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Abstract. Earth’s land surface is characterized by tremen-

dous natural heterogeneity and human-engineered modifi-

cations, both of which are challenging to represent in land

surface models. Satellite remote sensing is often the most

practical and effective method to observe the land surface

over large geographical areas. Agricultural irrigation is an

important human-induced modification to natural land sur-

face processes, as it is pervasive across the world and be-

cause of its significant influence on the regional and global

water budgets. In this article, irrigation is used as an example

of a human-engineered, often unmodeled land surface pro-

cess, and the utility of satellite soil moisture retrievals over

irrigated areas in the continental US is examined. Such re-

trievals are based on passive or active microwave observa-

tions from the Advanced Microwave Scanning Radiometer

for the Earth Observing System (AMSR-E), the Advanced

Microwave Scanning Radiometer 2 (AMSR2), the Soil Mois-

ture Ocean Salinity (SMOS) mission, WindSat and the Ad-

vanced Scatterometer (ASCAT). The analysis suggests that

the skill of these retrievals for representing irrigation effects

is mixed, with ASCAT-based products somewhat more skill-

ful than SMOS and AMSR2 products. The article then ex-

amines the suitability of typical bias correction strategies

in current land data assimilation systems when unmodeled

processes dominate the bias between the model and the ob-

servations. Using a suite of synthetic experiments that in-

cludes bias correction strategies such as quantile mapping

and trained forward modeling, it is demonstrated that the bias

correction practices lead to the exclusion of the signals from

unmodeled processes, if these processes are the major source

of the biases. It is further shown that new methods are needed

to preserve the observational information about unmodeled

processes during data assimilation.

1 Introduction

Examples of human-induced land surface changes include

urbanization, deforestation, and agriculture, all of which

have significant impacts on local and regional water and en-

ergy budgets and hydrologic and biogeochemical processes.

The expansion of infrastructure and agriculture, necessitated

by increasing societal demands, has led to significant trans-

formation of the natural features of the land surface, affecting

more than 50 % of the land area (Hooke et al., 2012). Most

current land surface models are not only severely deficient in

representing the impacts of such engineered artifacts but are

also limited in representing features of many natural systems

such as seasonal flood plains and wetlands. Remote sensing

measurements offer a potential alternative for capturing the

effects of such unmodeled processes. Moreover, data assim-

ilation, which is a common approach to merge the informa-

tion from observations with model estimates, may provide
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a possible mechanism for incorporating the effects of such

unmodeled processes into model estimates.

Irrigation is an important land management practice that

has had a significant impact on the global and regional wa-

ter budgets. As noted in Gordon et al. (2005), the global in-

crease in water vapor flows from irrigation is comparable to

the decrease caused by deforestation. It has been estimated

that as much as 87 % of the global fresh water withdrawals

by humans have been used for agriculture (Douglas et al.,

2009), which leads to significant alteration of the global and

regional hydrological cycle. Though recent studies have re-

ported the development of conceptual representations of ir-

rigation in land surface models (de Rosnay et al., 2003; Oz-

dogan et al., 2010; Leng et al., 2013; Lawston et al., 2015),

capturing and representing the nature of irrigation practices

remains a hard problem. Therefore, in this article we focus on

irrigation as an analog of a human-engineered process that is

typically not represented in land surface models.

There is a long legacy of retrieving estimates of sur-

face soil moisture from satellite microwave radiometry us-

ing a variety of sensors (Jackson, 1993; Njoku and En-

tekhabi, 1995). In the past decade, near-surface soil mois-

ture retrievals have become available from a number of

passive microwave and scatterometer-based platforms. They

include Advanced Microwave Scanning Radiometer-Earth

Observing System (AMSR-E) aboard the Aqua satellite,

WindSat multifrequency polarimetric microwave radiome-

ter aboard the Coriolis satellite, the Advanced Scatterome-

ter (ASCAT), a C-band active microwave remote sensing in-

strument aboard the Meteorological Operational (METOP)

satellites, the Advanced Microwave Scanning Radiome-

ter 2 (AMSR2) onboard the Global Change Observa-

tion Mission-Water (GCOM-W) satellite, the Soil Moisture

Ocean Salinity (SMOS) mission, and the Soil Moisture Ac-

tive Passive (SMAP) mission. Except for AMSR-E, which

stopped functioning in October 2011, all these instruments

are currently providing measurements of surface soil mois-

ture. In this article, we first examine if the satellite soil mois-

ture retrievals are effective in capturing the effects of irri-

gation. The comparison is performed through a quantitative

comparison of the probability density functions (PDFs) of

remote sensing data sets against those of land surface model

simulations that do not include formulations of irrigation.

The second focus of the article is to examine whether the

current data assimilation practices are adequate if unmod-

eled processes such as irrigation are present in observations.

When irrigation practices are employed, they lead to wet-

ter soil moisture relative to non-irrigated time periods. As-

suming that the physical model used in data assimilation

does not have irrigation formulations in it, the assimilated

observations would have a systematic bias (relative to the

model) during irrigation periods. In real data assimilation

systems, biases between model forecasts and observations

are unavoidable, and they typically result from a combina-

tion of model deficiencies, instrument and retrieval errors.

Proper treatment of these biases is important, as the assim-

ilation methods are primarily designed to work with errors

that are strictly random (Dee and da Silva, 1998). Here we

evaluate the impact of using common bias correction prac-

tices when unmodeled processes are the primary source of

the biases between the model and observations.

Primarily, there are two approaches to handling biases in

data assimilation systems (Dee, 2005): (1) “bias-aware” sys-

tems which are built to diagnose and correct the biases in the

observations and/or the model forecasts during data assim-

ilation integration, and (2) “bias-blind” systems which as-

sume the observations and model forecasts to be unbiased.

Ideally, biases must be estimated by comparing the observa-

tions and/or model states to the true mean states derived, for

example, from in situ measurements. However, as noted in

Draper et al. (2015), developing spatially distributed bias es-

timates is much harder for the land surface, compared to the

atmosphere or ocean, since point-scale in situ observations

are generally not representative of the spatial scale of re-

motely sensed or modeled states, due to the heterogeneity of

land. Though there have been a number of studies that rely on

online estimation of biases (De Lannoy et al., 2007; Reichle

et al., 2010), the common practice in land data assimilation

studies is to remove the bias between the observations and the

model and to use a bias-blind assimilation approach to cor-

rect only short-lived model errors. This is typically achieved

by rescaling the observations prior to assimilation, to have

the same statistics as the model, using quantile mapping ap-

proaches so that the observational climatology matches that

of the land model. This approach is easy to implement as a

preprocessing step to the data assimilation system and has

been used extensively in many land data assimilation studies

(Reichle and Koster, 2004; Drusch et al., 2005; Crow et al.,

2005; Reichle et al., 2007; Kumar et al., 2009; Liu et al.,

2011; Draper et al., 2011, 2012; Hain et al., 2012; Kumar

et al., 2012, 2014). A known disadvantage of the approach

is that it assumes stationarity in model–observational biases

and cannot easily adjust to dynamic changes in bias char-

acteristics. Common quantile mapping approaches used for

scaling observations into the model’s climatology include the

standard normal deviate based scaling (Crow et al., 2005) and

the CDF (cumulative distribution function)-matching method

(Reichle and Koster (2004); hereafter referred to as RK04).

The standard normal-deviate-based scaling matches the first

and second moments of the observation and model distri-

butions, whereas the CDF matching approach corrects all

quantile-dependent biases between the model and observa-

tions, regardless of the shape of the distributions.

When observations are rescaled prior to assimilation, stan-

dard normal deviates or percentiles (rather than the raw ob-

servations) are assimilated. This ensures that the model cli-

matology is preserved in data assimilation and that assimila-

tion only affects temporal patterns of the anomalies. In such

cases, the influence of assimilation is likely to be greater at

the shorter timescales (Kumar et al., 2014).

Hydrol. Earth Syst. Sci., 19, 4463–4478, 2015 www.hydrol-earth-syst-sci.net/19/4463/2015/



S. V. Kumar et al.: Utility of soil moisture retrievals for irrigation detection 4465

In this article, we argue that the approach of rescaling the

observations could be problematic, particularly when the un-

derlying distributions of the model estimates and the obser-

vations are different. Such differences in the distributions are

possible when features from human-induced activities such

as irrigation are present in observations and missing in mod-

eled estimates. Through a suite of synthetic experiments, we

demonstrate the limitations of the rescaling approaches when

the reference climatology is fundamentally limited in repre-

senting unmodeled processes whose effects nevertheless im-

pact the observations. In such cases, stationarity assumptions

about the climatologies could also lead to spurious, statisti-

cal features in the assimilation results. As a result, the use

of rescaling would become problematic for demonstrating

short-term assimilation impacts.

The rescaling approach through CDF-matching for land

data assimilation proposed by RK04 was motivated by

the fact that the true climatology of soil moisture at the

global scale remains unknown. The CDF-matching method is

based on similar applications of the method for establishing

rainfall–reflectivity relationships for the calibration of radar

or satellite observations of precipitation (Calheiros and Za-

wadzki, 1987; Atlas et al., 1990; Anagnostou et al., 1999).

The quantile mapping methods are also widely used for cor-

recting biases of regional climate model simulations relative

to observational data (Salathe Jr. et al., 2007; Li et al., 2010).

These studies assume that the probability density functions

of radar reflectivity and in situ rainfall are equivalent and

therefore quantile mapping can be used to translate one into

the other. RK04 extended this approach to soil moisture data

assimilation by transforming the satellite soil moisture re-

trievals into the model’s climatology for removing the rel-

ative biases between the model and observations. The im-

portant difference between the precipitation/climate down-

scaling studies and RK04 is that in the former, the remotely

sensed retrievals/climate model data were rescaled to ob-

served data, whereas in RK04 the satellite retrievals were

rescaled to a modeled climatology. In this article, we demon-

strate that rescaling to a model climatology that is not repre-

sentative of the observations may distort the scale of the ac-

tual observational features and may lead to loss of valuable

signals.

There are a number of alternative strategies for bias correc-

tion in bias-blind data assimilation systems. Instead of em-

ploying a single CDF (at each grid cell) that encapsulates

the soil moisture dynamics across all seasons (called lumped

CDFs), temporally stratified (monthly or seasonally) CDFs

can be used. The finer temporal stratification would help

to reduce the impact of statistical artifacts of using lumped

CDFs, but would also require sufficient sample sizes to ac-

curately derive CDFs for each temporal window. As demon-

strated in Kumar et al. (2012), the land surface model could

be calibrated against the retrieval products and the calibrated,

unbiased model could then be used in assimilation. Though

this strategy eliminates the biases in the variables being as-

similated, the climatologies of other outputs from the model

could be affected, unless additional constraints are included

in calibration. De Lannoy et al. (2013) employed a similar

strategy for assimilating SMOS L-band brightness tempera-

tures, by calibrating the forward radiative transfer model pa-

rameters and by keeping the land surface model parameters

unchanged. This strategy preserves the land surface model

climatology but only works when radiance measurements are

being assimilated through a forward model. Forman et al.

(2014) suggested a similar strategy for assimilating passive

microwave brightness temperatures for snow data assimila-

tion through the use of an artificial neural network (ANN).

The ANN uses the inputs from the land surface model and

is trained to the observed brightness temperatures to be as-

similated. The results of Forman et al. (2014) indicated that

the ANN could serve as a computationally efficient obser-

vation operator instead of more complex radiative transfer

models. In the current study, we evaluate the effectiveness of

a number of these strategies for land data assimilation when

the observations include the effects of processes that are not

included in the land surface model.

The article is organized as follows: First, we examine the

effectiveness of satellite soil moisture retrieval products in

their ability to capture the effects of irrigation (Sect. 2).

The evaluation is conducted by quantitatively comparing the

probability distribution functions from various remote sens-

ing soil moisture data sets and land surface model simula-

tions. The article then focuses on the impact of various a

priori bias correction approaches in data assimilation when

the distributions of the model and the observations are sig-

nificantly different due to unmodeled irrigation processes

(Sect. 3). Section 3 presents a synthetic data assimilation ex-

periment that explores the limitations of a suite of a priori

bias correction strategies in such scenarios. Finally, Sect. 4

presents a summary and discussion of major conclusions of

the study.

2 Evaluation of satellite remote sensing data over

irrigated areas

In this section, we examine the utility of modern soil mois-

ture remote sensing data sets towards the detection of irriga-

tion features. The irrigation practices over the world differ

in the method of irrigation, the trigger used and the amount

of water used in irrigation. A typical irrigation practice in

the US is to apply irrigation throughout the growing sea-

son at a level where the plants are not under transpiration

stress. The introduction of irrigation at the beginning of the

growing season would lead to increased surface soil mois-

ture and a significant dry down would only occur at the end

of the growing season when irrigation controls are removed.

Figure 1 shows the MODIS-based irrigation grid-cell frac-

tion map (%) derived by Ozdogan and Gutman (2008) and

validated against USGS irrigation data. Some of the known

www.hydrol-earth-syst-sci.net/19/4463/2015/ Hydrol. Earth Syst. Sci., 19, 4463–4478, 2015



4466 S. V. Kumar et al.: Utility of soil moisture retrievals for irrigation detection

Figure 1. MODIS-based irrigated grid-cell fraction (%) map of Ozdogan and Gutman (2008) over the continental US. The boxes (outlined

in red color) highlight three known areas with large-scale seasonal irrigation. The yellow triangle in the inset indicates the location of the

grid cell used in point-scale land surface model simulations.
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Figure 2. Surface soil moisture time series for the year 2000 from two simulations of a land surface model: (1) a free-running model

simulation with the NLDAS-2 forcing (SIM1), and (2) a seasonal irrigation scheme simulated on top of SIM1 (SIM2).

hotspots of irrigation over the continental US are highlighted

in this map, which includes the plains of Nebraska, lower

Mississippi Basin and California’s Central Valley.

To demonstrate the impact of irrigation, land surface

model simulations are conducted at a single grid point lo-

cated in the plains of Nebraska (as shown in Fig. 1). Fig-

ure 2 presents the time series of surface soil moisture (using

a 10 cm thick surface layer) for a representative year from

two simulations of the Noah (version 3.3; Ek et al., 2003)

land surface model (LSM). The simulations demonstrate the

impact of irrigation at this location: (1) model forced with

a given meteorological forcing data (SIM1), and (2) a sea-

sonal irrigation scheme simulated on top of the SIM1 con-

figuration (SIM2). The simulations use the modified 20 cat-

egory MODIS land cover data (Friedl et al., 2002) and are

forced with meteorological boundary conditions from the

North American Land Data Assimilation System Phase 2

(NLDAS-2; Xia et al., 2012) data. The initial conditions for

the model simulations are generated by spinning up the LSM

from 1979 to 2000. The irrigation scheme employed here

simulates a demand driven, sprinkler irrigation technique,

based on Ozdogan et al. (2010). Irrigation is triggered when

the root zone soil moisture falls below the transpiration stress

threshold for a particular grid cell. The scheme computes the

irrigation requirement as an equivalent height of water, which

is then applied as an addition to the precipitation input to

the model. The irrigation scheme is only applied to irrigated

land types such as crops and grasslands and is only enabled

during growing seasons (when 40 % of the annual range of

green vegetation fraction at a grid cell is exceeded). In ad-

dition, the irrigation requirement is enabled daily between

06:00 and 10:00 LT (local time), similar to the approach used

in Ozdogan et al. (2010).
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As the seasonal irrigation picks up in April, surface soil

moisture in SIM2 gets much wetter compared to the SIM1

integration. Towards the end of the summer, the imposed

irrigation is removed, which then causes the soil moisture

to dry down and approach the SIM1-based estimates. For

the purpose of developing climatologies, the model integra-

tions were conducted for several years (2000–2012). Simi-

lar features are repeated in other years, leading to a seasonal

wet bias in SIM2 compared to SIM1, mainly in the summer

months.

A comparison of the soil moisture distributions from the

two integrations are shown in Fig. 3, which shows a plot

of the quantiles of SIM1 data against the quantiles of SIM2

data. For comparison, the figure also shows a 45◦ reference

line. If the two data sets come from similar distributions, the

points in the q–q (quantile–quantile) plot should fall approx-

imately along this reference line and the departure from the

reference line indicates differences in the distributions of the

two data sets. Figure 3 indicates that there are significant dif-

ferences in the SIM1 and SIM2 distributions with shifts in

location, scale and symmetry. The data points are system-

atically above the 45◦ line indicating that the mean of the

distributions are significantly different, with the distribution

for SIM2 valued higher than that of SIM1. The q–q plot also

shows a bimodal nature due to the seasonal effect of irriga-

tion. Finally, the slope of the points on the q–q plot is higher

than 1, indicating that there are differences in the spread or

variances of the two distributions as well.

A two-sample Kolmogorov–Smirnov (K–S) test

(Chakravarti et al., 1967) can be used to quantitatively

compare the probability distributions of two data sets.

The K–S statistic quantifies a distance between empirical

distribution functions of two samples (F(x) and G(x) where

x is the sampled variable) and is computed as follows:

Dm,n =max
x
|F(x)−G(x)|, (1)

where m and n are the sample sizes of F and G.

The null distribution of the K–S statistic is calculated un-

der the null hypothesis that samples are drawn from the same

distribution. The null hypothesis is rejected at level α if

Dm,n > c(α)

√
m+ n

mn
, (2)

where c(α) is the inverse of the Kolmogorov distribution at α.

To examine the impact of irrigation on soil moisture distri-

butions over a larger spatial domain, the SIM1 and the SIM2

experiments are extended to a larger domain, encapsulating

the continental US at 0.125◦ spatial resolution. The model

integrations are conducted during the time period of 2000–

2013. The K–S test is then applied to the probability distri-

butions of the surface soil moisture estimates from the two

integrations. The resulting values for the K–S statistic (D)

are shown in Fig. 4. Only locations at which the null hy-

pothesis of the K–S static is rejected are shown in Fig. 4.
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Figure 3. A comparison of the cumulative distribution func-

tions (CDFs) from SIM1 and SIM2 integrations.

Values ofD closer to zero indicate that the soil moisture dis-

tributions from the SIM1 and SIM2 integrations are similar.

Conversely, larger D values indicate locations where the soil

moisture distributions from the two integrations differ. As the

difference between the two integrations in this example is

only due to the simulation of seasonal irrigation, the loca-

tions with positive K–S metric values in Fig. 4 indicate areas

where the irrigation artifacts are applied and are consistent

with the input irrigation intensity data used in the simula-

tions. The K–S metrics, therefore, can be used to detect in-

stances where the distributions of soil moisture retrievals and

the model estimates differ significantly, including differences

due to the treatment of irrigation.

Figure 5 shows a quantitative comparison of the differ-

ences in soil moisture distributions using the K–S metrics

from six remote sensing soil moisture retrievals and a land

surface model simulation (SIM1 configuration), for the con-

tinental US. The remote-sensing-based products are (1) the

blended multi-sensor soil moisture product from the Euro-

pean Space Agency (ESA) known as the essential climate

variable (ECV) product (Liu et al., 2012b), (2) soil moisture

retrievals from AMSR-E using the Land Parameter Retrieval

Model (LPRM) algorithm (Owe et al., 2008), (3) soil mois-

ture retrievals from WindSat, (4) soil moisture retrievals from

the backscatter measurements acquired by ASCAT, (5) soil

moisture retrievals from AMSR2, and (6) soil moisture re-

trievals from the SMOS mission. The WindSat and AS-

CAT retrievals are obtained through the Soil Moisture Op-

erational Products System (SMOPS; Liu et al., 2012a) of

NOAA/NESDIS. The level 3 AMSR2 data from the Japan

Aerospace Exploration Agency (JAXA; EORC, 2013) and

the level 2 swath-based SMOS products from ESA (Kerr

et al., 2006) are used in these comparisons. The temporal

extent of these data sets varies. The ECV data are avail-

able from January 1979 to December 2013, AMSR-E from

June 2002 to October 2011, WindSat from January 2007 to

present, ASCAT from January 2007 to present, AMSR2 from

July 2012 to present and SMOS from April 2012 to present.
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Figure 4. Kolmogorov–Smirnov distance (D) from comparison of soil moisture distributions from SIM1 and SIM2 integrations.

The CDFs for each data set are computed using all avail-

able data. The available quality control information in each

remote sensing data set is used to exclude data over regions

with dense vegetation, radio frequency interference, precipi-

tation and frozen ground. The model CDFs are computed us-

ing the simulated surface soil moisture estimates from 2000

to 2013. Differences in the dynamic range between observed

and modeled soil moisture are normally removed prior to as-

similation and here we remove the differences in the mean

and variance prior to calculating the K–S metrics. The data

values are normalized first with a standard score approach

((xti −µi)/σi where xti is the data value at time t and µi and

σi are the mean and standard deviation of the data at grid

point i) before computing the K–S metrics. Figure 5 shows

the D estimates from the K–S test for each comparison at

grid points where the null hypothesis of the K–S static is not

rejected. Not surprisingly, the ECV data comparison shows

the lowest D values, possibly due to the fact that the ECV

product was generated by CDF matching soil moisture esti-

mates from different sensors to a simulation of the Noah land

surface model from the Global Land Data Assimilation Sys-

tem (GLDAS; Rodell et al., 2004). Comparatively, larger dif-

ferences are seen in all other comparisons, which are likely

caused by a mix of biases resulting from instrument error, re-

trieval algorithm errors, unmodeled processes, and other rep-

resentativeness differences.

The spatial patterns of these metrics shown in Fig. 5 can

also be potentially used as a first measure of whether a sen-

sor captures observational features such as irrigation. Specif-

ically, a relatively small K–S metric at a location known to

have irrigation suggests that the remotely sensed observa-

tions did not detect that irrigation. However, the converse

is not necessarily true, in that a large K–S metric does not

necessarily indicate successful detection of irrigation (since

it could be caused by other model/remotely sensed discrep-

ancies). For example, a strong signal of vegetation density

in the eastern US can be noticed in the K–S metric map for

AMSR2. Similarly, in the ASCAT K–S metric map, large dif-

ferences can be observed around several major cities such as

Dallas, Houston and Atlanta. We focus on three key hotspots

of irrigation in the US shown in Fig. 1: the plains of Ne-

braska, lower Mississippi Basin and California’s Central Val-

ley. Of these three regions, only the lower Mississippi has

relatively higher K–S metric values, and only for AMSR-E,

AMSR2 and SMOS.

To examine if the spatial patterns of differences in K–S

metrics from various remote sensing data sets are in fact rep-

resentative of observational artifacts such as irrigation, we

examine the time series of soil moisture over these regions.

For an equivalent comparison given the possible differences

in the respective dynamic ranges, each data set is normal-

ized first (using the standard score approach) before com-

paring them on the same graph. Figure 6 shows the normal-

ized time series of soil moisture from the observations (from

SMOS, AMSR2 and ASCAT), the Noah LSM driven with

the NLDAS-2 forcing, with and without irrigation for the

year 2013. A 5-day moving average is applied to the SMOS,

AMSR2 and ASCAT retrievals to reduce the noise in the
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Figure 5. K–S distance (D) from the comparison of soil moisture distributions from the land surface model and various satellite remote

sensing data sets. Grid points in white color indicate locations that are omitted from the K–S comparisons due to insufficient reliable data.

satellite retrieval time series. As the grid-cell averages for the

satellite retrievals reflect averages of the irrigated and non-

irrigated pixels, a similar weighted estimate was produced

for the LSM-based irrigated soil moisture values. The LSM

time series representing irrigation in Fig. 6 is generated by

weighting the model soil moisture estimate with and without

irrigation for each grid cell by the irrigation fraction and (1

− irrigation fraction) of that grid cell, respectively. Finally,

in each region, only grid cells with at least 30 % irrigation

fraction indicated by the MODIS map are employed in com-

puting the spatial averages.

Figure 6 indicates that the SMOS and AMSR2 retrievals

agree more closely with the LSM estimate without irriga-

tion, in all three regions. In particular, there are few indica-

tors of systematic differences between the observations and

the model without irrigation in the summer months, suggest-

ing the limited skill of the SMOS and AMSR2 retrievals for

detecting features of seasonal irrigation. In contrast, ASCAT

retrievals show better agreement with the LSM estimate with

irrigation in the summer and fall months, over the plains

of Nebraska and lower Mississippi Basin. In these regions,

the ASCAT moisture signal shows a wetter trend in the late

fall months, which are in agreement with the LSM estimate

with irrigation. In California’s Central Valley, however, no

such distinct contrast due to irrigation is observed in all three

satellite retrievals. Similar trends are seen in other years (not

shown). From these results, it appears that neither SMOS nor

AMSR2 retrievals capture the effects of irrigation, whereas

the ASCAT retrievals are somewhat effective in detecting ir-

www.hydrol-earth-syst-sci.net/19/4463/2015/ Hydrol. Earth Syst. Sci., 19, 4463–4478, 2015



4470 S. V. Kumar et al.: Utility of soil moisture retrievals for irrigation detection

rigation features in the plains of Nebraska and the lower Mis-

sissippi Basin.

It is important to note here that the apparent inability of

SMOS and AMSR2 to capture the irrigation signal should

not be assumed attributable to sensor deficiency; it may in-

stead reflect their larger spatial footprints. The raw resolu-

tions of SMOS and AMSR2 products used here are at least

of 40 km, much coarser than the 0.125◦ resolution employed

in the LSM simulations. Thus, because Fig. 6 focuses on

0.125◦ grid cells with at least 30 % irrigation, the SMOS

and AMSR2 data (interpolated to that resolution) will nec-

essarily include some soil moisture information from areas

outside those defined by the 30 % threshold – areas that are,

almost by definition, drier. ASCAT, with a raw resolution of

∼25 km does not seem as affected by this, perhaps in part due

to its finer base resolution. Another possible reason may be

related to the influence of intercepted water, which has oppo-

site effects on the active and passive sensors. More analysis

is needed, however, to understand the different behaviors of

the sensors.

Note that in the model formulations, irrigation is simulated

consistently from the late spring months to early fall months,

though these assumptions about the timing and duration of

irrigation in these regions may be imperfect relative to the

actual practices in the field. In the plains of Nebraska, the

agreement between the ASCAT and model with irrigation

is consistent throughout the summer and early fall months

(from late June to early October). In the lower Mississippi,

on the other hand, the ASCAT time series indicates that the

application of irrigation occurs in the later months (from late

August onwards). The agreement between the model with

irrigation and the ASCAT time series is lower in the early

summer months. Though it is hard to ascertain the ability

of ASCAT data for characterizing the timing of irrigation,

it can be concluded that ASCAT retrievals perform better

than the SMOS and AMSR2 retrievals in terms of captur-

ing the anomalous wet soil moisture signals from irrigation

over these areas known to be irrigated.

3 Evaluation of bias correction strategies in the

presence of unmodeled processes

This section presents an examination of the effectiveness of

a number of a priori bias correction strategies in data assim-

ilation when unmodeled processes (such as irrigation) are a

major source of biases between the model and the observa-

tions. A synthetic experiment setup based on the SIM1 and

SIM2 configurations presented in Sect. 2 is used to explore

these issues.

If SIM2 represents the observations to be used in assimi-

lation, the typical procedure in data assimilation systems is

to rescale SIM2 estimates to the model climatology (SIM1

in this example). Figure 7 illustrates the impact of rescaling

SIM2 to SIM1 climatology with CDF matching (using both

lumped and monthly CDFs), for the year 2000. When lumped

CDFs are used, rescaling leads to a wetter soil moisture

time series (compared to SIM1) during the summer months

(but significantly lower than SIM2), whereas during the non-

irrigation months, rescaling leads to a much drier soil mois-

ture time series, relative to SIM1. Lumped CDF matching

attempts to keep the climatology of the rescaled time se-

ries to be close to the overall SIM1 climatology. As a result,

higher soil moisture values during irrigation are compensated

by lower soil moisture values during non-irrigated months

to keep the overall climatology the same as that of SIM1.

In this example, the lumped CDF-based rescaling approach

introduces spurious statistical artifacts during non-irrigated

periods. The statistical artifacts of rescaling during the non-

irrigated months are greatly reduced if the CDF matching

is performed in a more temporally stratified manner. As in-

dicated by Fig. 7, when rescaling uses monthly CDFs, the

resulting time series remain close to SIM1 both during the ir-

rigated and non-irrigated periods. Note that most data assim-

ilation studies (Reichle et al., 2007; Kumar et al., 2009; Liu

et al., 2011; Draper et al., 2012; Kumar et al., 2012, 2014)

use the lumped CDF-scaling approach due to sampling den-

sity limitations of using temporally finer-resolved CDFs.

3.1 Structure of synthetic data assimilation

experiments

The suite of data assimilation experiments employs an iden-

tical twin experiment setup. The model simulations are con-

ducted at the single grid point shown in Fig. 1. The Noah

LSM simulation forced with the NLDAS-2 data is termed

the open loop (OL) integration. A scheme designed to mimic

seasonal crop irrigation employed on top of the OL config-

uration is used as the “Control/Truth” simulation. All model

integrations use the same forcing and parameter data sets as

that of the experiment presented in Sect. 2. The time period

from 2000 to 2012 is used here for various evaluations.

From the truth simulation, observations are generated after

incorporating realistic errors and limitations of passive mi-

crowave remote sensing retrievals. To account for difficulties

in retrieving soil moisture products from microwave sensors,

the observations are masked out when the green vegetation

fraction values exceed 0.7 and when snow or precipitation

are present. Random Gaussian noise with an error standard

deviation of 0.02 m3 m−3 is added to the truth soil moisture

values to mimic measurement uncertainties, which is an opti-

mistic estimate of the error levels in the current space-borne

L-band radiometers (SMOS and SMAP). Finally, a data as-

similation (DA) integration that assimilates the simulated ob-

servations in the OL configuration is conducted. The DA

and OL integrations are compared against the known truth

to evaluate the impact of observations.

Most synthetic experiment studies (Reichle et al., 2002b;

Crow et al., 2005; Crow and Reichle, 2008; Kumar et al.,

2009, 2012) use different inputs and models in the control
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subregions shown in Fig. 1.
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and OL configurations to simulate the systematic biases that

are often present (between observations and the model) in

real data assimilation scenarios. Here we intentionally use a

setup where the only difference between the control run and

OL is a process (irrigation) that is not modeled in the OL

simulation but is included in the control run. One could en-

vision similar issues in real data assimilation systems, where

features from engineered systems will be present in observa-

tions but not simulated in physical models. In this idealized

scenario, biases between the model and the observations are

purely from observational features that are not modeled.
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Four different data assimilation integrations are conducted

using the synthetic observations: (1) DA-NOBC, assim-

ilating observations directly without any bias correction;

(2) DA-CDFL, assimilating a priori-scaled observations us-

ing CDF matching (using lumped CDFs representing all

years and seasons); (3) DA-CDFM, assimilating a priori-

scaled observations using monthly CDF matching (the model

and observation CDFs are generated separately for each cal-

endar month); and (4) DA-ANN, assimilating the simulated

observations directly and using a trained ANN as the obser-

vation operator in the data assimilation system (see Sect. 3.3

for details). In experiments DA-NOBC, DA-CDFL and DA-

CDFM, the observation operator is the land surface model

itself, whereas the observation operator is represented by the

trained ANN in the DA-ANN experiment.

In the DA-CDFL experiment, the observation and model

CDF are first computed independently for each grid cell us-

ing the 13-year (2000–2012) period. During data assimila-

tion, the observations are rescaled (separately for each grid

cell) using these lumped CDFs. As noted by Drusch et al.

(2005), the climatologies between the model and observa-

tions may change with season, which is clearly the case in our

synthetic experiment setup due to the influence of seasonal

irrigation. In the DA-CDFM experiment, the observation and

model CDFs are generated separately for each month and for

each grid point. The 13-year record of data ensures that there

is enough sampling density to accurately derive CDFs when

the CDF calculation is stratified by calendar months.

3.2 Data assimilation method

The data assimilation integrations are conducted using a one-

dimensional ensemble Kalman filter (EnKF; Reichle et al.,

2002a) algorithm. An ensemble size of 12 is used in the sim-

ulations with perturbations applied to both meteorological

fields and model prognostic fields to simulate uncertainty in

the model estimates. The determination of 12 as the ensemble

size was based on prior works (Reichle et al., 2007; Kumar

et al., 2008, 2009, 2012) and because the size of the model

state vector is small (4 Noah soil moisture state variables).

The EnKF alternates between an ensemble forecast step and

a data assimilation step. An ensemble of model states is prop-

agated forward in time using the land surface model during

the forecast step. In the update step at time k, the model

forecast is adjusted toward the observation based on the rela-

tive uncertainties, with appropriate weights expressed in the

“Kalman gain” Kk:

xi+k = xi−k +Kk

[
yik −Hkx

i−
k

]
, (3)

where xk and yk represent the model state and observation

vectors, respectively. The observation operator Hk relates the

model states to the observed variable. The superscripts i−

and i+ refer to the state estimates of the ith ensemble mem-

ber (−) before and (+) after the update, respectively. Equa-

tion (3) indicates that the analysis increments (xi+k − xi−k )

are computed by multiplying the Kalman gain Kk with the

innovations (yik −Hk xi−k ). In “bias-blind” data assimilation

systems, observations (yk) and model forecasts (Hk xi−k ) are

expected to be unbiased relative to each other, which presents

two choices for bias correction: (1) rescale observations into

the model climatology, so that the innovations are computed

in the climatology of Hk xi−k or (2) compute the innova-

tions in the observation space by having an operator (Hk)

that translates the model states into the observation space.

The quantile mapping approaches fall in the first category,

whereas the use of trained forward models as observation op-

erator represents the second category. We examine the impact

of using both sets of approaches when unmodeled processes

dominate the sources of biases.

3.3 Use of a trained ANN as a forward observation

operator

Artificial neural networks (ANNs) are data processing sys-

tems used for pattern matching applications and consist of

a highly interconnected array of processing elements (called

neurons), designed as a mathematical generalization of hu-

man cognition and learning. The basic architecture of an

ANN consists of three layers: input, hidden and output lay-

ers. The inputs processed through the input layer are commu-

nicated to the hidden layers and the results are output through

the output layer. The topology of the layers (defined by “acti-

vation functions”) and the weights of the interconnections are

used to develop accurate outputs. During the training phase,

the ANN is presented with a set of inputs and corresponding

outputs. The trained ANN can then be used for generating

new predictions when presented with a new set of inputs.

Figure 8 shows the structure of the ANN used in this study.

The input layer consists of six inputs, which are a combi-

nation of the meteorological inputs (rainfall and snowfall),

land surface model parameters (green vegetation fraction)

and land surface model estimates (surface soil temperature,

snow water equivalent and surface soil moisture). Note that

the surface soil moisture in the input layer is from the LSM

integration without irrigation. Five neurons were employed

in the hidden layer based on a similar approach used in Cao

et al. (2008) and Forman et al. (2014). For this study, a sin-

gle output node that estimates surface soil moisture values is

used. The ANN is trained to the simulated surface soil mois-

ture observations at this grid point (generated from the truth

integration) during the time period of 2000–2012. Since the

entire observation record is used for estimating CDFs, we use

the whole record for training the ANN as well, so that the ex-

periments are comparable. Figure 9 shows a comparison of

the simulated observations and the estimates from the trained

ANN for the year 2000. It can be seen that the trained ANN

model helps to capture the wetting of the soil due to seasonal

irrigation during the spring and summer months. Similar pat-

terns are observed in other years (not shown). The skill in

turning on or off irrigation in the ANN is likely due to the
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Figure 8. Structure of the artificial neural network employed in the

synthetic DA integrations.

incorporation of the information in the training inputs of soil

temperature and green vegetation fraction. The trained ANN

is then used in the DA experiments.

3.4 DA experiment results

The evaluation of the four DA experiments is presented in

Figs. 10–12. Figure 10 shows daily averaged soil moisture

estimates from various model integrations for the year 2000

as a representative time series. The DA-NOBC integration

assimilates the raw observations (shown in the figure) and as

a result provides soil moisture estimates closer to the Con-

trol simulation during times when observations are available.

DA-CDFL and DA-CDFM integrations ingest rescaled ob-

servations (not shown), which do not show a systematic in-

crease in the soil moisture values during the spring and sum-

mer months. Similar behavior is seen for the DA-ANN inte-

gration, which assimilates the raw observations, but does not

represent the anomalously wet soil moisture of the Control

simulation. The DA-CDFL, DA-CDFM and DA-ANN inte-

grations do not deviate much from the open loop integrations

as the size of the analysis increments (Kk[y
i
k −Hk xi−k ]) in

these integrations is small. In DA-CDFL and DA-CDFM, the

rescaling causes the innovations to be computed in the clima-

tology of the model states whereas in the DA-ANN exper-

iment, the innovations are computed in the climatology of

the observations. In either case, when these small increments

generated by the assimilation system are applied back to the

soil moisture forecast values (in the open loop climatology),

the anomalous wet signals in the observations are removed

as bias artifacts and are never included in the analysis.

Figure 11 shows the average seasonal cycle of RMSE

(root mean squared error; stratified monthly across the en-

tire simulation period of 2000–2012) of surface soil mois-

ture from various model integrations. Similar to the trends

in Fig. 10, the DA-NOBC integration shows significant im-

provements from data assimilation except for August. The

peak of vegetation (determined based on the green vegeta-

tion fraction) occurs in August leading to observations be-

ing excluded from the data assimilation system. As a result,

the improvements through assimilation are small during this

time period. The seasonal nature of the RMSE estimates from

DA-CDFL, DA-CDFM, and DA-ANN is similar and is close

to the open loop RMSE estimates. The use of the scaled ob-

servations (in DA-CDFL and DA-CDFM) and the use of the

trained forward model (in DA-ANN) causes the dampening

and exclusion of the wet biases from irrigation in these DA

integrations.

An important philosophical point, however, is warranted

here. Implicit in the above discussion of Fig. 11 is the as-

sumption that a higher RMSE reflects a poorer performance.

Depending on application, this may not be true at all. It is a

well-established fact that the soil moisture estimate from the

model is essentially an index of wetness and a highly model-

dependent quantity (Koster et al., 2009). As a result, care

must be exercised when comparing model soil moisture di-

rectly to in situ or satellite measurements. The whole point of

the scaling exercise is to convert a satellite-based soil mois-

ture value, prior to its assimilation, to a value consistent with

that of the LSM used. This allows the further use of the as-

similated soil moisture value in that LSM, e.g., to initialize

a forecast. If, once the data assimilation process is finished,

a soil moisture value is needed that reflects a more “correct”

climatology (e.g., with an irrigation-influenced seasonal cy-

cle, as in the Control simulation), the data assimilation prod-

uct can easily be scaled back to that climatology using the

reverse of the original scaling approach. Viewed in this light,

the data assimilation approach, with scaling, is essentially

designed to capture the year-to-year or short-term variations

in soil moisture anomalies rather than the structure of the

seasonal cycle. Also note that, though the seasonal cycle of

RMSE is lowest in the DA-NOBC integration, this config-

uration is not really viable in real data assimilation systems

where biases are unavoidable. The DA-NOBC integration is

included in the suite of experiments, as we have the knowl-

edge of the exact sources and magnitudes that contribute to

the biases in this synthetic configuration. For real data assim-

ilation systems, metrics recommended by Entekhabi et al.

(2010), which compute estimates of soil moisture accuracy

while accounting for biases, may be more appropriate.

The EnKF algorithm assumes linear system dynamics. It

further assumes model and observation errors that are Gaus-

sian and mutually and serially uncorrelated. If these assump-

tions hold, then the distribution of filter innovations (obser-

vation minus model forecast residuals) normalized by their

expected covariance will follow a standard normal distribu-

tion N [0, 1] (Gelb, 1974). The deviations from the N [0,1]

of the normalized innovation distribution is typically used as

a measure of the degree of suboptimality of the data assim-

ilation system (Reichle et al., 2002a; Crow and Van Loon,

2006; Reichle et al., 2007; Kumar et al., 2008). Figure 12

compares the distribution of the normalized innovations from
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to the Control simulation.

DA-NOBC, DA-CDFL, DA-CDFM and DA-ANN to the

N [0, 1]. The mean and standard deviation of each distribu-

tion are also reported in the figure. Unsurprisingly, the DA-

NOBC indicates the largest deviation in the mean among the

experiments, indicating the presence of a bias. The mean val-

ues of the distributions from DA-CDFL, DA-CDFM and DA-

ANN are closer to zero, due to various a priori bias correction

strategies employed.
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Figure 12. Distribution of normalized innovations from various DA

integrations compared against the standard normal distribution.

These internal diagnostics are also often used for the esti-

mation of input error parameters of the data assimilation sys-

tem. For example, in adaptive filter implementations (Reichle

et al., 2008), the model and observation error specifications

are continually adjusted to yield near-optimal behavior of the

internal diagnostics (i.e., close toN [0, 1] response of normal-

ized innovation distribution). The analysis presented above

indicates that if unmodeled processes are present, these bi-
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ases are reflected in the innovation diagnostics as deviations

from expected optimal measures. In such cases, the reliance

on these assimilation diagnostics may be misleading if the

end goal of the assimilation process is to correct the mod-

eled seasonal cycle of soil moisture toward that of the ob-

servations. As noted above, though, the goal may instead be

to capture, for various applications, year-to-year anomalies

in soil moisture and, for this purpose, the innovation diag-

nostics reveal that the scaling approaches do provide supe-

rior behavior. Again, though, it should be pointed out that

the synthetic experiment was designed to isolate the impacts

of unmodeled irrigation. In practice, the effects of unmod-

eled irrigation will be conflated with bias issues that result

from differences in land surface parameters and differences

in the very meaning (such as layer-depth) of the modeled and

retrieved soil moisture values.

4 Summary

Due to the heterogeneity of the land surface and the large

impact of human activities, quantifying the variability of wa-

ter and energy budgets on the land surface presents unique

challenges compared to the atmosphere and ocean compo-

nents of the Earth system. Irrigation is one of the pervasive

human-induced land management practices that has a direct

impact on the local and regional water budgets. In this article,

we examine the utility of satellite soil moisture retrievals to

detect irrigated areas. In addition, the article also examines

the limitations of current data assimilation practices when

the observations are dominated by processes that are not in-

cluded in the land model.

Application of seasonal irrigation is likely to introduce

systematic differences in the soil moisture distributions.

Therefore, if the remote sensing data sets are skillful in de-

tecting irrigation features, the resulting soil moisture dis-

tributions would be significantly different compared to a

model simulation that does not simulate irrigation. We use

this hypothesis to examine the effectiveness of modern re-

mote sensing soil moisture products from ASCAT, AMSR2

and SMOS in their ability to detect irrigation. A two-sample

Kolmogorov–Smirnov test is used to quantify the systematic

differences between distributions of model and remote sens-

ing data sets, over a continental US domain. The analysis

reveals systematic differences in spatial patterns of the distri-

butions of model and remote sensing data. Additional anal-

ysis, however, suggests that these differences are not always

related to the detection of irrigation artifacts. Generally, AS-

CAT retrievals were found to be somewhat more skillful than

the SMOS and AMSR2 retrievals in their ability to capture

features of irrigation on the land surface.

Overall, the analysis presented in the paper assumes a

demand-driven irrigation scheme maintained throughout a

growing season at a level where the plants are not under tran-

spiration stress. In reality, however, the type and level of ir-

rigation may not be seasonally persistent and therefore the

nature of the expected biases in the soil moisture signal due

to irrigation may not be systematic throughout a season. Fur-

ther comparisons with in situ soil moisture data at irrigated

locations will be required to confirm and isolate the limita-

tions of the remote sensing data over these areas. A major

source of the biases between the satellite retrievals and the

LSM estimates is the differences in the land surface param-

eters used in the respective models. The biases from these

parameter differences are likely to dominate the more subtle

effects of irrigation. In addition, the scale mismatches be-

tween the model and the observations are also likely to have

an influence in the comparisons presented here. The spatial

resolution of the model (0.125◦) and the observations (∼ 25–

40 km) can be considered relatively coarse for detecting uni-

formly and simultaneously irrigated areas.

The second focus of the article is on the limitations of var-

ious a priori bias correction strategies in land data assimila-

tion towards representing unmodeled processes. This issue is

explored through a suite of synthetic data assimilation exper-

iments. A simulation of seasonal irrigation is used as analog

for an engineered process that is typically not included in

large-scale land surface model simulations. The data assimi-

lation integrations merge the observations generated from the

irrigation simulation into a model in which irrigation is ab-

sent and features a free-running land surface model. The data

assimilation integrations include simulations that employ no

bias correction, a lumped CDF-matching correction, a sea-

sonally varying CDF-matching correction or ANN as a for-

ward observation operator. As the a priori bias correction ap-

proaches make no distinction of the source of the biases (un-

modeled or from other sources), they treat all systematic dif-

ferences between the model and observations as biases. As a

result, all a priori bias correction strategies considered above

cause the signal from seasonal irrigation (or other unmod-

eled processes) to be excluded in the DA results, though the

analysis of the DA internal diagnostics indicate near-optimal

performance for such configurations.

The challenge in data assimilation systems is to separate

the biases that are due to instrument error and retrieval algo-

rithm errors from the biases induced by unmodeled processes

so that the true observational features are not excluded during

data assimilation. Detecting spatial patterns of such differ-

ences could be useful in the utilization of soil moisture data

sets in data assimilation systems. For example, even if a par-

ticular retrieval data set is not skillful in detecting irrigation

in a given region, it could still perform adequately over other

regions. If knowledge of such limitations are known a priori,

at the very least the assimilation system could simply exclude

the use of the retrievals over known irrigated areas. Ancillary

information from other remote sensing platforms could be

useful in such scenarios. For example, estimates of land sur-

face temperature and evapotranspiration measurements can

be obtained from thermal remote sensing platforms, which

can also be used as an analog for detecting the effects of ir-
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rigation. Similar to the wetting effect irrigation has on sur-

face soil moisture, it also has a cooling effect on the surface

temperature. Increased water availability from irrigation also

leads to increased evaporation. Finally, irrigated time peri-

ods also correlate with an increase in vegetation indices such

as leaf area index (LAI) and normalized vegetation differ-

ence index (NDVI). Expected trends of anomalies in these

data sets from irrigation could be used as added constraints

in data assimilation to mask the known limitations of passive

microwave soil moisture retrievals.

It is obviously difficult to attribute bias to unmodeled pro-

cesses or other factors. Calibrating the land surface model

parameters can be an effective a priori correction approach

in this scenario. Land surface model calibration would incor-

porate the observational signals by altering the default model

behavior. When the calibrated model is subsequently used

in data assimilation, the observational signal is preserved. In

contrast, calibrating a forward radiative transfer model (or

using a trained ANN) has a different impact in terms of rep-

resenting unmodeled processes. Calibration of forward ob-

servation operators would attribute the bias to its parameters;

however, since the default land model behavior is unchanged,

the unmodeled process is ultimately not represented. The

land surface model parameter estimation in this context also

has a number of disadvantages. The physical realism of the

estimated parameters may be violated given that the calibra-

tion would attribute the error from all unmodeled processes

to model parameters. If data from multiple sensors are be-

ing concurrently assimilated into such a “calibrated” model,

the calibration approach would not be viable because a new

set of calibrated model parameters would be needed for each

sensor, leading to differing model climatologies and behav-

iors.

Another possible alternative may be to examine the char-

acteristics of the differences between the model and observa-

tions over a larger domain and infer a general estimate of the

relative biases. For example, instead of computing CDFs at

each grid point, they can be computed by grouping and strat-

ifying model and observation estimates based on the vege-

tation type across a larger domain. The grid points where

the soil moisture PDFs differ significantly (based on the K–S

metrics, for example) can be excluded in the computation of

the CDFs. The model and observation CDFs computed for

each vegetation type can then be used in the data assimila-

tion system. The goal behind such an approach would be to

develop an overall estimate of the true biases between the

model and observations (i.e., an estimate that excludes bi-

ases due to unmodeled processes). The downside of such ap-

proaches is that they obviously disregard the importance of

geographic specificity in bias correction strategies. The syn-

thetic experiment that we have used above is not an ideal

setup to examine this approach. Since the only difference

between the observations and the open loop in this setup is

the effect of irrigation, the use of the above mentioned ap-

proach would produce identical CDFs for the model and ob-

servations and therefore the assimilation approach would be

equivalent to that of DA-NOBC. We therefore leave the eval-

uation of such alternate approaches to future work.
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