an over-

representation of BDC values equal to 1/2 or 1/3, 2/5

and 1/4 (2/3, 3/5 and 3/4, respectively), especially for

small timescales, i.e., λ=1 and λ=2. Figure 5 (left panel)

shows an example of BDC histogram for timescale λ= 1

with evident artificial spikes. Similar phenomenon was

already reported by Rupp et al. (2009) and Licznar et

al. (2011b) and explained as the result of the instrument or

the recording precision of precipitation gauges. The mag-

nitude of observed rounding errors for Warsaw gauges is,

however, smaller than in the case of German gauges (Licznar

et al., 2011b); the precipitation depths recorded with a better

resolution of 0.001 mm still result in irregularity of BDC

distribution, induced by sharp peaks at discrete BDC values,

and hinder the identification of the theoretical distribution.

In order to correct the rounding errors, a randomization

procedure originally proposed by Licznar et al. (2011b) is

applied. This type of procedure, also known as jittering,
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Figure 5. Comparison of BDC histograms for gauge R7 and timescale λ= 1, calculated according to the non-overlapping moving window

algorithm and using original (left panel) and randomized (right panel) non-zero precipitation data. Horizontal axes show BDC range and

vertical axes show the respective frequency values.

is fundamental to the analysis of data characterized by the

presence of ties (De Michele et al., 2013). Thus, the original

1 min time series are slightly modified by adding some ran-

dom corrections to the precipitation depths exceeding zero.

Random correction values are sampled from the uniform

distribution in the range [−0.0005, 0.0005] mm, resulting in

visible BDC histogram smoothing (Fig. 5, right panel). Note

that the uniform distribution is used for the randomization of

the rounding errors because, in the absence of information,

it is the most intuitive distribution requiring less assumption

(for more details, please see Licznar et al., 2011b).

Irregularities in BDC histograms are observed for

timescales λ> 8. These are due to the decreasing sample

size, calculated from a limited timespan of accessible data

slightly exceeding 2 years. This issue is rather irrelevant in

former studies (Molnar and Burlando 2005, 2008; Licznar

et al., 2011a, b) realized on data series 10 or even 20 times

longer. To solve this issue, we apply the overlapping mov-

ing window algorithm as an alternative to the classical non-

overlapping moving window algorithm for the calculation

of BDC values. Figure 6 shows the differences between the

two algorithms for λ=1. Switching from non-overlapping to

overlapping moving window algorithm leads to an increase

of the number of time segments for the calculation of BDC

values. For time series of n data and a time window of size

m≤ n, the number of non-overlapping windows is bn/mc,

where the symbol b·c represents the integer part while the

number of overlapping windows is (n−m+ 1). For large

n�m, the overlapping moving window algorithm leads to

almost m times the number of time segments available in the

overlapping moving window algorithm. It should be stressed

that the real strength of the overlapping moving window al-

gorithm in analyzing distributions of BDC values can be ob-

served for the largest timescales. The reason is that for small

timescales most of the time segments are characterized by

zero precipitation and thus not involved in the calculation

of BDCs, whereas for larger timescales, time segments are

becoming larger and rarely characterized by zero precipita-

tion. This phenomenon arises from the fractal properties of

rainfall time series, and similar conclusions result from the

“box-counting” analysis.

It is clear that the overlapping moving window algorithm

is especially desired for limited observational data sets. How-

ever, its implementation for short time series may be charac-

terized by a poor representativeness of BDC distributions due

to multi-decadal oscillations of precipitation totals and ex-

tremes (Willems, 2013). To investigate the magnitude of the

oscillations in the BDC distributions, we use historical time

series from former old-type gauge R7 covering a 25-year pe-

riod from 1983 to 2007 at 15 min resolution. For each year,

there are only 6 months of data from May to October avail-

able. For this data set, we make the calculations of BDCs in

seven time periods. First, we calculate BDCs for the 5-year

periods 1983–1987, 1988–1992, 1993–1997, 1998–2002 and

2003–2007 using the overlapping moving window algorithm.

We consider this temporal size (5 years× 6 months= 30

months) because it is comparable to the one available for

electronic gauges. Afterwards, we repeat the same calcula-

tion with a 25-year size using both non-overlapping and over-

lapping moving window algorithms. As we work here with

a coarser resolution (15 min instead of 5 min of electronic

gauges), we perform the analysis with a smaller hierarchy of

sub-daily timescales λ’ from 1 to 32 and breakdown times

from 15 to 30 min up to 480 to 960 min. For all calculations

we perform the randomization of non-zero values. Since their

reading precision was set to 0.1 mm, we introduce a random

correction belonging to the uniform distribution in the range

of [−0.05, 0.05] mm.

To compare BDC histograms obtained for all analyzed

timescales λ and λ’, with theoretical functions, a probabil-

ity distribution assembling two truncated (with truncation

points at 0 and 1) N distributions (Robert, 1995) and one B
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Figure 6. Example showing differences between non-overlapping and overlapping moving window algorithms for the calculation of BDCs

in the case of 1 min precipitation time series and breakdown time of 5–10 min. Note that bnc means the integer part of n, where n is the total

length of 1 min precipitation time series.

symmetrical distribution is implemented. This distribution,

indicated as 2N–B distribution, has the following density

function:

p(w)= p1

{
1

σ1

√
2π
e

−(w−0.5)2

2σ2
1

}
(4)

+ (1−p1)

{
p2

{
1

B(a)
wa−1(1−w)a−1

}
+(1−p2)

{
1

σ2

√
2π
e

−(w−0.5)2

2σ2
2

}}
,

where p1 and p2 are weights characterizing the contribution

of the individual distributions within the 2N–B distribution,

σ1 and σ2 are the scale parameters of truncated N distribu-

tions and B(a) is the symmetrical B function parameterized

by a.

The fitting of 2N–B distribution parameters is performed

numerically by means of maximum likelihood estima-

tion. It is very likely that the use of the model given in

Eq. (4), governed by five parameters, can suffer from over-

parameterization in comparison to the most commonly used

B symmetrical distribution with only one parameter. Note

that the application of goodness-of-fit tests (namely the

Kolmogorov–Smirnov test or χ2 test) at 1 or 5 % levels of

significance gives negative results for both B and 2N–B dis-

tributions. This is because the large sample size of empirical

BDCs leads to the rejection of the hypothesis, even in the

case of very small differences between observed and theoret-

ical distributions, as also pointed out in Licznar et al. (2011a).

Here, we use the Akaike information criterion (AIC) as a

measure of the relative quality of 2N–B and B models for

given sets of empirical BDCs. AIC is the maximized value

of the log-likelihood function (LL) penalized by the number

of model parameters k:

AIC= 2k− 2LL. (5)

The preferred distribution is the one with the minimum

value of AIC.
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2.3 Cluster analysis

To our knowledge, until now, the variability of MCM gener-

ators among a group of gauges was investigated comparing

the value of the parameter of B distribution (Molnar and Bur-

lando, 2008). Here, we prefer to compare directly the empir-

ical distribution of BDCs instead of the parameters of the

theoretical distribution, which are possibly biased by fitting

errors. We encounter the same problems found in the imple-

mentation of statistical tests due to the large sample size. For

this we use the cluster analysis to compare the shape of BDC

histograms among the stations of the monitoring network in

Warsaw and with other Polish and German gauges.

In particular, a hierarchical clustering is used. This is a

data-mining tool applied to segment data into relatively ho-

mogeneous subgroups, or clusters, where the similarity of the

records within the cluster is maximized (Larose, 2005). Prior

to the application of the cluster analysis for each timescale

and each site, the BDC histogram is sampled in 100 points

selected at equal distance one from each other. These 100

values are the components of a vector representing the em-

pirical BDC distribution. Note that a basic requirement of

cluster analysis is the comparison of records of equal length.

As all BDC distributions are left and right truncated in the

interval (0, 1), sampling their histograms with a resolution

of 0.01 produces vectors that describe well the shape of his-

tograms. The clustering of these vectors (searching similar

sites) is operated using the Euclidean distance. It is computed

as

dEuclidean(X,Y )=

√∑
i

(xi − yi)
2, (6)

where xi and yi with i = 1, . . .,100 represent the ith compo-

nent of X and Y vectors, respectively.

The Euclidean distance is a measure of similarity, not hav-

ing, in general, a physical interpretation. Initially, in hierar-

chical clustering analysis, each vector is considered to be

a tiny cluster of its own. Then, in following steps, the two

closest clusters are aggregated into a new combined clus-

ter. By replication of this operation, the number of clusters

is reduced by one at each step and eventually sites are com-

bined into a single huge cluster. During the agglomerative

process, the distance between clusters is determined based

on single-linkage criterion. In this case, the distance between

clusters A and B is defined as the minimum distance between

any element in cluster A and any element in cluster B. This

single linkage is often termed the nearest-neighbor approach

and tends to form long, slender clusters, clearly indicating

similarities among clustered elements. As a final result of

agglomerative clustering, a treelike cluster structure (named

dendrogram) is created.

Dendrograms show similarities as well as dissimilarities

between BDC distributions among the considered sites and

they are prepared separately for all analyzed timescales.

In addition, the cluster analysis is also applied to the in-

termittency parameter, in this case comparing vectors of

eight components: the p0 value for the eight timescales λ=

1,2,4,8,16,32,64,128.

3 Results and Discussion

Results are presented relative to gauge R7 for brevity. This

station has been selected because of its localization in the

strict city center, its installation in perfect meteorological

conditions on the ground and the existence of former his-

torical rainfall records. Results for the other gauges are qual-

itatively similar to those shown for R7.

3.1 Empirical BDC distributions

BDC histograms are calculated using the non-overlapping

moving window algorithm and plotted in Fig. 7 for gauge R7

and a sequence of analyzed breakdown times. It is clearly vis-

ible that, despite the randomization procedure that removes

pronounced peaks of histograms at certain specific BDC val-

ues, like 0.5 or 1/3, 2/5, 1/4 and 2/3, 3/5, 3/4, respectively

(Fig. 5), the plots remain irregular, especially for timescales

exceeding λ= 8, reducing the possibility of identifying the

proper theoretical distribution. Visible irregularities of BDC

histograms increase with increasing timescales, which is an

obvious effect of decreasing data sets and thus decreasing

populations of calculated BDC values do not allow the pro-

duction of histograms of fine bins resolution (referring to

the populations). Similarly, Fig. 8 reports the distributions

of BDC calculated through the overlapping moving window

algorithm. The comparison between Figs. 7 and 8 shows how

the change of algorithm from a non-overlapping to an over-

lapping moving window brings evident smoothing of BDC

histograms, occurring not only at larger timescales but also

at small timescales. Note that the smoothness of BDC his-

tograms in Fig. 8 is comparable with the quality of BDC

histograms showed by Licznar et al. (2011b) for German

gauges, derived using non-overlapping moving window algo-

rithm for much longer precipitation time series ranging from

27 to 46 years of continuous records. The introduction of the

overlapping moving window algorithm allows for the fitting

of MCM parameters with the availability of extremely short

time series (i.e., 2 years long) in the case of Warsaw gauges.

The overall acceptance of overlapping moving window algo-

rithm implementation, including for short rainfall time series,

is discussed in Sect. 3.3.

3.2 Theoretical BDC distributions and their evolution

along timescales

In Fig. 8 we also report the fitted theoretical distributions

(2N–B distribution in solid red curves and B distribution in

blue dashed lines) for each timescale considered. The visual

comparison clearly indicates a better fit of 2N–B (or N–B in
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Figure 7. Histograms of BDC values for gauge R7 calculated according to the non-overlapping moving window algorithm and based on

randomized precipitation time series. Horizontal axes show BDC range and vertical axes show the respective frequency values.

some cases) distribution for timescales smaller than λ= 64.

In Fig. 8 it is possible to see how the distribution with the

best fit changes from a B distribution at λ= 128 to a joined

2N–B for the smallest value of λ through a N–B distribu-

tions. This is in agreement with previous studies by Licznar

et al. (2011a, b). This observation is supported by higher val-

ues of log-likelihood for 2N–B distribution (or the simplified

N–B) in comparison to the B distribution (Table 2). These

differences are in the range of thousands, and even after ac-

counting for the number of model parameters, the AIC for

2N–B (or the simplified N–B) distributions are much smaller

(or equal) than that of B distributions, confirming the visual

result given in Fig. 8. Based on this, we prefer the 2N–B dis-

tribution with respect to the B distribution except for the case
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Figure 8. Histograms of BDC values calculated according to overlapping moving window algorithm and based on randomized gauge R7

precipitation times series. Horizontal axes show BDC range and vertical axes show the respective frequency values. The solid red curves

represent the 2N–B probability density function, whereas the blue dashed curves represent the B probability density function.
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Table 1. Values of p1,p2,a,σ1 and σ2 parameters at different

timescales for gauge R7. The values of parameters are reported in

bold, whereas their 95 % confidence limits are in italic.

Breakdown

times Timescale p1 p2 a σ1 σ2

0.1541 0.3479 1.3350 0.0559 0.1341

5–10 min λ= 1 0.1474 0.3377 1.3097 0.0523 0.1300

0.1608 0.3580 1.3604 0.0595 0.1383

0.0706 0.4036 1.0632 0.0559 0.1341

10–20 min λ= 2 0.0644 0.3950 1.0474 0.0523 0.1300

0.0768 0.4121 1.0789 0.0595 0.1383

0.0212 0.5036 0.9437 0.0559 0.1341

20–40 min λ= 4 0.0155 0.4954 0.9325 0.0523 0.1300

0.0270 0.5118 0.9548 0.0595 0.1383

– 0.6175 0.9484 – 0.1341

40–80 min λ= 8 – 0.6091 0.9390 – 0.1300

– 0.6259 0.9579 – 0.1383

– 0.7548 0.9170 – 0.1341

80–160 min λ= 16 – 0.7494 0.9098 – 0.1300

– 0.7601 0.9242 – 0.1383

– 0.8873 0.8929 – 0.1341

160–320 min λ= 32 – 0.8827 0.8873 – 0.1300

– 0.8919 0.8985 – 0.1383

– 0.9797 0.8799 – 0.1341

320–640 min λ= 64 – 0.9758 0.8754 – 0.1300

– 0.9835 0.8843 – 0.1383

– 1.0000 0.7783 – 0.1341

640–1280 min λ= 128 – 0.9973 0.7754 – 0.1300

– 1.0027 0.7813 – 0.1383

λ= 128. Analyzing the data reported in Table 2, it is worth

noting the systematic increase of sample size n increasing the

timescale.

From a practical point of view, a rapid increase in the num-

ber of BDCs, equal or close to 0.5, decreasing the timescale

should be expected as a symptom of enclosing a limit of

the precipitation temporal variability in a point by accessi-

ble instruments. The precipitation averaging over some small

area of orifice and time intervals is inevitable for gauges;

thus, for small timescales, most of the small-scale precipi-

tation variability remains undetected and smoothed, leading

to an over-representation of constant precipitation time inter-

vals. From a theoretical point of view, it should be noted that

bounded cascades allow the multiplicative weights (or pre-

cisely their distributions) to depend on the cascade level and

converge to unity as the cascade proceeds. As a consequence,

the simulated random process becomes smoother on smaller

timescales (Lombardo et al., 2012), which in general mimics

the dynamics of precipitation collected by gauges. In other

words, as postulated by Marshak et al. (1994), Menabde et

al. (1997) and Harris et al. (1998), the variance of weights

reduces with every descending cascade level. As a simple

extension of this rule, the increasing frequency of weights at

the central part of their distribution plots has to be observed.

The increase in the number of BDCs equal or close to 0.5

with decreasing timescale is well illustrated by empirical his-
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Figure 9. Value and 95 % confidence intervals of parameters of p1,

p2 and a with λ for gauge R7. Horizontal axes are plotted at binary

logarithm scale log2.

tograms in well-known pioneering contributions to MCM ap-

plications for rainfall time series disaggregation published by

Olsson (1998), Menabde and Sivapalan (2000) and Güntner

et al. (2001). Quite recently, this behavior was also proved to

be rainfall-intensity-dependent by Rupp et al. (2009).

For each analyzed timescale, we estimate the parameters

of 2N–B probability distribution (or its simplifications N–

B and B): p1,p2,a,σ1 and σ2. Table 1 gives the values for

gauge R7 with their 95 % confidence limits. A good visual

fit of empirical BDC distributions in Fig. 8 corresponds to

quite narrow 95 % confidence limits of the fitted parameters

(mostly invisible in Fig. 9 plots). The 95 % confidence limits

do not exceed more than a few percent of the estimated val-

ues, with the sole exception of parameter p1 for λ= 4, where

the differences range up to 27 %. Additionally, the scale pa-

rameters of N distributions, σ1 and σ2, appear to be constant

among analyzed timescales not only for gauge R7 but also

for the other Warsaw gauges.
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Table 2. Values of the Akaike information criterion (AIC) for the 2N–B distribution (model 1) – or its simplifications, N–B and B – and the

B distribution (model 2) and the hierarchy of analyzed timescales λ at gauge R7. Calculations were based on estimates of the maximized

value of the log-likelihood function (LL), known sample size (n) and number of model parameters (k).

Model 1 Model 2

Breakdown 1=AIC(M2)

times Timescale n Distr. k LL AIC(M1) Distr. k LL AIC(M2) −AIC(M1)

5–10 min λ= 1 132 940 2N–B 5 48 480 −96 950 B 1 36 307 −72 612 24 338

10–20 min λ= 2 136 968 2N–B 5 32 272 −64 534 B 1 19 798 −39 593 24 941

20–40 min λ= 4 144 778 2N–B 5 19 071 −38 132 B 1 8794 −17 585 20 547

40–80 min λ= 8 159 272 N–B 3 11 119 −22 232 B 1 4464 −8927 13 305

80–160 min λ= 16 185 014 N–B 3 4591.9 −9178 B 1 925 −1848 7330

160–320 min λ= 32 230 716 N–B 3 1167.3 −2329 B 1 46 −91 2238

320–640 min λ= 64 315 360 N–B 3 1543.70 −3081 B 1 1491 −2979 102

640–1280 min λ= 128 501 092 B 1 12 614.40 −25 227 B 1 12 614 −25 227 0

Figure 10. Variability of the intermittency parameter p0 with λ for

gauge R7. Horizontal axis is plotted at binary logarithm scale log2.

The variability of p1, p2 and a with λ is presented in Fig. 9

for gauge R7. A systematic decrease of p1 down to 0 increas-

ing the timescale is observed, denoting a decreasing impor-

tance of the first N within the 2N–B distribution. An opposite

systematic increase of p2 up to 1 increasing the timescale is

observed, denoting a decreasing importance of the second N

within the 2N–B distribution. The evolution of the B param-

eter a shows a fast reduction, with values below 1 noticed for

the smallest scales, changing the B distribution shape from

convex to concave. At larger timescales the reduction of a

is hardly visible, with the sole exception of λ= 128. Fig-

ure 10 shows the variability of intermittency parameters p0

with timescale λ. For all of them, the values of p0(LEFT)

match the values of p0(RIGHT), which is in good agree-

ment with previous studies by Molnar and Burlando (2005)

and Licznar et al. (2011a, b). This could be interpreted as

the proof of the fully random occurrence of intermittency in

the precipitation time series. A systematical increase of p0

with λ is observed, with the sole exception of a small drop at

λ= 128. General increase of p0 with timescale is a natural
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−0.04
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λ′=1

Figure 11. Value and 95 % confidence intervals of parameter p1 at

timescale λ′ = 1 for gauge R7. Roman numerals I–V on horizon-

tal axes indicate the 5-year ranges: 1983–1987, 1988–1992, 1993–

1997, 1998–2002 and 2003–2007. Uppercase letters A and B indi-

cate values calculated using the entire 25-year range of 1983–2007

and non-overlapping (A) and overlapping (B) moving window al-

gorithm.

outcome of the fractal properties of the geometric support of

rainfall occurrence.

3.3 Performance of the overlapping moving window

algorithm

The performance of the overlapping moving window algo-

rithm was investigated in detail at gauge R7, where a 25-year

time series at 15 min resolution was available. We calculated

the parameters of 2N–B distribution for the hierarchy of sub-

daily timescales λ′ relative to the 5-year periods of 1983–

1987, 1988–1992, 1993–1997, 1998–2002 and 2003–2007

(indicated afterwards with the Roman numerals I, II,..., V,

respectively) and the whole 25-year data set (indicated in the

next as case A) using the overlapping moving window al-

gorithm. In addition, we calculate the parameters of 2N–B
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Figure 12. Value and 95 % confidence intervals of parameter p2 at timescales λ′ = 1,2,4,8 for gauge R7. Roman numerals I–V on horizontal

axes indicate respectively the 5-year ranges: 1983–1987, 1988–1992, 1993–1997, 1998–2002 and 2003–2007. Uppercase letters A and B

indicate values calculated using the entire 25-year range of 1983–2007 and non-overlapping (A) and overlapping (B) moving window

algorithm.

distribution also using the classical non-overlapping moving

window algorithm over the whole 25-year data set (indicated

in the next as case B). The results are shown in Figs. 11–13.

In general, the selected probability distribution is a B dis-

tribution for the largest timescales (λ′ = 16,32), a N–B dis-

tribution for λ′ = 2,4,8 and a 2N–B distribution for λ′ =

1 (the only exception is the period IV). The above listed

timescales λ′ are not compatible with timescales λ; however,

transposing them on a coherent time axis leads to the conclu-

sion that characteristic transitions from B to N–B and 2N–B

distributions occur at approximately the same time ranges.

The estimated parameters σ1 and σ2 appear to be constant

among analyzed timescales and equal to 0.0646 and 0.1363,

respectively. These values are very close to those reported

in Table 1. Figure 11 shows the estimates of p1 for λ′ = 1,

with a variability in the range 0–0.058 for the 5-year peri-

ods I–V. At the same time, the 95 % confidence limits of p1

overlap each other partially and values estimated for cases A

and B. Confidence limits for periods I–V are rather wide and

are only reduced by 50 % for cases A and B. Note that here

we work with 15 min time series and not 1 min time series as

before.

A better agreement is observed for larger timescales, as

illustrated in Figs. 12 and 13, with visibly narrow 95 % con-

fidence limits; however, they still partial overlap one another.

For smaller timescales, larger oscillations of p2 parameter

can be observed over the periods I–V but, due to wider 95 %

confidence limits, they overlap one another and those relative

to cases A and B. The only exception is found for the period

III at timescale λ′ = 1.

For parameter a and λ′ =1, 95 % confidence limits for

all calculations overlap except period V, which has slightly

lower values. For λ′ = 2 and λ′ = 4, mutual overlay of 95 %

confidence limits is noticed. Passing to λ′ = 8 and λ′ = 16,

the overlapping among all pairs of periods from I to V is not

always present; however, it is present with 95 % confidence

limits drawn for case B. For λ′ = 32, 95 % confidence limits

for periods I–V and case A are extremely narrow.

Results reported above suggest good repeatability of BDC

distributions calculated during all periods; this is graphically

confirmed in Fig. 14, with the exception of period II and

timescale λ′ = 1. Probably this could be explained by the

poor performance of the newly proposed overlapping mov-

ing window algorithm applied to low time resolution of the

original time series. Our observations support the use of the

overlapping moving window algorithm for BDC calculations

in situations of short (about 2 years) precipitation time se-

ries access, while in previous microcanonical cascade stud-

ies (e.g., Molnar and Burlando, 2005, 2008), longer (e.g.,

about 20–30 years) time series are indispensable. In addi-
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Figure 13. Value and 95 % confidence intervals of parameter a at timescales λ′ = 1,2,4,8,16,32 for gauge R7. Roman numerals I–IV

on horizontal axes indicate the 5-year ranges: 1983–1987, 1988–1992, 1993–1997, 1998–2002 and 2003–2007. Uppercase letters A and B

indicate values calculated using all 25-year range of 1983–2007 and non-overlapping (A) and overlapping (B) moving window algorithm.

tion, even in situations of longer precipitation time series

access, BDC calculations by means of the proposed algo-

rithm should be favored over the old non-overlapping moving

windowtechnique because the new algorithm leads to nar-

rowed 95 % confidence intervals of fitted BDC distributions

parameters.

We do not claim here that the moving window technique

combined with MCMs solves the problem of local precipita-

tion time series shortage. It is obvious that rainfall statistics

derived from short periods may be biased against long-term

statistics (e.g., due to climate oscillations). Until now, to our

best knowledge, there have been no attempts made to assess

the possible bias of MCM generators due to precipitation os-

cillations driven by climate change. Hitherto contributions

of MCM generators are mostly based on precipitation series

that are not too long, presumably displaying only very weak,

if any, oscillations and are always treated as a single data set.

Possible bias of MCM generators due to precipitation os-

cillations undoubtedly should be verified on other, much

longer time series of better resolution, such as the 10 min

time series collected in Uccle, Belgium (Willems, 2013). Si-

multaneously, only a detailed analysis based on long and

complete precipitation time series covering at least a few

decades could deliver us the answer to the question of

whether the climate change effects could be retrieved via the

temporal evaluation of microcanonical cascade generators.
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Figure 14. Variability of fitted theoretical BDC distributions histograms at timescales λ′ = 1,2,4,8,16,32 for gauge R7. Roman numerals I–

V in legend indicate the 5-year ranges: 1983–1987, 1988–1992, 1993–1997, 1998–2002 and 2003–2007. Uppercase letters A and B indicate

results calculated using all 25-year range of 1983–2007 and non-overlapping (A) and overlapping (B) moving window algorithm. In all plots,

horizontal axes show BDC ranges and vertical axes show the frequency values.

From this perspective, the moving window technique could

be of considerable usefulness in BDC distributions fitting for

periods corresponding to 11-year solar spot cycles.

3.4 Performance of microcanonical cascade in

disaggregation

As an additional check of the overall performance of the ap-

plied techniques (i.e., the randomization procedure, the over-

lapping moving window algorithm and the 2N–B probabil-

ity distribution), we test the performance of microcanoni-

cal cascade in disaggregating the precipitation at the ana-

lyzed gauges. The MCM is used to generate 100 synthetic

time series at 5 min resolution on the basis of the observed

1280 min precipitation totals (similar to Molnar and Bur-

lando, 2005; Licznar et al., 2011a, b). To evaluate the good-

ness of disaggregation, we compare the probability of zero

precipitation at synthetic and observed time series for all an-

alyzed timescales. Moreover, we calculate the survival prob-

ability function of non-zero synthetic precipitation amounts

and compare it to the survival probability function of ob-

served precipitation amounts. This analysis is limited to

5 min data, i.e., terminal results of the disaggregation most

suitable for urban hydrology application. Special attention

to the 5 min synthetic time series was also paid by other re-

searchers (see e.g., Molnar and Burlando, 2005, 2008; Licz-

nar et al., 2011a, b). An example of 56.3 mm event disaggre-

gation is plotted in Fig. 15 for gauge R7. It should be stressed

that the structure of the synthetic time series is composed
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Figure 15. An example of precipitation disaggregation of a 56.3 mm event from 1280 to 5 min for gauge R7.

of uncorrelated segments like the one presented in Fig. 15.

Thus, the synthetic time series is missing the correct autocor-

relation structure of natural precipitation (for detail discus-

sion see Lombardo et al., 2012). The expected value of the

zero-precipitation probability E(p0) for observed and gen-

erated series is given in Fig. 16 for gauge R7. The synthetic

values of E(p0) are calculated as the average over 100 MCM

disaggregations. The differences in terms of E(p0) between

observed and simulated are negligible (see Fig. 16). In ad-

dition, for comparison we also give the synthetic values of

E(p0) for gauges R15 and R25.

Figure 17 shows the comparison between observed and

simulated survival probability function of rainfall amount at

5 min for gauge R7. In Fig. 17, for gauge R7, we report the

empirical survival probability function for a synthetic series

out of 100 and the averaged function using all the generated

series. In addition, for comparison, we give the averaged sur-

vival functions for gauges R15 and R25. At first glance, high-

est rainfall intensities drawn in Fig. 17 show strange behavior

manifested by constant exceedance probability above a given

precipitation threshold. This is especially pronounced for ob-

served or synthetic series from a single MCM run. This is due

to the very short rainfall time series used for the calculation

of survival probability functions. According to multifractal

theory, singularities in a small data set are very rare. Highest

rainfall intensities as singularities are very rare in 2-year se-

ries. The behavior of both the synthetic functions for gauge

R7 in Fig. 17 is very similar, with the sole exception of the

extended and smoothed tail of the averaged function plot.

Both the synthetic functions are placed above the observed

function. This displacement reveals overprediction of 5 min

precipitation depths, particularly at the range of intensities

Figure 16. Comparison between observed for gauge R7 and syn-

thetic series for gauges R7, R15 and R25 in terms of intermittency

E(p0) for the considered timescales. The values for the generated

data are calculated as the average of 100 disaggregation runs. The

variability between runs was negligible and thus is not shown here.

from 0.3 to about 2.0 mm/5 min. It should be noted that the

magnitude of dissimilarities between synthetic and observed

survival functions for gauge R7 did not exceed the ones re-

ported in other works, e.g., Molnar and Burlando (2005)

and Licznar et al. (2011a, b). In comparison, the magnitude

of dissimilarities between observed survival probability for

gauge R7 and synthetic (average) survival probability func-

tion for other gauges R15 and R25 is much more pronounced.
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Figure 17. The survival probability function of 5 min precipitation

amounts for the observed time series (circles) and the synthetic time

series (triangles) generated by the disaggregation of 1280 precipi-

tation amounts for gauge R7. The lines represent the average distri-

butions calculated over the generation of 100 synthetic time series

for gauge R7 and for comparison for gauges R15 and R25.

3.5 Cluster analysis results and their interpretation

Dendrograms summarizing the results of the cluster analysis

for BDC histograms are produced for each timescale and re-

ported in Figs. 18 and 19 for λ= 1 and λ= 128, respectively.

Results for the first four timescales, i.e., λ= 1,2,4,8, are

unsurprising and easily interpreted. All Warsaw gauges are

grouped in a single cluster with similar shapes of BDC his-

tograms; their interconnection on the dendrogram is placed

at the level of binding distance equal to about 0.5. Only

R25 seems to be characterized by a slightly different pat-

tern of BDC histogram. However, gauge R25 has a behavior

that is still much closer to other Warsaw gauges than to the

other cities considered. For example, at λ= 1 gauge R25 is

merged into the Warsaw gauges cluster at an Euclidean dis-

tance equal to 0.81, whereas the same occurs for the Kielce

(the closest considered Polish city) gauge at the Euclidean

distance equal to 1.07. For timescales λ= 2,4,8, gauge R25

merges the cluster of Warsaw gauges at quite similar Eu-

clidean distances: 0.89, 0.83 and 0.81, respectively.

The dendrogram for λ= 128 is given in Fig. 19, being rep-

resentative of timescales λ= 16,32,64,128. From Fig. 19

it is possible to see the departure of gauge R15 from the

cluster of other Warsaw gauges. The position of gauge R15

is isolated from other Warsaw gauges, and its Euclidean

distance from the closest one is large and increases with

greater timescale; it is equal to 1.8, 3.19, 3.88 and 8.03 for

λ= 16,32,64 and 128, respectively. Simultaneously, the Eu-

clidean distance from the cluster of Warsaw gauges to the

nearest neighbor does not exceed 0.9, 1, 1.4 and 1.89 for

λ= 16,32,64 and 128, respectively.

This last observation proves that the variability of BDC

shapes among Warsaw gauges generally increases with a

Figure 18. Dendrogram resulting from the cluster analysis of BDC

histograms for λ= 1. The vertical scale shows binding distance,

whereas names of gauges are given on the horizontal scale (“K”

stands for Kielce gauge and “W” stands for Wroclaw).

greater timescale. It may partly be explained by the al-

ready mentioned evolution of histogram shapes, the replace-

ment of 2N–B distribution by less centered N–B and B-

distribution characterized by a higher variance of BDC. In

the specific case of gauge R15, the BDC histograms for

the largest timescales are boldly concave (not shown for

brevity) and their shapes are becoming similar to B symmet-

rical distributions parameterized by very small values of a:

0.76,0.64,0.54 and 0.45 for λ= 16,32,64 and 128, respec-

tively.

In the last step we used the cluster analysis to investi-

gate the variability among the gauges in terms of the inter-

mittency parameter p0, which is considered a vector with

eight components as values corresponding to the considered

timescales. Results are given in the form of a dendrogram

in Fig. 20. With respect to p0, all Warsaw gauges form one

single chain-like cluster. Three gauges in the cluster, namely

R14, R25 and R15, are characterized by the largest distances

from the nearest neighbor with Euclidean distances equal to

0.079, 0.064 and 0.0614, respectively. The distance of gauges

R15 and R25 from the other stations in the cluster is similar

to observations made for Figs. 18 and 19. A possible, but not

certain, explanation for gauge R14 could be its location close

to gauge R15 in a weakly developed part of the city.

Unfortunately, we do not have access to other meteorologi-

cal data to compare our results with other local climate condi-

tions. To our knowledge, studies about microclimate or local

turbulence have not been conducted for Warsaw. However, in

our opinion the anomalous behavior of gauges R15 and R25

does not originate from random errors due to gauges instal-

lation. As previously mentioned, all gauges were installed

in very good conditions, and R15 was an airport gauge. A

plausible explanation of the anomalous behavior of gauges

R25 and R15 could be found in its location. Gauge R25 was

Hydrol. Earth Syst. Sci., 19, 485–506, 2015 www.hydrol-earth-syst-sci.net/19/485/2015/



P. Licznar et al.: Precipitation variability within an urban monitoring network 503

Figure 19. Dendrogram resulting from the cluster analysis of BDC

histograms for the timescale λ= 128. The vertical scale shows

binding distance, whereas names of gauges are given on the hori-

zontal scale (“K” stands for Kielce gauge and “W” stands for Wro-

claw).

located in a southeast suburban area in the close vicinity

of a forested area and the Vistula river valley. This specific

suburban area is also most frequently a place for the devel-

opment of local convection processes (Prof. S. Malinowski,

personal communication, 2013). The anomalous behavior of

gauge R15 seems to arise from its specific location on the

ground at the Warsaw airport. In the neighborhood of the in-

strument there are no high buildings and trees and the ground

is covered only by short-cut grass. The local atmospheric

turbulence conditions, additionally influenced by taking off

and landing aircrafts, could have favored the different behav-

ior of this station. In general, gauges R15 and R25 are the

only instruments installed outside the areas of urban fabric

(Fig. 1) in rather rural conditions of surrounding green ar-

eas. The suburban location of these gauges combined with

the direct green surrounding reduces, or even minimalizes to

zero, urban heat island effects. Peng et al. (2012) investigated

the surface urban heat island intensity across 419 global big

cities (including Warsaw). These authors showed that the dis-

tribution of daytime surface urban heat island intensity corre-

lates negatively across cities with the difference of vegetation

fractional cover and of vegetation activity between urban and

suburban areas. Kłysik and Fortuniak (1999) found the oc-

currence of urban heat in the second biggest city in Poland,

Łódź (about 120 km southwest), which is comparable to War-

saw flat topography. According to statistics calculated over

many years at two stations – one in the center and one at the

airport – over 80 % of nights were characterized by a sur-

plus heat in town amounting generally to 2–4 ◦C and sporad-

ically to 8 ◦C and more. Once more for Łódź, Fortuniak et

al. (2006) investigated the data from two automatic stations:

one urban and one rural. They found the relative humidity

to be lower in the town, sometimes by more than 40 %, and

Figure 20. Dendrogram resulting from the cluster analysis of the

intermittency parameter p0. The vertical scale shows binding dis-

tance, whereas the names of gauges are given on the horizontal scale

(“K” stands for Kielce gauge and “W” stands for Wroclaw).

water vapor pressure differences to be either positive (up to

5 hPa) or negative (up to −4 hPa). Air-temperature differ-

ences between the urban and rural station exceeded 8 ◦C. It

could be that similar processes occurred in Warsaw and af-

fected local precipitation dynamics and thus gauges R7, R15

and R25. As a consequence, statistics of synthetic time series

vary visibly in Figs. 16 and 17. However, the significance of

these differences should be studied in more details in the fu-

ture.

4 Conclusions

Keeping in mind the simplicity of the retrieval of micro-

canonical cascade generators from observational data, we

proposed to use this technique for the local variability of

very short precipitation time series within an urban moni-

toring network.

We considered a network of 25 gauges deployed in War-

saw over an area of 517.2 km2. An attempt was made to de-

fine the generators of a MCM able to produce 5 min time

series, as requested by urban hydrologists, through the dis-

aggregation of quasi-daily precipitation totals. We showed

that smooth distributions of BDC are possible for all ana-

lyzed timescales, even in the case of a limited length of time

series, which in our case slightly exceeded 2 years only. This

was made possible by the implementation of a randomization

procedure and the use of an overlapping moving window al-

gorithm for the calculation of BDCs.

The correctness of the overlapping moving window algo-

rithm is checked using additional 15 min rainfall time series,

25 years long, at gauge R7. The algorithm is implemented for

a hierarchy of sub-daily timescales and separate 5-year peri-

ods. The results of BDC calculations are compared to those

obtained using all 25 years of data with both overlapping
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and non-overlapping moving window algorithms. Despite

the coarse resolution of data and winter time gaps in the se-

ries, the results show a good agreement of BDC distributions

calculated over the different periods, suggesting the correct-

ness of the overlapping moving window algorithm, at least in

central Poland.

To adequately describe the shapes of BDC histograms, we

have implemented a special joined probability distribution,

2N–B, assembled from two N distributions and one B sym-

metrical distribution. A systematical evolution of BDC his-

tograms from joined 2N–B through joined N–B up to B dis-

tributions was observed increasing the timescale. To test the

use of more complicated models alternative to the classical

B distribution, we suggested the AIC.

To check all the applied techniques (i.e., the randomiza-

tion procedure, the overlapping moving window scheme and

the 2N–B distribution), MCMs were used to disaggregate

1280 min precipitation into 5 min time series. The quality of

the generated series was checked, comparing the statistical

properties of these with those of observed series. In particu-

lar, we compared probabilities of zero precipitation and the

survival probability functions of non-zero 5 min precipitation

amounts for the considered timescales with agreement com-

parable to previous studies done in Switzerland, Germany

and Poland.

As a main part of this study, we conducted an intercom-

parison of BDC histograms among the 25 Warsaw gauges

and considered as a term of reference another six gauges

located in Poland and Germany. The intercomparison was

made, scale-by-scale, by means of cluster analysis. Result-

ing dendrograms for small timescales (i.e., λ= 1,2,4,8) re-

vealed rather little variability of BDC histograms among all

Warsaw gauges in comparison to the variability exhibited

with respect to the other external gauges. Only gauge R25

seemed to be characterized by a slightly different pattern. It

might originate from the specific gauge location on the city

boundary in the vicinity of forested areas and Vistula river

valley.

Dendrograms obtained for large timescales (i.e., λ=

16,32,64,128) also delivered a general picture of similar-

ity among Warsaw gauges with the very clear exception of

gauge R15. To our best knowledge, a possible explanation of

this was its installation on the ground at the Warsaw airport,

which was strongly man-modified and with turbulent local

conditions. In addition, R25, R15 and R14 were also identi-

fied as gauges presenting slightly different behavior in terms

of the intermittency parameter p0.

As final remarks we can affirm that MCMs combined with

cluster analysis could be used as a tool for the assessment of

the spatial variability of local precipitation patterns among

a group of gauges. This framework could be effectively im-

plemented even in the case of very short observational se-

ries thanks to the proposed overlapping moving window al-

gorithm. We believe that the use of this algorithm could in-

crease the development and use of MCMs in urban hydrol-

ogy. At the same time, we are fully aware of the inherent

MCM limitations in the quality of rainfall disaggregation and

the necessity of additional verifications of the overlapping

moving window algorithm for other gauges with longer and

higher quality observational time series.

Returning to questions of interest in urban hydrology ad-

dressed at the end of the Introduction, we can formulate fol-

lowing answers:

1. Small precipitation variability within gauges located in

city centers, as measured via microcanonical cascade

generators, justifies the practice of a single time series

use for the probabilistic assessment of the entire urban

drainage system.

2. From current engineering needs in urban hydrology, it is

enough to use only one fitted MCM for the precipitation

time series disaggregation in Warsaw city. We suppose

that this result could be valid even in larger urban ar-

eas, but the verification is necessary. We dissuade from

the cascade generation fitted on precipitation time series

collected at instruments located out of the city center in

unrepresentative sites like, in our case, the ground at the

airport.

3. We question the practice of using gauges from airports

for urban hydrology.

Finally, we recommend further research to assess the in-

fluence of the local conditions on BDC histograms to find

clearer explanations of observed anomalies. We also recog-

nize the necessity of further tests in other cities and precip-

itation monitoring networks, especially in the case of cities

with complicated orography and the presence of hydrologi-

cal networks.
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