
Hydrol. Earth Syst. Sci., 19, 4735–4746, 2015

www.hydrol-earth-syst-sci.net/19/4735/2015/

doi:10.5194/hess-19-4735-2015

© Author(s) 2015. CC Attribution 3.0 License.

Regime shifts in annual maximum rainfall across Australia –

implications for intensity–frequency–duration (IFD) relationships

D. C. Verdon-Kidd and A. S. Kiem

Environmental and Climate Change Research Group, School of Environmental and Life Sciences, University of Newcastle,

Callaghan, Australia

Correspondence to: D. C. Verdon-Kidd (danielle.verdon@newcastle.edu.au)

Received: 3 March 2015 – Published in Hydrol. Earth Syst. Sci. Discuss.: 30 March 2015

Revised: 4 November 2015 – Accepted: 5 November 2015 – Published: 3 December 2015

Abstract. Rainfall intensity–frequency–duration (IFD) rela-

tionships are commonly required for the design and planning

of water supply and management systems around the world.

Currently, IFD information is based on the “stationary cli-

mate assumption” that weather at any point in time will vary

randomly and that the underlying climate statistics (includ-

ing both averages and extremes) will remain constant irre-

spective of the period of record. However, the validity of this

assumption has been questioned over the last 15 years, par-

ticularly in Australia, following an improved understanding

of the significant impact of climate variability and change oc-

curring on interannual to multidecadal timescales. This paper

provides evidence of regime shifts in annual maximum rain-

fall time series (between 1913–2010) using 96 daily rainfall

stations and 66 sub-daily rainfall stations across Australia.

Furthermore, the effect of these regime shifts on the result-

ing IFD estimates are explored for three long-term (1913–

2010) sub-daily rainfall records (Brisbane, Sydney, and Mel-

bourne) utilizing insights into multidecadal climate variabil-

ity. It is demonstrated that IFD relationships may under- or

over-estimate the design rainfall depending on the length and

time period spanned by the rainfall data used to develop the

IFD information. It is recommended that regime shifts in an-

nual maximum rainfall be explicitly considered and appro-

priately treated in the ongoing revisions of the Engineers

Australia guide to estimating and utilizing IFD information,

Australian Rainfall and Runoff (ARR), and that clear guid-

ance needs to be provided on how to deal with the issue of

regime shifts in extreme events (irrespective of whether this

is due to natural or anthropogenic climate change). The find-

ings of our study also have important implications for other

regions of the world that exhibit considerable hydroclimatic

variability and where IFD information is based on relatively

short data sets.

1 Introduction

Information on rainfall event intensity, frequency, and du-

ration (IFD or IDF as it is known in some countries) plays

a critical role in the design of dams, bridges, storm water

drainage systems, and floodplain management. Dependent

upon the application, information is required for event dura-

tions ranging from hours to several days. The development of

IFD relationships were first proposed by Bernard (1932) and

since then different versions of this relationship have been

developed and applied worldwide (e.g. Bara et al., 2009;

Chen, 1983; Hershfield, 1961; IHP-VII, 2008; Nhat et al.,

2006; Raiford et al., 2007).

Historically, in Australia, IFD design rainfall curves were

developed by the Australian Bureau of Meteorology (BoM)

for durations ranging from 5 min to 72 h and average re-

turn intervals (ARIs) of 1–100 years (however, recently ad-

ditional durations and ARIs have also been developed). Up

until very recently, the IFD information available to (and

used by) engineers and hydrologists was developed almost

30 years ago, as part of the Engineers Australia publication

Australian Rainfall and Runoff (ARR in 1987. New IFD in-

formation was released early in 2013 after a major revision

of IFD information carried out by Engineers Australia. Im-

portantly, the revised IFD information is based on a longer

and more extensive rainfall data set (http://www.bom.gov.

au/water/designRainfalls/ifd/). However, the BoM and En-

gineers Australia still recommend to use the ARR 1987 in-
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formation for existing flood studies, the probabilistic ratio-

nal method, and to conduct sensitivity testing with the re-

vised 2013 ARR parameters including the new IFD design

rainfalls (http://www.bom.gov.au/water/designRainfalls/ifd/

index.shtml).

At the time of writing, the revised IFD information does

not take into account the impact of climate change on IFD

estimates. This is part of ongoing research commissioned

through Engineers Australia. It is also not yet clear how or

if the role of natural climate variability is going to be con-

sidered. Of concern is the fact that, currently, estimates of

IFD are based on the assumption that a “climatic trend, if it

exists in a region, has negligible effect on the design intensi-

ties” (Pilgrim, 1987). This is known as the stationary climate

assumption (i.e. the statistical properties of the rainfall do

not change over time) and implies that the chance of an ex-

treme event occurring is the same at any point in time (past

or future). However, the validity of this assumption has been

questioned over the last 15 years following the demonstration

of the significant impact of climate variability occurring on

interannual to multidecadal timescales in Australia. For ex-

ample, research has shown that annual maximum flood risk

estimates in Australia vary depending on climate state (e.g.

Ishak et al., 2013; Kiem et al., 2003; Leonard et al., 2008).

Importantly these studies demonstrate that basing flood risk

estimates on an unsuitable time period has the potential to

significantly underestimate (or overestimate) the true risks.

This may apply to the design rainfall given that current IFD

estimates are based on varying lengths of data spanning dif-

ferent time periods (the latest IFD estimates are based on all

daily read stations with 30 or more years of record and all

continuously recording stations with more than 8 years of

record).

Khaliq et al. (2006) explained that the traditional idea of

probability of exceedance and return period are no longer

valid under non-stationarity. Recently, Jakob et al. (2011a)

found that rainfall quantile estimates derived for Sydney

Observatory Hill for the period 1976–2005 show signifi-

cant decreases across durations from 6 min to 72 h. Jakob

et al. (2011b) subsequently extended the sub-daily rainfall

data analysis to 31 sites located in southeastern Australia,

assessing variations in frequency and magnitude of intense

rainfall events across durations from 6 min to 72 h. This

study identified two different trends in the data sets: a de-

creasing trend in frequency of events at durations of 1 h and

longer for sites in the north of the study region, while sites

in the southern cluster displayed an increase in frequency

of events, particularly for sub-hourly durations. Importantly,

Jakob (2011a, b) concluded that, for at least some regions

of Australia, trends found in historical records have the po-

tential to significantly affect design rainfall estimates. Wes-

tra and Sisson (2011) also investigated evidence of trends

in extreme precipitation at sub-daily and daily timescales

(1965–2005) using a spatial extreme value model. They iden-

tified a statistically significant increasing trend in precipi-

tation extremes for the sub-daily data set; however, at the

daily timescale no change in annual maximum rainfall could

be detected with the exception of the southwest of Western

Australia (Westra and Sisson, 2011). Furthermore, Yilmaz

and Perera (2014) conducted change point analysis for ex-

treme rainfall data for storm durations ranging from 6 min

to 72 h in Melbourne and found evidence of regime shifts,

concluding that the year 1966 is a statistically significant

change point. Yilmaz et al. (2014) then investigated changes

in extreme rainfall through trend analysis, non-stationarity

tests, and non-stationary GPD (Generalized Pareto Distribu-

tion) (NSGPD) models for Melbourne. They found statisti-

cally significant extreme rainfall trends for storm durations

of 30 min, 3, and 48 h; however, for above storm durations

there was no evidence of a regime shift (which they termed

“non-stationarity”) according to statistical non-stationarity

tests and non-stationary GPD (Yilmaz et al., 2014).

A limitation of the analysis presented by Westra and Sis-

son (2011) and Jakob et al. (2011a, b) is that they tested

for linear trends in the rainfall data series based on the hy-

pothesis that extreme rainfall events would have either de-

creased, increased, or exhibited no trend over the time pe-

riod being investigated. However, these are not the only at-

tributes of trend detection, since annual rainfall maxima may

also cycle through interannual to multidecadal periods (note

that Westra and Sisson (2011) also investigated possible links

between extreme rainfall and annual fluctuations during El

Niño–Southern Oscillation – ENSO). Therefore, depending

on what time period the annual rainfall maxima data are de-

rived from (in reference to any long-term cycles or epochs),

the observed trends may be misleading or even not appar-

ent (leading to the misconception that regime shifts are non-

significant or not an important consideration). Recently, Yil-

maz et al. (2014) investigated the potential impact of the In-

terdecadal Pacific Oscillation (IPO) on extreme rainfall and

resulting IFD for a case study in Melbourne. They concluded

that the negative IPO phase can be the driver of higher rain-

fall intensities for long durations and high return periods.

However, the trends in extreme rainfall data and differences

in rainfall intensities for short storm durations and return pe-

riods could not be explained with the IPO influence. Given

that Melbourne is located in southeastern Australia, where

the influence of the IPO is temporally variable due to other

climate drivers operating (acting to enhance or suppress im-

pacts, see Kiem and Verdon-Kidd, 2009, 2010), the research

by Yilmaz et al. (2014) provides promise for developing re-

lationships between extreme rainfall and the IPO for regions

where the IPO may have a more consistent influence (due

to fewer competing climate modes), such as in northeastern

Australia.Therefore, this paper aims to establish if there is ev-

idence of regime shifts in the annual maximum rainfall time

series (1 h–7 days) across Australia by testing for shifts (re-

gardless of direction or timing) in the long-term sub-daily

and daily data. Furthermore, the implications on IFD esti-

mation are explored, along with the potential influence of
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Figure 1. (a) Reference stations for sub-daily rainfall, (b) Reference stations for daily rainfall. Note the three long-term sub-daily stations

used in the IFD analysis are also labelled.

the IPO on extreme rainfall and resulting IFD. Recommen-

dations are then provided as to how these insights may be

incorporated in future revisions of ARR.

2 Data and methods

2.1 Data

2.1.1 Rainfall data

Sub-daily and daily rainfall data for Australia were obtained

from the BoM. Sub-daily data records from continuously

recording (i.e. pluviograph) rainfall stations in Australia tend

to be relatively short, hindering the ability to conduct trend

and attribution studies. In this study, pluviograph rainfall sta-

tions were chosen with data spanning at least 40 years and

at least 90 % complete, resulting in 66 stations (see Fig. 1a).

In order to address the concerns raised in the Introduction

about short-term data analysis (note that according to Raiford

et al. (2007) ARIs should not be extrapolated from more

than twice the record length), three long-term data sets, high-

lighted in Fig. 1a, were chosen for further analysis that con-

tained sub-daily rainfall data from at least 1913–2010 (Bris-

bane Aero, Sydney (Observatory Hill), and Melbourne Re-

gional Office).

Daily rainfall stations with data spanning the period 1900–

2009 were selected in order to capture as much temporal vari-

ability as possible (see Fig. 1b). These stations were filtered

according to the amount of data missing in order to iden-

tify the highest quality stations recording rainfall during this

period, resulting in 96 being considered suitable for further

analysis. Due to variability in the quality and quantity of rain-

fall data in each state of Australia, the following selection

criteria were applied:

– New South Wales, Queensland, and Victoria – selected

stations are at least 97 % complete;

– Tasmania – selected stations are at least 90 % complete;

and

– southern Australia, Northern Territory, and Western

Australia – selected stations are at least 85 % complete.

2.1.2 Climate index data

The climate of Australia has experienced a number of regime

shifts in climate during its history, resulting in sustained peri-

ods of above average rainfall and storminess and abnormally

cool temperatures, followed by the reverse conditions (i.e.

droughts and elevated bushfire risk) (e.g. Erskine and Warner

1988; Franks and Kuczera, 2002; Kiem et al., 2003; Kiem

and Franks, 2004; Verdon et al., 2004). These shifts have

tended to occur every 20–30 years and are associated with

changes in the IPO (Power et al., 1999). The IPO represents

variable epochs of warming (i.e. positive phase) and cool-

ing (i.e. negative phase) in both hemispheres of the Pacific

Ocean (Folland et al., 2002). Importantly, the IPO has been

shown to influence the magnitude and frequency of flood and

drought cycles across eastern Australia (Kiem et al., 2003;

Kiem and Franks, 2004). In New Zealand, the IPO is also

associated with similar shifts in flood frequency (McKerchar

and Henderson, 2003). It has been noted that, following the

abrupt shift in the IPO in the mid 1970s, the period, am-

plitude, spatial structure, and temporal evolution of ENSO

markedly changed (Wang and An, 2001)istorically, during

negative phases of the IPO there tends to be more La Niña

(wet) events and fewer El Niño (dry) events (Kiem et al.,

2003; Verdon and Franks, 2006), resulting in an overall “wet”

epoch for eastern Australia and New Zealand. While during

the positive phase of the IPO there tends to be a higher fre-

quency of El Niño events and fewer La Niña events (Kiem et

al., 2003; Verdon and Franks, 2006), resulting in an overall

“dry” epoch. In this study negative phases of the IPO were
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defined as 1913–1920 and 1945–1977, while positive phases

included 1921–1944 and 1978–2010.

2.2 Statistical tests

A 20-year moving window was used to test for low frequency

variability in the annual maxima time series (1 h, 1-day, and

7-day). A Mann–Whitney U test was then used to determine

the statistical significance of possible regime shifts by test-

ing if the first 10 years of data were significantly different

from the second 10 years, within the 20-year window (the

null hypothesis in this case was that the data was indepen-

dently distributed). If the difference in medians was found

to be statistically significant (i.e. p value < 0.05) and there

was a change in sign of the median values (e.g. switch from

negative to positive), a climate shift was postulated to have

occurred during the 10th year of the window. The Mann–

Whitney U test is a robust test that does not place implicit

assumptions on the underlying distribution of the data (i.e. it

is a distribution-free test), which is particularly appropriate

here due to the small number of years used in each window

(Kundzewicz and Robson, 2004). Note that a number of dif-

ferent size windows were also tested; however, this did not

change the results or conclusions.

A second test was also applied to identify step changes in

the 1-day and 7-day annual maxima time series known as the

distribution-free CUSUM (cumulative sum) with resampling

(note that the test was not applied to the shorter sub-daily

data as longer data sets are recommended for this method).

CUSUM tests whether the means in two parts of a record are

different (for an unknown time of change). The second test

was applied as it does not require the use of a moving win-

dow (which is a limitation of the Mann–Whitney U test de-

scribed above). However the CUSUM test sequentially splits

the time series into two portions (which are not necessarily

equal), which may be a problem if more than one cycle/shift

is present in the time series.

The existence of serial correlation (or autocorrelation) in a

time series will affect the ability of tests (such as the Mann–

Whitney U and CUSUM) to assess the site significance of

a trend (e.g. Yu et al., 2003; Serinaldi and Kilsby, 2015b).

The presence of cross-correlation among sites in a network

will also influence the ability of the test to evaluate the field

significance of trends over the network (e.g. Yu et al., 2003;

Douglas et al., 2000; Guerreiro et al., 2014). Therefore, prior

to applying the change point analysis as described above, the

Durbin–Watson (DW) statistic was used to test for autocor-

relation in the annual maxima time series (Durbin and Wat-

son, 1950, 1951). In this case the null hypothesis is that the

residuals from an ordinary least-squares regression are not

autocorrelated against the alternative that the residuals fol-

low an ARI process. All DW statistic values were found to be

greater than 1.562 (the upper bound for 1 % significance and

a sample size of ∼ 100), providing no evidence to reject the

null hypothesis. Therefore, any regime shifts detected using

the change point methods above are not likely to be artefacts

resulting from hidden persistence.

The potential issue of cross-correlation was also investi-

gated. It was found that less than 9 % of all possible pair-

ings of rainfall data sets display a significant (yet weak)

correlation at the 5 % level (r > 0.2, significance based on

n= 100). Only eight pairings (out of 4465) were correlated

at 0.5 or higher. It was also found that stations located more

than 500 km apart were unlikely to be correlated and that the

strength of the correlation decreased as distance increased

between the pairs. This is not surprising given annual max-

imum rainfall events are due to synoptic-scale processes.

Therefore, observations relating to spatial consistency of

regime shifts are unlikely to be due to spatial correlation be-

tween sites.

2.3 IFD Calculation

The standard process for obtaining IFD information for a lo-

cation is to refer to the six master charts of rainfall inten-

sity for various durations and ARIs covering all of Australia

in Volume 2 of ARR 2001. Alternatively, IFD curves can be

obtained for any location in Australia via the BoM website

(both the ARR 1987 and revised IFDs are available). This in-

formation is based on regionalized estimates of IFDs that are

spatially and temporally consistent. However, this approach

cannot be adopted when using the instrumental rainfall data

required for the analysis presented in this study. As such,

the IFD information generated for this project follows the

methodology on which the IFDs were based for ARR 1999

(note the 1987 edition was republished in book form in 1999

with only the chapter on the estimation of extreme to large

floods updated), which utilizes point source data with no re-

gionalization. It should be noted that it is not the purpose of

this paper to compare different methods of generating IFDs,

rather, one method has been adopted in order to provide a

comparative assessment of the impact of non-stationarity on

IFD estimation. The ARR 1999 procedure used to generate

IFDs from raw rainfall data (i.e. point based estimates) is

summarised as follows.

– A log-Pearson III distribution was fitted to the an-

nual maxima time series using the method of moments

(for annual maxima series of 30 min–72 h duration).

This is the standard distribution that has historically

been adopted for generating IFDs in Australia; however,

other distributions have recently been tested as part of

the revision of ARR. To test if this distribution is suit-

able for the region being studied, the goodness of fit

for the log-Pearson III was tested using a Kolmogorov–

Smirnov (KS) test. Here the null hypothesis is that the

data fits the log-Pearson III distribution (the alternative

is that the data does not follow the log-Pearson III dis-

tribution). All p values were greater than 0.05 (average

p value was 0.75) for all series (30 min–72 h durations
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at Brisbane, Sydney, and Melbourne); therefore, we ac-

cept the null hypothesis at the 5 % significance level.

– The coefficient of skewness was determined for each

duration (30 min–72 h).

– The coefficient of skewness was then used to obtain a

frequency factor, KY , for use with log-Pearson III distri-

bution. KY was obtained from Table 2.2 (positive skew

coefficients) and Table 2.3 (negative skew coefficients)

in ARR 1999 Book 4.

– Rainfall intensities for a range of ARI were calculated

using the following formula:

logRIY =M +KY S. (1)

Where RIY is the rainfall intensity having an ARI of

1 in Y ; M is the mean of the logarithms of the annual

maximum rainfalls; S is the standard deviation of the

logarithms of the annual maximum rainfalls; and KY is

the frequency factor for the required ARI of 1 in Y .

– ARIs of 2–10 years were adjusted to partial-duration se-

ries estimates. In ARR 1999, the following correction

factors were used (note: for ARI greater than 10 years,

no corrected factor is required): 2-year ARI – 1.13, 5-

year ARI – 1.04, 10-year ARI – 1.0.

It should be noted that this approach is likely to result in dif-

ferent estimates of IFDs than those obtained from the stan-

dard maps provided by ARR 1999 or the revised IFD esti-

mates released in 2013. Here we are using point-based rain-

fall data, whereas ARR 1999 derived regionalized estimates

based on multiple rainfall stations with varying lengths of

data, varying resolution (daily and pluviograph), and varying

quality of records. It is recognized that analysis of rainfall

data from single stations is often unreliable, is not tempo-

rally or spatially consistent, and should generally not be used

for design purposes. However, the use of point-based rainfall

data satisfies the specific aims of this study (which is a com-

parative analysis) and is therefore considered appropriate.

3 Results

3.1 Test for regime shifts in the annual maximum

rainfall time series

Significant step changes identified in the extreme rainfall

time series are shown in Fig. 2. Of the 66 sub-daily rainfall

stations tested, 40 (61 %) displayed at least one step change

in the 1 h annual maxima time series (Fig. 2a), with some

stations exhibiting multiple shifts. Of the 96 daily rainfall

stations tested, 86 displayed at least one step change in the

1-day annual maxima time series (Fig. 2b), while 92 exhib-

ited at least one shift in the 7-day annual maxima time se-

ries (Fig. 2c), and some stations exhibited multiple shifts.

Figure 2. Stations (in red) with at least one statistically significant

step change in the (a) 1 h, (b) 1-day, and (c) 7-day annual maximum

rainfall (using the Mann–Whitney U test).

Figure 2 collectively shows that observed step changes (or

regime shifts) in annual maximum rainfall are not confined

to any one particular region of Australia, with most stations

analysed exhibiting at least one statistically significant shift.
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Figure 3. Stations (in red) with at least one statistically significant

step change in (a) the 1-day and (b) 7-day annual maximum rainfall

(using the CUSUM test with resampling).

As shown in Fig. 3, the CUSUM test yielded fewer stations

with statistically significant step change in the annual max-

ima time series (only 18 stations out of 96) and many of these

were clustered along the coastal fringe of eastern Australia

(note that, although the total number of stations displaying

significant change points was the same for both the 1-day

and 7-day annual maxima, in some cases the location of the

stations differed between the two). However, as stated previ-

ously a limitation to this method is that only one significant

change can be detected using the CUSUM test (given that

the data is sequentially split into two portions during test-

ing). This can be a problem if more than one step change

or cycle in the data is present (see example time series in

Fig. 4). Therefore, while the number of stations displaying a

step change is reduced using the alternative method, the re-

sults do in fact support the theory that regime shift(s) in the

annual time series are present for some stations at different

durations.

The temporal consistency of step changes in the annual

maxima time series was further investigated (Fig. 5a) and it

Figure 4. Example of inadequate identification of non-stationarity

using the CUSUM test (red line highlights three distinct epochs of

high/low rainfall, while green line demonstrates effect of splitting

the data into two sections for the CUSUM test).

was found that the timing of observed shifts was not neces-

sarily consistent across Australia. However, for some regions

(e.g. the east coast of Australia) periods such as the 1940s

(Fig. 5b) and to a lesser degree the 1970s (Fig. 5c) display a

higher degree of spatial consistency.

Instability and storminess can result during periods when

a number of climate driving mechanisms interact (e.g. El

Niño–Southern Oscillation, Indian Ocean Dipole and the

Southern Annular Mode) to influence the occurrence of re-

gional weather systems such as east coast lows and cut-off

lows (Pook et al., 2006; Verdon-Kidd and Kiem, 2009). How-

ever, the large-scale climate phenomena impact various re-

gions of Australia at different times of the year and to vary-

ing degrees; therefore, it is not surprising that the timing of

shifts in the annual maxima time series varies spatially and

temporally. This highlights the limitations of trying to assess

and attribute variability in annual maximum rainfall based on

a single climate driver (e.g. ENSO) or attempting to address

the issue of climate trends for the whole of Australia using

one simple approach or model.

3.2 Effect of non-stationarity on IFD estimation

Section 3.1 provided evidence of non-stationarity in the an-

nual maxima time series for a range of durations. This non-

stationarity may ultimately influence the IFD estimation de-

pending on the length of data and the time period it comes

from and therefore the underlying climatic state (or combi-

nation of states). Current IFD estimates for Australia (both

the 1987 and 2013 versions) are based on data as short

as 30 years for the daily read stations and 8 years for the

sub-daily data. Therefore, IFD estimates based on relatively

short-term data sets may under- or over-estimate rainfall in-

tensities, depending on where the data series fits within the

long-term context (i.e. before or after a shift in annual max-

ima).

For many east coast stations a shift in 1-day annual max-

ima (along with the 7-day) occurred around the 1940s–1950s

and again in the 1970s. This timing also corresponds to well-

known periods of change in the IPO (see Sect. 2.1.2 for a

description of the IPO and its influences). Therefore, to fur-
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Figure 5. (a) Number of stations in each decade displaying evi-

dence of a step change in 1-day annual maximum. (b) Stations (in

red) with at least one statistically significant step change in the 1-

day annual maximum during 1940–1950 (using the Mann–Whitney

U test). (c) Stations (in red) with at least one statistically significant

step change in the 1-day annual maximum during 1970–1980 (using

the Mann–Whitney U test).

ther explore the issue of regime shifts, breakpoints in the IPO

were used to stratify the annual maximum rainfall time series

into IPO positive and negative epochs for the three long sub-

daily data sets described in Sect. 2.1.1 (i.e. Brisbane, Syd-

ney, and Melbourne; see Fig. 1a for location). The reason for

selection of these stations was twofold. Firstly, for all three

stations, a shift in the annual maxima time series (for 1-day

and 7-day) was observed during the 1940s and again in the

1970s. Secondly, the stations contain long records of pluvio-

graph data (the shortest being from 1913 onwards). Figure 6a

shows the modulating effect of the IPO on total annual rain-

fall for the three east coast stations. Annual maxima at the

three east coast stations during the two IPO epochs are also

shown in Fig. 6b–d for event durations of 30 min–72 h (du-

rations that are critical for flood design applications). A two-

sample KS test was applied to determine if the observed dif-

ferences between the IPO positive and negative rainfall distri-

butions are statistically significant. Here the null hypothesis

is that the two samples are drawn from the same distribution.

It is evident from Fig. 6a that the effect of the IPO on

annual rainfall totals (as measured by the largest difference

between the two rainfall distributions associated with each

climate phase and the results of the KS test) is greatest for

Sydney. Although there does appear to be some impact in

Brisbane, the result was not statistically significant accord-

ing to the KS test. Melbourne does not appear to be greatly

influenced by the IPO in terms of annual rainfall variability.

This is due to the fact that the southern regions of Australia

are affected by other climate modes than those arising from

the Pacific (i.e. the Southern Annular Mode and the Indian

Ocean Dipole; e.g. Kiem and Verdon-Kidd, 2010; Gallant et

al., 2012). Regions such as Brisbane and Sydney tend to be

dominated by Pacific Ocean influences (e.g. Verdon et al.,

2004). Figure 6b shows annual maximum rainfall tends to

be higher during negative IPO, on average, for durations of

6 h and longer at Brisbane (though not statistically significant

according to the KS test), while Fig. 6c confirms the same to

be true for Sydney for durations of 2 h and longer (statisti-

cally significant at 95 %). However, for Sydney, the outliers

(represented by circles) tend to be larger during positive IPO,

indicating that the less frequent events might be more intense

during this phase.

Irrespective of the fact that the annual rainfall totals for

Melbourne do not show any significant difference between

the two phases of the IPO, there does appear to be a con-

sistent relationship between IPO and the sub-daily and daily

statistics (Fig. 6d), whereby the median of the positive IPO

distribution is higher across all durations; however, negative

IPO is associated with less frequent but more extreme events

(although results were not statistically significant based on

the KS test). For events lasting 24 h and longer, the nega-

tive IPO distribution also shows a much higher degree of

variability than for shorter durations, with the “box and

whiskers” extending beyond the positive IPO counterpart for

these longer durations. This suggests that while IPO might

www.hydrol-earth-syst-sci.net/19/4735/2015/ Hydrol. Earth Syst. Sci., 19, 4735–4746, 2015
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Figure 6. Relationship between IPO and (a) total annual rainfall, and annual maximum rainfall at various durations for (b) Brisbane, (c) Syd-

ney, and (d) Melbourne.

not be as dominant in southeastern Australia as it is further

to the north, it still has some influence that needs to be better

understood.

Based on the analysis presented in Fig. 6 and the results of

the KS test, the Sydney record was chosen to further inves-

tigate the effects of regime shifts on IFD estimation. IFD in-

formation was generated for the Sydney record using rainfall

data from the two IPO phases and the methodology outlined

in Sect. 2.1 for durations from 6 min through to 72 h and ARI

of 2–200 years. In order to test the robustness of the point es-

timates of rainfall return levels and estimate the uncertainty

in their calculation, a simple bootstrap procedure was carried

out. Firstly, the IPO positive and IPO negative rainfall time

series were resampled with replacements to obtain two new

B samples. Then, for each B sample the log-Pearson III dis-

tribution was fitted and the rainfall intensities calculated for

the various return intervals. The difference between the rain-

fall intensities (of the two B samples) was then calculated.

This procedure was repeated 100 times to build the empirical

distribution of the differences (which represents the effects

of sampling and parameter estimation uncertainties under the

hypothesis of the existence of two different regimes).

Figure 7 shows the difference in rainfall intensity between

IPO positive and IPO negative estimates, along with the 95 %

confidence intervals (CIs) derived using the procedure above.

Figure 7 demonstrates clear differences in the resulting

rainfall intensities for Sydney estimated for each duration

and ARI using the two regimes (i.e. rainfall data from either

negative or positive IPO). The difference in rainfall inten-

sity estimated is as great as 65 % in some cases. In all cases,

the magnitude of the difference in rainfall intensity estimated

using the different data regimes is greater for less frequent

events (e.g. 50-, 100-, and 200-year ARIs), highlighting that

uncertainty is greatest with less frequent events. The rainfall

intensity is greater in positive IPO for the very short dura-

tion events (6 min) at all return intervals and for 30 min du-

ration events for return intervals of 10 years or more. Sim-

ilarly, for the 24 and 72 h duration events rainfall intensity

in the positive IPO phase is higher for return intervals of

5 years or more. For 2 and 6 h events, the negative phase re-

sults in higher intensity events for more frequent return levels

(20 years or less) but lower intensities for less frequent events

(50 years or more).

4 Discussion and conclusions

An analysis of regime shifts in the annual maxima time se-

ries (1 h, 1-day, and 7-day) has been carried out using a set of

high quality daily and sub-daily rainfall stations across Aus-

tralia. It was found that the annual maxima time series does
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Figure 7. Difference in rainfall intensity for each duration and ARI (for Sydney). Positive (negative) values represent an increase (decrease)

in rainfall intensity during positive IPO compared to negative IPO.

indeed exhibit statistically significant step changes/shifts for

the majority of stations and for various durations. Further-

more, it was demonstrated using three long-term sub-daily

rainfall stations along the east coast that this impacts the re-

sulting IFD estimation. The potential for ocean-atmospheric

processes (i.e. the IPO) to affect the resulting IFD estimation

was explored in order to demonstrate this issue. The authors

acknowledge that the IPO is unlikely to be the only driver

of variability in the annual maxima time series across Aus-

tralia, and it is recommended that future research should aim

to identify other potential drivers of this variability.

These findings highlight the fact that in some instances

the IFD estimates currently being used are likely to be either

under- or overestimated at any one time depending on the

length of data and climatic state from which they were de-

rived. This is a particular concern given that current region-

alized IFD information is based on data of varying length (as

short as 8 years in the case of sub-daily data) spanning dif-

ferent time periods. An overestimation of rainfall intensity

for a given duration could impact construction costs, while

the risks of underestimating rainfall intensities could result

in failure of design criteria. That is, the risk is dependent on

the application and length of time over which the risk is as-

sessed.

Further revisions of ARR are currently underway to in-

clude an assessment of the potential impacts of climate

change on IFD estimates. However, there are many uncer-

tainties associated with climate change projections, particu-

larly when extracting information on timescales shorter than

a season and for hydrological extremes (e.g. Blöschl and

Montanari, 2010; Kiem and Verdon-Kidd, 2011; Koutsoyian-

nis et al., 2008, 2009; Montanari et al., 2010; Randall et al.,

2007; Stainforth et al., 2007; Stephens et al., 2012; Verdon-

Kidd and Kiem, 2010). Therefore, assessing future changes

in extreme events that occur over short durations (e.g. min-

utes to days) is inherently difficult. Furthermore, climate pro-

jections are often presented in terms of a percent change from

a particular baseline. However, the baseline is often inconsis-

tent and ill-defined, leading to very different estimates of risk

depending on the time over which the baseline is calculated

(as has been demonstrated in this paper). Importantly, for re-

gions where large-scale climate drivers operate on a multi-

year to multidecadal timescale and are known to influence

extreme rainfall events, we can use this information to deter-

mine if the climate statistics on which the IFD are based are

likely to be biased or missing crucial information.

It is recommended that regime shifts in annual maximum

rainfall be considered and appropriately treated in any further
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updates of ARR. One way to do this may be to only utilise

data sets of similar length, ensuring that they span a suffi-

cient number of years in order to capture data from epochs

of both high or low annual maxima (to remove bias towards

one climatic phase or another). However, it is acknowledged

that this would potentially result in discarding a large amount

of data. Alternatively, a separate set of IFDs could be de-

veloped for use in high risk modelling for engineers who

need to account for the “worst case” (in a similar manner to

climate change allowances). This second set of IFDs could

be developed based on the periods of elevated annual max-

ima alone (for those stations with clearly defined epochs

of annual maxima) such that, if we were to enter such an

epoch, designs based on these estimates would be robust for

the duration of such a period. Salas and Obeysekera (2014)

provide similar recommendations to deal with changing ex-

ceedance probabilities over time. This would have to be as-

sessed and calculated on a region by region basis given that

Australia is a country associated with high spatial and tem-

poral rainfall variability caused by numerous large-scale cli-

mate drivers and regional weather phenomena. Finally, any

revised estimates of annual maxima should be compared

in terms of uncertainty bounds (e.g. following Koutsoyian-

nis, 2006). An uncertainty analysis which takes into account

both the data availability and variability within the observa-

tion period would provide relevant information to practition-

ers about the reliability of IFD estimates.

This study has highlighted the existence of regime shifts

in annual maximum rainfall data in Australia. The driving

mechanisms of these regime shifts are likely to vary from

location to location and decade to decade. However, these

shifts are typical of many natural phenomena and can be

described by processes characterized by long-range depen-

dence (or regime-switching processes) and captured by hid-

den Markov models (or similar), resulting in a mixture of dis-

tributions that alternate stochastically according to the tran-

sition probability from one regime to the next (e.g. Serinaldi

and Kilsby, 2015a). While the strategy of defining IFDs for

two (or more) different regimes (e.g Serinaldi and Kilsby,

2015a) currently only partially solves the problem, as we of-

ten do not know the beginning or the end of a specific regime

(be it rainfall or climate driver), recent work has focused

on optimizing designs and planning strategies based on the

range of what is plausible rather than a reliance on knowing

the current and future climate state (e.g. Mortazavi-Naeini et

al., 2015). At the same time, work is also underway on seam-

less prediction at a range of timescales and if/when this even-

tuates the results discussed here become even more impor-

tant/useful. Nevertheless, the immediate usefulness of the in-

sights presented here occurs when first establishing the IFD,

as an approach similar to that employed here can be used to

determine if the underlying data are biased to a mostly wet

or mostly dry regime (or a mix of both) which then provides

an indication as to whether the IFD is likely to be an over- or

underestimate of the true risk. Importantly, this issue needs

to be considered and accounted for when attempting to esti-

mate IFD design rainfalls and prior to quantifying how those

IFD estimates might change in both the near- and long-term

future.

While the analysis presented here has been conducted us-

ing rainfall data from Australia alone, the recommendations

provided are likely to be applicable for other regions of the

world where IFD information is based on short-term records

and particularly for locations with a highly variable climate.
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